Citation statistics by hand (also see Google Scholar Citations)
Cited publications: 37
Citations: 1273
h-index: 20

Rahman R, Chirn G, Kanodia A, Sytnikova YA, Brembs B, Bergman CM, Lau NC (2015): Unique transposon landscapes are pervasive across Drosophila melanogaster genomes. Nucleic Acids Res, 43: 10655–10672, DOI: 10.1093/nar/gkv1193
Citations:

  1. Kofler R, Gomez-Sanchez D, Schloetterer C (2016): PoPoolationTE2: comparative population genomics of transposable elements using Pool-Seq

Mendoza E, Colomb J, Rybak J, Pflüger H-J, Zars T, Scharff C, Brembs B (2014): Drosophila FoxP Mutants Are Deficient in Operant Self-Learning. PLoS ONE 9(6): e100648. doi:10.1371/journal.pone.0100648
Citations:

  1. Ostrowski D, Kahsai L, Kramer EF, Knutson P, Zars T (2015) Place memory retention in Drosophila. Neurobiol Learn Mem 123: 217–224. DOI: 10.1016/j.nlm.2015.06.015
  2. Sperling K (2015): The Nature-Culture-Border in the Light of the Human Genome Project. Med. Gen. 27(1): 7-17, DOI: 10.1007/s11825-015-0037-3
  3. Boeckx C, Theofanopoulou C (2014): A multidimensional interdisciplinary framework for linguistics: the lexicon as a case study. J. Cogn. Sci. 15: 403–420
  4. Weiss S, Rosales-Ruiz J (2014): Introduction to the Special Issue on Operant/Classical Conditioning: Comparisons, Intersections and Interactions. International Journal of Comparative Psychology, 27(4): 515-525

Colomb J, Brembs B (2014): Sub-strains of Drosophila Canton-S differ markedly in their locomotor behavior. F1000Res, 10.12688/f1000research.4263.1
Citations:

  1. Tennant JP, Waldner F, Jacques DC, Masuzzo P, Collister LB, Hartgerink CHJ (2016): The academic, economic and societal impacts of Open Access: an evidence-based review [version 1; referees: 2 approved, 1 approved with reservations]. F1000Research 5:632 (doi: 10.12688/f1000research.8460.1)
  2. Haddaway NR, Hedlund K, Jackson LE, Kätterer T, Lugato E, Thomsen IK, Jørgensen HB, Söderström B (2015): What are the effects of agricultural management on soil organic carbon in boreo-temperate systems? Env Evid, 4:23, DOI: 10.1186/s13750-015-0049-0
  3. West RJ, Elliott CJ, Wade AR (2015): Classification of Parkinson’s Disease Genotypes in Drosophila Using Spatiotemporal Profiling of Vision. Sci Rep. 5: 16933, DOI: 10.1038/srep16933
  4. Pinfield S (2015): Making Open Access work. Online Inf Rev. 39: 604–636, DOI: 10.1108/OIR-05-2015-0167
  5. Xiao C, Robertson RM (2015): Locomotion Induced by Spatial Restriction in Adult Drosophila. PLOS ONE 10(9):e0135825, DOI: 10.1371/journal.pone.0135825
  6. Zalucki O, Day R, Kottler B, Karunanithi S, van Swinderen B (2015): Behavioral and electrophysiological analysis of general anesthesia in 3 background strains of Drosophila melanogaster. Fly, 9: 7–15, DOI: 10.1080/19336934.2015.1072663
  7. Watson M (2015): When will “open science” become simply “science”? Genome Biol, 16:101, DOI: 10.1186/s13059-015-0669-2

Brembs,B. (2014) Aplysia operant conditioning. Scholarpedia, 9, 4097.
Citations:

  1. Sakurai A, Katz PS (2015): Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 201: 829–839, DOI: 10.1007/s00359-015-1007-6

Brembs B (2013): Invertebrate behavior—actions or responses? Frontiers in Neuroscience 7, Article 221
Citations:

  1. Kralj-Fišer S, Schuett W (2014): Studying personality variation in invertebrates: why bother? Anim Behav. 91:41–52

Brembs B, Button K, Munafò M (2013): Deep Impact: unintended consequences of journal rank. Front Hum Neurosci. 7:Article 291
Citations:

  1. Smaldino PE, McElrath R (2016): The Natural Selection of Bad Science. arXiv:1605.09511 [physics.soc-ph]
  2. Reinhart A (2016): Statistics Done Wrong: The Woefully Complete Guide. No Starch Press, 176p, ISBN-13: 978-1593276201
  3. Poirazi P, Belin D, Gräff J, Hanganu-Opatz I, López-Bendito G (2016): Balancing family with a successful career in neuroscience. Eur J Neurosci. 2016 May 21. doi: 10.1111/ejn.13280
  4. Branch TA, Linnell AE (2016): What makes some fisheries references highly cited? Fish and Fisheries. doi: 10.1111/faf.12160
  5. Wimmer EN, Rethlefsen ML, Jarvis C, Shipman JP (2016): Understanding Research Impact: A Review of Existing and Emerging Tools for Nursing. J Prof Nurs. doi: 10.1016/j.profnurs.2016.05.005
  6. Schmidt N (2016): Tackling complexity in an interdisciplinary scholarly network: Requirements for semantic publishing. First Monday, 21(5). doi: 10.5210/fm.v21i5.6102
  7. Rentier B (2016): Open Science: a revolution in sight? Interlending & Document Supply. http://hdl.handle.net/2268/198865
  8. Huber WD (2016): Deep Impact: Impact Factors and Accounting Research. Int J Crit Acc 8(1), 56-67
  9. Polonioli, A. (2016): Metrics, flawed indicators, and the case of philosophy journals. Scientometrics 106 (1): 253–261 doi: 10.1007/s11192-016-1941-2
  10. Shanahan DR (2016): Auto-correlation of journal impact factor for consensus research reporting statements: a cohort study. PeerJ 4:e1887 doi: 10.7717/peerj.1887
  11. Meadows M, Dietz T, Vandermotten C (2016): A perspective on problems and prospects for academic publishing in Geography. Geo: Geography and Environment, 3(1): e00016, DOI: 10.1002/geo2.16
  12. Ralph P (2016): Practical Suggestions for Improving Scholarly Peer Review Quality and Reducing Cycle Times, Communications of the AIS, Volume 38, Article 13
  13. Tracz V, Lawrence R (2016): Towards an open science publishing platform. F1000Research, 5:130, DOI: 10.12688/f1000research.7968.1
  14. Carrier JG (2016): After the Crisis: Anthropological Thought, Neoliberalism and the Aftermath, (Routledge Studies in Anthropology), ISBN: 978-1138100855
  15. Starbuck WH (2016): 60th Anniversary Essay: How Journals Could Improve Research Practices in Social Science. Administrative Science Quarterly, DOI: 10.1177/0001839216629644
  16. Salager-Meyer F (2015): Peripheral scholarly journals: From locality to globality. Ibérica 30: 15-36
  17. Erikson MG, Erlandson P, Erikson M (2015): Academic misconduct in teaching portfolios. Int. J Acad Dev. 20(4): 345-354
  18. Jones RT (2015): Presidential address: Truth and error in scientific publishing. Journal of the Southern African Institute of Mining and Metallurgy, 115(9): 799-816
  19. Contreras FG, Buzeta LP, Pedraja-Rejas L (2015): Importancia de las publicaciones académicas: algunos problemas y recomendaciones a tener en cuenta. Idesia (Arica), 33: 111–119, DOI: 10.4067/S0718-34292015000400014
  20. Hernandez-Alvarez M, Gomez JM (2015): Citation Impact Categorization: For Scientific Literature. 2015 IEEE 18th International Conference on Computational Science and Engineering, DOI: 10.1109/cse.2015.21
  21. Nieminen P, Abass K, Vähäkanga K, Rautio A (2015): Statistically non-significant papers in environmental health studies included more outcome variables, Biomed Environ Sci, 28(9): 666-673, DOI: 10.3967/bes2015.093
  22. Casadevall A, Fang FC (2015): Impacted Science: Impact Is Not Importance. mBio, 6(5): e01593-15, DOI: 10.1128/mBio.01593-15
  23. Herb U (2015): Open Science in der Soziologie: Eine interdisziplinäre Bestandsaufnahme zur offenen Wissenschaft und eine Untersuchung ihrer Verbreitung in der Soziologie. Verlag Werner Hülsbusch, ISBN: 978-3-86488-083-4
  24. Bowen A, Casadevall A (2015): Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research. Proc Natl Acad Sci U S A, 112: 11335–11340, DOI: 10.1073/pnas.1504955112
  25. Probst TM, Hagger MS (2015): Advancing the Rigour and Integrity of Our Science: The Registered Reports Initiative. Stress Health, 31: 177–179, DOI: 10.1002/smi.2645
  26. Van Hezewijk R (2015): Old socks and the end of theory, ISTP 30th Biennual Conference, Coventry (UK)
  27. Eve MP (2015): Open Access publishing and scholarly communications in non-scientific disciplines. Online Inf Rev, 39: 717–732, DOI: 10.1108/OIR-04-2015-0103
  28. Louys J (2015): Palaeontologia Electronica in an increasingly open-access world, Palaeontologia Electronica, 18.2.2E
  29. Hunter P (2015): Web 2.0 and academic debate: Social media challenges traditions in scientific publishing. EMBO rep. 16: 787–790, DOI: 10.15252/embr.201540721
  30. Teixeira da Silva JA (2015): Issues in Science Publishing. What’s Hot and What’s not? KOME – An International Journal of Pure Communication Inquiry, 3(1): 81-88
  31. LeHuray A (2015): In response to Bales (2014). Integr Environ Assess Manag, 11: 185–187, DOI: 10.1002/ieam.1619
  32. Fahrenberg J (2015): Theoretische Psychologie: Eine Systematik der Kontroversen, Pabst Science Publ, ISBN: 978-3-95853-077-5, 832pp
  33. Wolf BM, Häring AM, Heß J (2015): Strategies towards Evaluation beyond Scientific Impact. Pathways not only for Agricultural Research. Organic Farming, 1(1): 3-18 , DOI: 10.12924/of2015.01010003
  34. Génova G, Astudillo H, Fraga A (2015): The Scientometric Bubble Considered Harmful. Sci Eng Ethics, 22: 227–235, DOI: 10.1007/s11948-015-9632-6
  35. Hery L, Weill C, Macé B, Benoist D, Boutet A, Defaux H, Nguyen C, Piñol-Domenech N, Fontaine-Martinelli F, Legendre O (2015): Médecins, bibliothécaires : pourquoi travailler ensemble? <hal-01115703>
  36. Margraf J (2015): Zur Lage der Psychologie. Psychologische Rundschau, 66: 1–30, DOI: 10.1026/0033-3042/a000247
  37. Jane EA (2015): Flaming? What flaming? The pitfalls and potentials of researching online hostility. Ethics Inf Technol. 17(1): 65-87, DOI: 10.1007/s10676-015-9362-0
  38. Madan CR (2015): Every scientist is a memory researcher: Suggestions for making research more memorable. F1000Research, 4:19, DOI: 10.12688/f1000research.6053.1
  39. Eslami M, Rickman A, Vaccaro K, Aleyasen A, Vuong A, Karahalios K, Hamilton K, Sandvig C (2015): “I always assumed that I wasn’t really that close to [her].”: Reasoning about Invisible Algorithms in News Feeds. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems – CHI ’15, DOI: 10.1145/2702123.2702556.
  40. Wolf B, Heß J (2015): Veränderungen der Forschungsevaluierung–Chancen für eine ökologische Agrarforschung mit gesellschaftlicher Wirkung. In: Häring AM, Hörning B, Hoffmann-Bahnsen R, Luley H, Luthardt V, Pape J, Trei G (eds.): Am Mut hängt der Erfolg – Rückblicke und Ausblicke auf die ökologische Landbewirtschaftung. Beiträge zur 13. Wissenschaftstagung Ökologischer Landbau, Hochschule für nachhaltige Entwicklung Eberswalde, 17.-20. März 2015, Verlag Dr. Köster, Berlin
  41. Campanario JM (2014): Analysis of the distribution of cited journals according to their positions in the h-core of citing journal listed in Journal Citation Reports. J Informetrics, 8: 534–545, DOI: 10.1016/j.joi.2014.04.007
  42. Engler JO, Husemann M (2014): Data constraints, bias and the (mis-)use of scientometrics for predicting academic success: A comment on van Dijk et al. Proceedings of Peerage of Science, DOI: 10.14726/procpos.2014.e8
  43. Black KJ (2014): F1000Research: Tics welcomes you to 21st century biomedical publishing. F1000Res. 3:272, DOI: 10.12688/f1000research.5664.1
  44. Liao H, Xiao R, Cimini G, Medo M (2014): Network-Driven Reputation in Online Scientific Communities. PLoS ONE 9(12):e112022, DOI: 10.1371/journal.pone.0112022
  45. Knudson D (2014): What is a kinesiology journal? 1 . Comprehensive Psychology, 3, Article 20, DOI: 10.2466/03.CP.3.20
  46. Coates H (2014): Ensuring research integrity: The role of data management in current crises, College & Research Libraries News, 75(11): 598-601
  47. Wáng YX, Arora R, Choi Y, Chung HW, Egorov VI, Frahm J, Kudo H, Kuyumcu S, Laurent S, Loffroy R, Maurea S, Morcos SK, Ni Y, Oei EH, Sabarudin A, Yu X (2014): Implications of Web of Science journal impact factor for scientific output evaluation in 16 institutions and investigators’ opinion, Quant Imaging Med Surg. 4(6):453-61. DOI : 10.3978/j.issn.2223-4292.2014.11.16.
  48. Fraley RC, Vazire S (2014): The N-Pact Factor: Evaluating the Quality of Empirical Journals with Respect to Sample Size and Statistical Power. PLoS ONE 9(10):e109019, DOI: 10.1371/journal.pone.0109019
  49. Hamilton K, Karahalios K, Sandvig C, Eslami M (2014): A path to understanding the effects of algorithm awareness. Proceedings of the extended abstracts of the 32nd annual ACM conference on Human factors in computing systems – CHI EA ’14
  50. Arlinghaus R (2014): Are Current Research Evaluation Metrics Causing a Tragedy of the Scientific Commons and the Extinction of University-Based Fisheries Programs? Fisheries 39(5): 212-215
  51. Gasparyan AY, Ayvazyan L, Akazhanov NA, Kitas GD (2014): Self-correction in biomedical publications and the scientific impact. Croat Med J. 55(1):61-72.
  52. Casadevall A, Fang FC (2014): Causes for the persistence of impact factor mania. MBio. 5(2):e00064-14
  53. Schmidt N (2014): Der Goldene Weg des Open Access zum funktionalen Publikationswesen. Handlungsoptionen für die Universität Wien, http://phaidra.univie.ac.at/o:337723
  54. Moustafa K (2014): The Disaster of the Impact Factor. Sci Eng Ethics doi: 10.1007/s11948-014-9517-0
  55. Jawaid SA (2014): Striving for improved visibility and increased citation through coverage by PubMed Central (PMC). Pak J Med Sci 30(1):1-2
  56. Casadevall A, Fang FC (2014): Specialized Science. Infect Immun DOI: 10.1128/IAI.01530-13
  57. Schreiber M (2014): Is it Possible to Measure Scientific Performance with the h-Index or with Another Variant from the Hirsch Index Zoo? JUnQ, 4, 1, 5–10
  58. Chinamasa E (2014): Journal impact factor: expired prescription for academics research output. International Journal of Advanced Research in Management and Social Sciences. 3(8): 1-16
  59. Ware JJ, Munafò MR (2014) Significance chasing in research practice: causes, consequences and possible solutions. Addiction, 110: 4–8, DOI: 10.1111/add.12673
  60. Chambers CD, Feredoes E, Muthukumaraswamy SD, Etchells P (2014): Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience 1(1): 4-17, DOI: 10.3934/Neuroscience2014.1.4
  61. Larsson ÅM (2013): Science and prehistory: Are we mature enough to handle it? Curr Swed Arch. 21: 27-33
  62. Vaudano E (2013): The innovative medicines initiative: a public private partnership model to foster drug discovery. Comput Struct Biotechnol J, 6: 1–7, DOI: 10.5936/csbj.201303017
  63. Fear KM (2013): Measuring and anticipating the impact of data reuse. PhD thesis, University of Michigan
  64. Mani J, Makarevic J, Juengel E, Ackermann H, Nelson K, et al. (2013): I Publish in I Edit? – Do Editorial Board Members of Urologic Journals Preferentially Publish Their Own Scientific Work? PLoS ONE 8(12): e83709
  65. Park I-U, Peacey MW, Munafò MR (2013): Modelling the effects of subjective and objective decision making in scientific peer review. Nature 506(7486):93-96
  66. Vessuri H, Guedon J-C, Cetto AM (2013): Excellence or quality? Impact of the current competition regime on science and scientific publishing in Latin America and its implications for development. Current Sociology doi: 10.1177/0011392113512839
  67. Eisen JA, MacCallum CJ, Neylon C (2013): Expert Failure: Re-evaluating Research Assessment. PLoS Biol 11(10): e1001677
  68. Wellen R (2013): Open Access, Megajournals, and MOOCs: On the Political Economy of Academic Unbundling. SAGE Open 3
  69. Sproat R (2013): TALIP Perspectives. ACM Transactions on Asian Language Information Processing 12: 1–2
  70. Fabry, Götz, Fischer, Martin R. (2013): Die ZMA und der Impact Factor. GMS Z Med Ausbild 30(3):Doc39, doi: 10.3205/zma000882
  71. Herb U, Beucke D (2013): Die Zukunft der Impact-Messung. Social Media, Nutzung und Zitate im World Wide Web. Wissenschaftsmanagement. Zeitschrift für Innovation 19(4), 22–25

Colomb J, Reiter L, Blaszkiewicz J, Wessnitzer J, Brembs B. (2012): Open source tracking and analysis of adult Drosophila locomotion in Buridan’s paradigm with and without visual targets. PLoS One 7(8):e42247
Citations:

  1. Wexler Y, Subach A, Pruitt JN, Scharf I (2016): Behavioral repeatability of flour beetles before and after metamorphosis and throughout aging. Behav Ecol Sociobiol. DOI: 10.1007/s00265-016-2098-y
  2. Xiao C, Robertson RM (2015): Locomotion Induced by Spatial Restriction in Adult Drosophila. PLOS ONE 10(9):e0135825, DOI: 10.1371/journal.pone.0135825
  3. Girdhar K, Gruebele M, Chemla YR (2015): The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog. PLOS ONE 10(7):e0128668, DOI: 10.1371/journal.pone.0128668
  4. Freeman AAH, Dai H, Sanyal S (2015): Use of Drosophila to Study Restless Legs Syndrome. In: LeDoux MS (ed.): Movement Disorders: Genetics and Models, DOI: 10.1016/B978-0-12-405195-9.00078-0
  5. Giannoni-Guzmán MA, Avalos A, Marrero Perez J, Otero Loperena EJ, Kayim M, Medina JA, Massey SE, Kence M, Kence A, Giray T, Agosto-Rivera JL (2014): Measuring individual locomotor rhythms in honey bees, paper wasps and other similar-sized insects. J Exp Biol. 217: 1307–1315, DOI: 10.1242/jeb.096180
  6. Zenger B, Wetzel S, Duncan J (2014): Acquisition of High-Quality Digital Video of Drosophila Larval and Adult Behaviors from a Lateral Perspective. J Vis Exp. (92):e51981, DOI: 10.3791/51981.
  7. Kodama N, Kimura T, Yonemura S, Kaneda S, Ohashi M, Ikeno H (2014): Automated Analysis of Two-Dimensional Positions and Body Lengths of Earthworms (Oligochaeta); MimizuTrack. PLoS ONE 9(6):e97986, DOI: 10.1371/journal.pone.0097986
  8. Risse B, Berh D, Tao J, Jiang X, Klette R, Klämbt C (2013): Comparison of two 3D tracking paradigms for freely flying insects. EURASIP J Image Vid Proc 57
  9. Timmerman C, Suppiah S, Gurudatta BV, Yang J, Banerjee C, Sandstrom DJ, Corces VG, Sanyal S (2013): The Drosophila Transcription Factor Adf-1 (nalyot) Regulates Dendrite Growth by Controlling FasII and Staufen Expression Downstream of CaMKII and Neural Activity. J Neurosci. 33(29):11916-11931
  10. Raja S (2013): The neuronal basis of spontaneous flight behavior in Drosophila. PhD dissertation, FU Berlin

Pauly D, Chacana PA, Calzado EG, Brembs B, Schade R (2011): IgY technology: extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. J Vis Exp. (51), e3084, DOI: 10.3791/3084
Citations:

  1. Teimoori S, Arimatsu Y, Laha T, Kaewkes S, Sereerak P, Sripa M, Tangkawattana S, Brindley PJ, Sripa B (2016): Chicken IgY-based coproantigen capture ELISA for diagnosis of human opisthorchiasis. Parasitol Int. pii: S1383-5769(16)30093-9. doi: 10.1016/j.parint.2015.10.011
  2. Agrawal R, Hirpurkar SD, Sannat C, Gupta AK (2016): Comparative study on immunoglobulin Y transfer from breeding hens to egg yolk and progeny chicks in different breeds of poultry. Vet World. 9(4):425-431. doi: 10.14202/vetworld.2016.425-431
  3. Korzyukov Y, Hetzel U, Kipar A, Vapalahti O, Hepojoki J (2016): Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor. PLoS ONE 11(6): e0158417. doi:10.1371/journal.pone.0158417
  4. Börstler J, Engel D, Petersen M, Poggensee C, Jansen S, Schmidt-Chanasit J, Lühken R (2016): Surveillance of maternal antibodies against West Nile virus in chicken eggs in South-West Germany. Trop Med Int Health. 21(5): 687-690. doi: 10.1111/tmi.12676
  5. Cakir-Koc R (2016): Production of anti-SAG1 IgY antibody against Toxoplasma gondii parasites and evaluation of antibody activity by ELISA method. Parasitol Res. [Epub ahead of print] PMID: 27079459
  6. Brandon DL, Korn AM (2015): Immunosorbent analysis of toxin contamination in milk and ground beef using IgY-based ELISA, Food and Agricultural Immunology. DOI: 10.1080/09540105.2015.1126809
  7. Krähling V, Becker D, Rohde C, Eickmann M, Eroglu Y, Herwig A, Kerber R, Kowalski K, Vergara-Alert J, Becker S; European Mobile Laboratory consortium (2015): Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med Microbiol Immunol, DOI: 10.1007/s00430-015-0438-6
  8. Gandhimathi C, Sentila R, Michael A (2015): Protection against experimental dental caries in rats with chicken egg yolk antibodies (IgY) generated against Streptococcus mutans. World Journal of Pharmaceutical Research, 4(6): 1564-1581, ISSN 2277– 7105
  9. Mudili V, Makam SS, Sundararaj N, Siddaiah C, Gupta VK, Rao PV (2015): A novel IgY-Aptamer hybrid system for cost-effective detection of SEB and its evaluation on food and clinical samples. Sci Rep. 5:15151, DOI: 10.1038/srep15151
  10. Müller S, Schubert A, Zajac J, Dyck T, Oelkrug C (2015) IgY antibodies in human nutrition for disease prevention. Nutr J. 14: 109, DOI: 10.1186/s12937-015-0067-3
  11. Borhani K, Mobarez AM, Khabiri AR, Behmanesh M, Khoramabadi N (2015): Production of specific IgY Helicobacter pylori recombinant OipA protein and assessment of its inhibitory effects towards attachment of H. pylori to AGS cell line . Clin Exp Vaccine Res, 4: 177, DOI: 10.7774/cevr.2015.4.2.177
  12. Júnior WF, Cano R, Totola AH, Carvalho LM, Cerri MO, Coimbra JS, Carvalho GG, Carvalho BM (2015): Adsorption of immunoglobulin Y in supermacroporous continuous cryogel with immobilized Cu2+ ions. J Chromatography A, 1395: 16–22, DOI: 10.1016/j.chroma.2015.03.052
  13. Sampaio LC, Baldissera MD, Grando TH, Gressler LT, Capeleto Dde M, de Sa MF, de Jesus FP, dos Santos AG Jr, Anciuti AN, Colonetti K, Stainki DR, Monteiro SG (2014): Production, purification and therapeutic potential of egg yolk antibodies for treating Trypanosoma evansi infection. Vet Parasitol. 204: 96–103, DOI: 10.1016/j.vetpar.2014.05.032
  14. Tong C, Geng F, He Z, Cai Z, Ma M (2014): A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poult Sci. 94: 104–110, DOI: 10.3382/ps/peu005
  15. Gabriel F, Accoceberry I, Bessoule JJ, Salin B, Lucas-Guérin M, Manon S, Dementhon K, Noël T (2014): A Fox2-Dependent Fatty Acid ß-Oxidation Pathway Coexists Both in Peroxisomes and Mitochondria of the Ascomycete Yeast Candida lusitaniae. PLoS ONE 9(12):e114531, DOI: 10.1371/journal.pone.0114531
  16. Winkelbach A, Günzel D, Schulz C, Wuertz S (2015): Differences in IgY gut absorption in gastric rainbow trout (Oncorhynchus mykiss) and agastric common carp (Cyprinus carpio) assessed in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol, 167: 58–64, DOI: 10.1016/j.cbpc.2014.09.001
  17. Gandhimathi C, Michael A (2014): In vitro neutralization of virulence properties of Streptococcus mutans using chicken eggyolk antibodies (IgY). Int J Pharm Bio Sci, 5(2): 498-508
  18. Winkelbach A, Schade R, Schulz C, Wuertz S (2014): Comparison of oral, rectal and intraperitoneal administration of IgY antibodies in passive immunization of rainbow trout (Oncorhynchus mykiss). Aquacult Int 23: 427–438, DOI: 10.1007/s10499-014-9823-1
  19. Lee HY, Abeyrathne ED, Choi I, Suh JW, Ahn DU (2014): Sequential separation of immunoglobulin Y and phosvitin from chicken egg yolk without using organic solvents. Poult Sci. 93: 2668–2677, DOI: 10.3382/ps.2014-04093
  20. Dai YC, Zhang XF, Tan M, Huang P, Lei W, Fang H, Zhong W, Jiang X (2013): A dual chicken IgY against rotavirus and norovirus. Antiviral Res. 97: 293–300, DOI: 10.1016/j.antiviral.2012.12.011
  21. Santos FN, Brum BC, Cruz PB, Molinaro CM, Silva VL, Chaves SA de M (2014): Production and characterization of IgY against canine IgG: prospect of a new tool for the immunodiagnostic of canine diseases. Braz Arch Biol Tech, 57(4): 523-531
  22. Sampaio LCL, Baldissera MD, Sagrillo MB, Heres TDS, Oliveira CB, Stainki DR, Monteiro SG (2014): In vitro cytotoxicity and genotxicity of chicken egg yolk antibodies (IgY) against Trypanosoma evansi in human lymphocytes. Int J Pharm Pharm Sci, 6(3): 167-170
  23. Priyanka BS, Abhijith KS, Rastogi NK, Raghavarao KSMS, Thakur MS (2014): Integrated Approach for the Extraction and Purification of IgY from Chicken Egg Yolk. Sep Sci Techn 49:562–568
  24. Diraviyam T, Menaka M, Mahenthiran R, Michael A (2013): Generation and physicochemical characterization of chicken egg yolk antibodies (IgY) against Salmonella typhimurium. Int J Pharm Bio Sci 4(4): B343-B350
  25. Asemota H, Curtello S, Vaillant AAJ, Mohammed W, Vuma S, Rao AV C, Kurhade A, Kissoon S, Smikle M, Wisdom B, Kurhade G (2013): Purification of Avian IgY with Trichloroacetic Acid (TCA). J Chromat Separ Tech 04
  26. Reddy PK, Shekar A, Kingston JJ, Sripathy MH, Batra H. (2013): Evaluation of IgY capture ELISA for sensitive detection of Alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference. J Immunol Meth 391(1-2):31-38
  27. Bellingeri RV, Busso L, Alustiza FE, Picco NY, Molinero DP, Grosso MC, Motta CE, Vivas AB (2013): Characterization of egg yolk immunoglobulin (IgY) against enterotoxigenic Escherichia coli and evaluation of its effects on bovine intestinal cells. Afr J Microbiol Res 7(5): 398-405
  28. Heinrich D (2012): Substitution humaner Seren auf Basis der IgY-Technologie für die immunologische in vitro-Diagnostik. PhD Thesis, Hamburg University. http://ediss.sub.uni-hamburg.de/volltexte/2013/6315/
  29. Dai YC, Zhang XF, Tan M, Huang P, Lei W, Fang H, Zhong W, Jiang X (2012): A dual chicken IgY against rotavirus and norovirus. Antiviral Res. doi:pii: S0166-3542(12)00291-4. 10.1016/j.antiviral.2012.12.011. [Epub ahead of print]
  30. Tan SH, Mohamedali A, Kapur A, Baker MS (2012): Ultradepletion of Human Plasma using Chicken Antibodies: A Proof of Concept study. J Proteome Res. DOI: 10.1021/pr3007182
  31. Niederstadt L, Hohn O, Dorner BG, Schade R, Bannert N. (2012): Stimulation of IgY responses in gene gun immunized laying hens by combined administration of vector DNA coding for the target antigen Botulinum toxin A1 and for avian cytokine adjuvants. J Immunol Methods. 382(1-2):58-67
  32. Niederstadt L, Schade R (2012): IgY technology: What are polyclonal avian antibodies and what can they do? BioSpektrum 18(2): 174-177
  33. Tan SH, Mohamedali A, Kapur A, Lukjanenko L, Baker MS (2012): A novel, cost-effective and efficient chicken egg IgY purification procedure. J Immunol Methods. 380(1-2):73-76
  34. Niederstadt L (2012): Herstellung von DNA induzierten mono-/polyklonalen Antikörpern, zur Schnelldetektion von hochpathogenen viralen Erregern und bioterroristisch relevanten Toxinen. PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000011103/Dissertation_Lars_Niederstadt.pdf
Brembs, B. (2011): Spontaneous decisions and operant conditioning in fruit flies. Behav Processes 87: 157-164
Citations:
  1. Eilam D (2015): The cognitive roles of behavioral variability: idiosyncratic acts as the foundation of identity and as transitional, preparatory, and confirmatory phases. Neurosci Biobehav Rev. 49:55-70. doi: 10.1016/j.neubiorev.2014.11.023
  2. Peckmezian T, Taylor PW (2015): A virtual reality paradigm for the study of visually mediated behaviour and cognition in spiders. Anim Behav, 107: 87–95, DOI: 10.1016/j.anbehav.2015.06.018
  3. Bell HC (2014): Behavioral Variability in the Service of Constancy, International Journal of Comparative Psychology, 27(2): 338-360
  4. Yapici N, Zimmer M, Domingos AI (2014): Cellular and molecular basis of decision-making. EMBO Rep 15: 1023–1035. DOI: 10.15252/embr.201438993
  5. Haggard P (2014): “Free Will” In: Mele A (ed.): Surrounding Free Will, Philosophy, Psychology, Neuroscience, Oxford University Press. 145. ISBN: 9780199333950
  6. Burgos JE, García-Leal Ó (2015): Autoshaped choice in artificial neural networks: Implications for behavioral economics and neuroeconomics. Behav Processes 114: 63–71. DOI:10.1016/j.beproc.2015.01.010
  7. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  8. Méndez V, Campos D, Bartumeus F (2013): Biological Searches and Random Animal Motility. In: Stochastic Foundations in Movement Ecology. Springer Series in Synergetics, DOI: 10.1007/978-3-642-39010-4_9
  9. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  10. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
Brembs, B. (2011): Towards a scientific concept of free will as a biological trait: spontaneous actions and decision-making in invertebrates. Proc. Roy. Soc. B. 278(1707): 930-939
Citations:
  1. Rigato JM (2016): The Agent as Her Self: How Taking Agency Seriously Leads to Emergent Dualism. – Rivista Internazionale di Filosofia e Psicologia 7(1): 48–60 (Mimesis). doi: 10.4453/rifp.2016.0005
  2. Lavazza A (2016): Free Will and Neuroscience: From Explaining Freedom Away to New Ways of Operationalizing and Measuring It. Front Hum Neurosci. 10:262. doi: 10.3389/fnhum.2016.00262
  3. Feldman G, Wong KF, Baumeister RF (2016): Bad is freer than good: Positive-negative asymmetry in attributions of free will. Conscious Cogn. 42: 26-40. doi: 10.1016/j.concog.2016.03.005
  4. Feldman G, Chandrashekar SP, Wong KFE (2016): The freedom to excel: Belief in free will predicts better academic performance. Personality and Individual Differences 90: 377–383, doi:10.1016/j.paid.2015.11.043
  5. Kane R (2016): The complex tapestry of free will: striving will, indeterminism and volitional streams, Springer Science, DOI: 10.1007/s11229-016-1046-8
  6. Abed-Vieillard D, Cortot J (2016): When Choice Makes Sense: Menthol Influence on Mating, Oviposition and Fecundity in Drosophila melanogaster. Front Integr Neurosci. 10:5. DOI: 10.3389/fnint.2016.00005
  7. De Ridder D, Vanneste S, Gillett G, Manning P, Glue P, Langguth B (2016): Psychosurgery Reduces Uncertainty and Increases Free Will? A Review. Neuromodulation: Technology at the Neural Interface, DOI: 10.1111/ner.12405.
  8. Mohan A, De Ridder D, Vanneste S (2016): Graph theoretical analysis of brain connectivity in phantom sound perception. Sci. Rep. 6:19683, DOI: 10.1038/srep19683
  9. Waller BN (2015): Restorative Free Will: Back to the Biological Base. Lexington Books, ISBN: 9781498522380, 328pp
  10. Osvath M (2015): Putting flexible animal prospection into context: escaping the theoretical box. Wiley Interdiscip Rev Cogn Sci, 7(1): 5–18, DOI: 10.1002/wcs.1372
  11. Briegel HJ, Müller T (2015): A Chance for Attributable Agency. Minds and Machines, 25: 261–279, DOI: 10.1007/s11023-015-9381-y
  12. Vimal RLP, Bókkon I, Császár N, Vas JP, Szoke H (2015): Transgenerational Epigenetic Mechanisms, Unconscious Creativity, and Sensory Deprivation: Semi-Free Will in the Extended Dual-aspect Monism Framework, Quantum Biosystems, 6(1): 33-53
  13. Kane R (2015): On the role of indeterminism in libertarian free will. Philosophical Explorations, DOI: 10.1080/13869795.2016.1085594
  14. Nadin M, Kurismaa A (2015): From Russia with Love / Russian experimental and empirical contributions informed by an anticipatory perspective. Int J Gen Sys. 44: 615–620, DOI: 10.1080/03081079.2015.1032074
  15. Der R, Martius G (2015): Novel plasticity rule can explain the development of sensorimotor intelligence. Proc Natl Acad Sci U S A, 112: E6224–E6232, DOI: 10.1073/pnas.1508400112
  16. Terao K, Matsumoto Y, Mizunami M (2015): Critical evidence for the prediction error theory in associative learning. Sci. Rep., 5, 8929, DOI: 10.1038/srep08929
  17. Lorange-Millette J (2015): Le problème philosophique des transferts épistémiques entre les sciences naturelles et les théories sociales et politiques, PhD dissertation, Université d’Ottawa
  18. Freitas PM, Andrade F, Novais P (2014): Criminal Liability of Autonomous Agents: From the Unthinkable to the Plausible. In: AI Approaches to the Complexity of Legal Systems. Volume 8929 of the series Lecture Notes in Computer Science pp 145-156
  19. Mele AR (2014): Why science hasn’t disproved free will. Oxford University Press, 112p
  20. Misirlisoy E (2014): Intentional inhibition of human action, PhD dissertation, University College London
  21. Westphal KR (2014): Autonomy, Freedom & Embodiment: Hegel’s Critique of Contemporary Biologism. Hegel Bulletin, 35: 56–83, DOI: 10.1017/hgl.2014.4
  22. Rigato JM, Murakami M, Mainen Z (2014): Spontaneous Decisions and Free Will: Empirical Results and Philosophical Considerations. Cold Spring Harb Symp Quant Biol, 79: 177–184, DOI: 10.1101/sqb.2014.79.024810
  23. Van Hateren JH (2014): Active causation and the origin of meaning. Biol Cybern, 109: 33–46, DOI: 10.1007/s00422-014-0622-6
  24. Christensen K, Papavassiliou D, de Figueiredo A, Franks NR, Sendova-Franks AB (2014): Universality in ant behaviour. J R Soc Interface. 12(102):20140985, DOI: 10.1098/rsif.2014.0985
  25. Bode S, Murawski C, Soon CS, Bode P, Stahl J, Smith PL (2014): Demystifying “free will”: The role of contextual information and evidence accumulation for predictive brain activity. Neurosci Biobehav Rev, 47: 636–645, DOI: 10.1016/j.neubiorev.2014.10.017
  26. Grandpierre A (2013): Biologically Organized Quantum Vacuum and the Cosmic Origin of Cellular Life. Phenomenology of Space and Time, DOI: 10.1007/978-3-319-02015-0_10
  27. Van Hateren JH (2014): The origin of agency, consciousness, and free will. Phenom Cogn Sci, 14: 979–1000, DOI: 10.1007/s11097-014-9396-5
  28. Shields GS (2014): Neuroscience and Conscious Causation: Has Neuroscience Shown that We Cannot Control Our Own Actions? Rev Philos Psychol, 5: 565–582, DOI:10.1007/s13164-014-0200-9
  29. Palmer D (2014): Libertarian Free Will: Contemporary Debates, Oxford University Press, ISBN 978-0-19-986008-1
  30. Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J (2014) Memory beyond expression. J Physiol-Paris, 108: 307–322, DOI: 10.1016/j.jphysparis.2014.07.002
  31. Khakhalin,A.S., Koren,D., Gu,J., Xu,H. and Aizenman,C.D. (2014) Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles . European Journal of Neuroscience, 40, 2948–2962, DOI: 10.1111/ejn.12664
  32. Salvador,L.C.M., Bartumeus,F., Levin,S.A. and Ryu,W.S. (2014) Mechanistic analysis of the search behaviour of Caenorhabditis elegans. Journal of The Royal Society Interface, 11, 20131092–20131092, DOI: 10.1098/rsif.2013.1092
  33. Kane R (2014): II-Acting “of One”s Own Free Will’: Modern Reflections on an Ancient Philosophical Problem. Proceedings of the Aristotelian Society (Hardback), 114, 35–55, DOI10.1111/j.1467-9264.2014.00363.x
  34. Smiley J-P, Fernie S, Dainty A (2014): Understanding construction reform discourses. Construction Management and Economics, 32: 804–815, DOI: 10.1080/01446193.2014.909049
  35. Beran O (2014): Wittgensteinian Perspectives on the Turing Test. Studia Philosophica Estonica, 7: 35-57, DOI:10.12697/spe.2014.7.1.02
  36. Loram ID, van de Kamp C, Lakie M, Gollee H, Gawthrop PJ (2014): Does the motor system need intermittent control? Exerc Sport Sci Rev. 42(3): 117-125
  37. Griffith M (2013): Free Will: The basics. Routledge. ISBN: 0415562198
  38. Bottini G, Sedda A, Ovadia D (2013): Passato presente e futuro delle neuroscienze e del diritto. Rassegna Italiana di Criminologia
  39. Briffa M (2013): Plastic proteans: reduced predictability in the face of predation risk in hermit crabs. Biol Lett 9(5):20130592
  40. Gawthrop P, Loram I, Gollee H, Lakie M (2014): Intermittent control models of human standing: similarities and differences. Biol Cybern doi: 10.1007/s00422-014-0587-5
  41. Walter S (2014): Willusionism, epiphenomenalism, and the feeling of conscious will. Synthese DOI 10.1007/s11229-013-0393-y
  42. Salvador LC, Bartumeus F, Levin SA, Ryu WS (2014): Mechanistic analysis of the search behaviour of Caenorhabditis elegans. J R Soc Interface. 11(92):2013.1092
  43. de Ridder D, Verplaetse J, Vanneste S (2013): The predictive brain and the “free will” illusion. Front Psychol. 4, 131
  44. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  45. Walsh A (2013): “Criminological Theory: Assessing Philosophical Assumptions” Anderson Publishing, 224p, ISBN: 9781455775477
  46. Stahlman WD, Leising KJ, Garlick D, Blaisdel AP (2013): There Is Room for Conditioning in the Creative Process: Associative Learning and the Control of Behavioral Variability In: Vartanian O, Bristol AS, Kaufman JC (eds.) Neuroscience of Creativity MIT Press 272p ISBN 0262019582, 9780262019583, p45-67
  47. Biro PA, Adriaenssens B (2013): Predictability as a Personality Trait: Consistent Differences in Intraindividual Behavioral Variation. Amer. Nat. 182: 621–629
  48. Gelperin A (2013): Associative memory mechanisms in terrastrial slugs and snails. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p280-290
  49. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  50. Stamps JA, Saltz JB, Krishnan VV(2013): Genotypic differences in behavioural entropy: unpredictable genotypes are composed of unpredictable individuals. Anim Behav. 86(3): 641–649
  51. Bottini G, Sedda A, Ovadia D (2013): Past present and future of neuroscience and law. Ital. J. Criminol. 1/2013: 17-22
  52. Martius G, Der R, Ay N (2013): Information driven self-organization of complex robotic behaviors. PLoS One. 8(5):e63400
  53. Briffa M, Bridger D, Biro PA (2013): How does temperature affect behaviour? Multilevel analysis of plasticity, personality and predictability in hermit crabs. Anim Behav 86(1): 47–54
  54. Gomez-Marin, A. (2013): Tools, flies and what to do next. American Institute of Physics. AIP Conf. Proc. 1510: 120-123 doi:10.1063/1.4776508
  55. Wong KFE, Cheng C (2013): Predictable or Not? Individuals’ Risk Decisions Do Not Necessarily Predict Their Next Ones. PLoS ONE 8(2): e56811
  56. Frith C (2013): The psychology of volition. Exp Brain Res. 229(3): 289-299
  57. Lemos J (2013): Freedom, Responsibility, and Determinism: A Philosophical Dialogue. Hackett Publishing Co. ISBN-13: 978-1603849302, 120 pages
  58. Martius G, Der R, Ay N (2013): Information driven self-organization of complex robotic behaviors PLoS One. 8(5):e63400
  59. Radder H, Meynen G (2013): Does the brain “initiate” freely willed processes? A philosophy of science critique of Libet-type experiments and their interpretation. Theory & Psychology, 23(1): 3-21
  60. Nepomnyashchikh VA (2012): Variability in invertebrate behavior and the problem of free will. Zhurnal Obshchei Biologii 73(6): 435-441
  61. Grandpierre A, Kafatos M (2012): Biological Autonomy. Philosophy Study, 2(9): 631-649
  62. Warzecha AK, Rosner R, Grewe J (2012): Impact and sources of neuronal variability in the fly’s motion vision pathway. J Physiol – Paris DOI: 10.1016/j.jphysparis.2012.10.002
  63. Rigoni D, Kühn S, Gaudino G, Sartori G, Brass M (2012): Reducing self-control by weakening belief in free will. Conscious Cogn. 21(3):1482-1490
  64. Zhang S, Si A, Pahl M (2012): Visually guided decision making in foraging honeybees. Front Neurosci. 6:88
  65. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  66. Stamps JA, Briffa M, Biro PA (2012): Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim Behav. 83(6): 1325–1334
  67. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  68. Barham JA (2012): Normativity, agency, and life. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 43(1): 92–103
  69. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  70. Ebeling W, Feistel R (2011) Physics of Self-Organization and Evolution, WILEY-VCH, ISBN: 978-3-527-40963-1
  71. Ansorge U, Horstmann G, Scharlau I (2011): Top-down contingent feature-specific orienting with and without awareness of the visual input. Adv. Cogn. Psych. 7(1): 108-119
  72. de Sousa JC (2011): The uncertainty of free will and agent’s penal responsibility. Orbis: Revista Científica 2(3): 287-312
  73. Barham JA (2011): Teleological Realism in Biology, PhD Thesis, University of Notre Dame, USA.
  74. Mele AR (2011): Libertarianism and Human Agency. Phil Phen Res. 87 ( 1 ) 72-92 DOI: 10.1111/j.1933-1592.2011.00529.x
  75. Schüür F, Haggard P (2011): What are self-generated actions? Conscious Cogn. 20(4): 1697-1704
  76. Koukolík F (2011): Basics of cognitive, affective and social neuroscience. VI. Free will. Prakticky Lekar 91(6): 315-320
  77. Cobbe N (2011): Interspecies Mixtures and the Status of Humanity. In: Suarez A, Huarte J (eds.) Is this cell a human being? Springer, Berlin, Heidelberg. pp129-155, DOI: 10.1007/978-3-642-20772-3_9
  78. Chittka L, Skorupski P (2011): Information processing in miniature brains. Proc. Roy. Soc. B. 278(1707): 885-888
Brembs B.; Pauly D.; Schade R.; Mendoza E.; Pflüger J.; Rybak J.; Scharff C.; Zars T. (2010): The Drosophila FoxP gene is necessary for operant self-learning: implications for the evolutionary origins of language. Soc. Neurosci. Abstr., 704.7
Citations:
  1. Scharff C, Petri J (2011): Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos Trans R Soc Lond B Biol Sci. 366(1574):2124-2140
van Swinderen, B.; Brembs, B. (2010): Attention-like deficit and hyperactivity in a Drosophila memory mutant. J Neurosci. 30(3): 1003-1014
Citations:
  1. van der Voet M, Harich B, Franke B, Schenck A (2016): ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol Psychiatry. 21(4):565-573. doi: 10.1038/mp.2015.55
  2. de Bivort BL, van Swinderen B (2016): Evidence for selective attention in the insect brain. Curr Op Ins Sci. 15:9-15, doi:10.1016/j.cois.2016.02.007
  3. Farris SM (2016): Insect societies and the social brain. Curr Op Ins Sci. 15: 1-8
  4. Rohde PD, Madsen LS, Arvidson SM, Loeschcke V, Demontis D, Kristensen TN (2016): A high-throughput assay for complex activity behaviors in Drosophila. Fly (Austin). [Epub ahead of print] DOI: 10.1080/19336934.2016.1158365
  5. Koenig S, Wolf R, Heisenberg M (2016): Vision in Flies: Measuring the Attention Span. PLOS ONE 11(2):e0148208, DOI: 10.1371/journal.pone.0148208
  6. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  7. Zhang Q, Du G, John V, Kapahi P, Bredesen DE (2015): Alzheimer’s Model Develops Early ADHD Syndrome. J Neurol Neurophysiol. 6(6): 1–6.
  8. Farris SM, Van Dyke JW (2015): Evolution and function of the insect mushroom bodies: contributions from comparative and model systems studies. Curr Opin Insect Sci. 12: 19–25, DOI: 10.1016/j.cois.2015.08.006
  9. Paulk AC, Kirszenblat L, Zhou Y, van Swinderen B (2015): Closed-Loop Behavioral Control Increases Coherence in the Fly Brain. J Neurosci 35: 10304–10315, DOI: 10.1523/JNEUROSCI.0691-15.2015
  10. Braus D (2014): EinBlick ins Gehirn: Psychiatrie als angewandte klinische Neurowissenschaft, Georg Thieme Verlag, ISBN: 9783131333537
  11. Zhong C, Zhang Y, He W, Wei P, Lu Y, Zhu Y, Liu L, Wang L (2014): Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster. J Neurosci Meth. 222:218–229
  12. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  13. van Alphen B, van Swinderen B (2013): Drosophila strategies to study psychiatric disorders. Brain Res Bull. 92:1-11
  14. Haendel MA, Chesler EJ (2012): Lost and found in behavioral informatics. Int Rev Neurobiol. 103:1-18
  15. van Swinderen B (2012): Competing visual flicker reveals attention-like rivalry in the fly brain. Front Integr Neurosci. 6:96. doi: 10.3389/fnint.2012.00096
  16. Arena P, Patane L, Termini P (2012): Modeling attentional loop in the insect Mushroom Bodies. The 2012 International Joint Conference on Neural Networks (IJCNN), 1-7. DOI: 10.1109/IJCNN.2012.6252833
  17. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  18. Baddeley B, Graham P, Husbands P, Philippides A (2012): A Model of Ant Route Navigation Driven by Scene Familiarity. PLoS Comput Biol 8(1): e1002336. doi:10.1371/journal.pcbi.1002336
  19. Leboulle G (2012): Glutamate Neurotransmission in the Honey Bee Central Nervous System. In: Galizia CG, Eisenhardt D, Giurfa M (eds.): Honeybee Neurobiology and Behavior, a tribute to Randolf Menzel. Part 3, 171-184, DOI: 10.1007/978-94-007-2099-2_14
  20. Farris SM, Pettrey C, Daly KC (2011): A subpopulation of mushroom body intrinsic neurons is generated by protocerebral neuroblasts in the tobacco hornworm moth, Manduca sexta (Sphingidae, Lepidoptera). Arthropod Struct Dev. 40(5):395-408
  21. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  22. Lee PT, Lin HW, Chang YH, Fu TF, Dubnau J, Hirsh J, Lee T, Chiang AS (2011): Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. Proc Natl Acad Sci U S A. 108(33):13794-13799
  23. LaFerriere H, Speichinger K, Stromhaug A, Zars T (2011); The Radish Gene Reveals a Memory Component with Variable Temporal Properties. PLoS ONE 6(9): e24557
  24. Evans O, Paulk AC, van Swinderen B (2011): An Automated Paradigm for Drosophila Visual Psychophysics. PLoS ONE 6(6): e21619
  25. Farris SM (2011): Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev. 40(4):368-379
  26. Sareen P, Wolf R, Heisenberg M (2011): Attracting the attention of a fly. Proc Natl Acad Sci U S A. 108(17):7230-7235
  27. van Swinderen B, Andretic R (2011): Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc. Roy. Soc. B. 278(1707): 906-913
  28. Farris SM, Schulmeister S (2011): Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci. 278(1707): 940-951
  29. Blackiston D, Shomrat T, Nicolas CL, Granata C, Levin M. (2010): A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 5(12):e14370
Colomb J.; Brembs, B. (2010): The biology of psychology: ‘Simple’ conditioning? Commun Integr Biol. 3(2):142-145
Citations:
  1. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511920585.007.
  2. Noboa V, Gillette R (2013): Selective prey avoidance learning in the predatory sea slug Pleurobranchaea californica. J Exp Biol. 216(Pt 17):3231-3236
  3. Scheich H, Brosch M (2013): Task-Related Activation of Auditory Cortex. Springer Handbook of Auditory Research. Cohen YE, Popper AN, Fay RR, editors Springer-Verlag. DOI:10.1007/978-1-4614-2350-8_3
  4. Nepomnyashchikh VA (2012): Variability in invertebrate behavior and the problem of free will. Zhurnal Obshchei Biologii 73(6): 435-441
  5. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058

Brembs, B. (2009): The importance of being active. J. Neurogen. 23(1): 120-126.
Citations:

  1. Schneider S, Vogt T, Abeln V (2015): Exercise in space: Physical and mental benefit. In: Sports Performance, Part II. pp. 223-243, DOI: 10.1007/978-4-431-55315-1_19
  2. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511920585.007.
  3. Gomez-Marin,A., Paton,J.J., Kampff,A.R., Costa,R.M. and Mainen,Z.F. (2014) Big behavioral data: psychology, ethology and the foundations of neuroscience. Nature Neuroscience, 17, 1455–1462, DOI: 10.1038/nn.3812
  4. Schleyer M, Diegelmann S, Michels B, Saumweber T, Gerber B (2013): ‘Decision Making’ in Larval Drosophila. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p41-58
  5. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  6. Cai J, Li L (2013): Autonomous Navigation Strategy in Mobile Robot. J. Comp. 8(8): 2118-2125 doi:10.4304/jcp.8.8.2118-2125
  7. Nepomnyashchikh VA (2013): Increases in variations in animal behavior induced by autocorrelations. Biol Bull Rev, 3(1), 49–56
  8. Chen J, Ruan XG, Dai LZ (2012): Behavior Cognition Computational Model Based on Cerebellum and Basal Ganglia Mechanism. Pattern Recognition and Artificial Intelligence 25(1): 29-36
  9. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  10. Koukolík F (2011): Basics of cognitive, affective and social neuroscience. VI. Free will. Prakticky Lekar 91(6): 315-320
  11. Ruan X-G, Chen J (2011): Operant conditioning reflex learning control scheme based on SMC and Elman network. Control and Decision. 26(9):1398-1401
Brembs, B. (2009): Mushroom bodies regulate habit formation in Drosophila. Curr Biol. 19(16): 1351–1355.
Citations:
  1. Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, Friedrich AB, Turner GC, Rubin GM, Tanimoto H (2016): Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. Elife. 5. pii: e14009. doi: 10.7554/eLife.14009
  2. de Bivort BL, van Swinderen B (2016): Evidence for selective attention in the insect brain. Curr Op Ins Sci. 15:9-15, doi:10.1016/j.cois.2016.02.007
  3. Parker MO, Brock AJ, Sudwarts A, Teh MT, Combe FJ, Brennan CH (2015): Developmental role of acetylcholinesterase in impulse control in zebrafish. Front. Behav. Neurosci. 9:271, DOI: 10.3389/fnbeh.2015.00271
  4. Farris SM, Van Dyke JW (2015): Evolution and function of the insect mushroom bodies: contributions from comparative and model systems studies. Curr Opin Insect Sci. 12: 19–25, DOI: 10.1016/j.cois.2015.08.006
  5. Heisenberg M (2015): Outcome learning, outcome expectations, and intentionality in Drosophila. Learn Mem. 22: 294–298, DOI: 10.1101/lm.037481.114
  6. Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TT, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM (2014): Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3:e04580, DOI: 10.7554/eLife.04580
  7. Solanki N, Wolf R, Heisenberg M (2015) Central complex and mushroom bodies mediate novelty choice behavior in Drosophila. J Neurogen. 29: 30–37, DOI: 10.3109/01677063.2014.1002661
  8. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014): Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife, 3:e02395, DOI: 10.7554/eLife.02395
  9. Parker MO, Evans AM, Brock AJ, Combe FJ, Teh MT, Brennan CH (2014): Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood. Addict Biol. 21: 49–60, DOI: 10.1111/adb.12176
  10. Arena P, Patané L, Stornanti V, Termini PS, Zäpf B, Strauss R (2013): Modeling the insect mushroom bodies: Application to a delayed match-to-sample task. Neur Net 41:202–211
  11. Smith KS, Graybiel AM (2014): Investigating Habits: Strategies, Technologies, and Models. Front. Behav. Neurosci. 8:39
  12. Arena P, Caccamo S, Patane L, Strauss R (2013): A computational model for motor learning in insects. The 2013 International Joint Conference on Neural Networks (IJCNN), 1-8
  13. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  14. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  15. Arena P, Patane L, Strauss R (2013): The Insect Mushroom Bodies: a Paradigm of Neural Reuse. Advances in Artificial Life, ECAL 2013. MIT Press. pp. 765–772
  16. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  17. Zhang X, Ren Q, Guo A (2013): Parallel pathways for cross-modal memory retrieval in Drosophila. J Neurosci. 33(20):8784-8793
  18. Arena P, Patané L, Stornanti V, Termini PS, Zäpf B, Strauss R (2013): Modeling the insect mushroom bodies: Application to a delayed match-to-sample task. Neur. Net. 41: 202–211. DOI: 10.1016/j.neunet.2012.11.013
  19. Parker MO, Brock AJ, Walton RT, Brennan CH (2013): The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits. 7:63
  20. Namiki S, Takaguchi M, Seki Y, Kazawa T, Fukushima R, Iwatsuki C, Kanzaki R (2013): Concentric zones for pheromone components in the mushroom body calyx of the moth brain. J Comp Neurol. 521(5):1073-1092
  21. Nepomnyashchikh VA (2012): Variability in invertebrate behavior and the problem of free will. Zhurnal Obshchei Biologii 73(6): 435-441
  22. Joseph RM, Heberlein U (2012): Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila. Genetics. 192(2):521-532
  23. Shmuelof L, Huang VS, Haith AM, Delnicki RJ, Mazzoni P, Krakauer JW (2012): Overcoming motor “forgetting” through reinforcement of learned actions. J Neurosci. 32(42):14617-14621
  24. Wu Y, Ren Q, Li H, Guo A (2012): The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila. Learn Mem. 19(10):478-486
  25. Ren Q, Li H, Wu Y, Ren J, Guo A (2012): A GABAergic inhibitory neural circuit regulates visual reversal learning in Drosophila. J Neurosci. 32(34):11524-11538
  26. Zanini D, Jallon JM, Rabinow L, Samson ML (2012): Deletion of the Drosophila neuronal gene found in neurons disrupts brain anatomy and male courtship. Genes Brain Behav. 11 (7): 819-827
  27. Zhao XL, Campos AR (2012): Insulin signalling in mushroom body neurons regulates feeding behaviour in Drosophila larvae. J Exp Biol. 215(Pt 15):2696-2702.
  28. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  29. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  30. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  31. Farris SM (2011): Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev. 40(4):368-379
  32. Sorribes A, Armendariz BG, Lopez-Pigozzi D, Murga C, de Polavieja GG (2011): The Origin of Behavioral Bursts in Decision-Making Circuitry. PLoS Comput Biol 7(6): e1002075
  33. Farris SM, Schulmeister S (2010): Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci. 278 (1707): 940-951
  34. Foucaud J, Burns JG, Mery F (2010): Use of Spatial Information and Search Strategies in a Water Maze Analog in Drosophila melanogaster. PLoS ONE 5(12): e15231
  35. Waddell S (2010): Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci. 33(10):457-464
  36. Abramson CI, Nolf SL, Mixson TA, Well H (2010): Can Honey Bees Learn the Removal of a Stimulus as a Conditioning Cue? Ethology 116(9): 843–854
  37. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  38. Yu C, Gupta J, Chen JF, Yin HH (2009): Genetic Deletion of A2A Adenosine Receptors in the Striatum Selectively Impairs Habit Formation. J Neurosci. 29(48):15100-15103
  39. van Swinderen, B. (2009): Fly Memory: A Mushroom Body Story in Parts. Curr Biol. 19(18): R855-R857
Brembs, B. (2008): Operant learning of Drosophila at the torque meter. J Vis Exp. 16. http://www.jove.com/details.stp?id=731 doi:10.3791/731.
Citations:
  1. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  2. Guo C, Du Y, Yuan D, Li M, Gong H, Gong Z, Liu L (2014): A conditioned visual orientation requires the ellipsoid body in Drosophila. Learn Mem 22: 56–63, DOI: 10.1101/lm.036863.114
  3. Kirkerud NH, Wehmann H-N, Galizia CG and Gustav D (2013): APIS—a novel approach for conditioning honey bees. Front. Behav. Neurosci. 7:29. doi: 10.3389/fnbeh.2013.00029
  4. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  5. Visvanathan K, Gianchandani YB (2011): Locomotion response of airborne, ambulatory and aquatic insects to thermal stimulation using piezoceramic microheaters. J. Micromech. Microeng. 21: 125002 (9pp)
  6. van Swinderen B, Andretic R (2011): Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc. Roy. Soc. B. 278(1707): 906-913
  7. Masek P, Scott K (2010): Limited taste discrimination in Drosophila. Proc Natl Acad Sci U S A. 107(33):14833-14838
Brembs, B.; Plendl, W. (2008): Double dissociation of PKC and AC manipulations on operant and classical learning in Drosophila. Curr Biol. 18(15): 1168-1171.
Citations:
  1. Bédécarrats A (2014): Étude cellulaire de la genèse et de l’apprentissage d’un comportement motivé chez l’aplysie, PhD dissertation, L´Université de Bordeaux
  2. Guo C, Du Y, Yuan D, Li M, Gong H, Gong Z, Liu L (2014): A conditioned visual orientation requires the ellipsoid body in Drosophila. Learn Mem 22: 56–63, DOI: 10.1101/lm.036863.114
  3. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014): Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife, 3:e02395, DOI: 10.7554/eLife.02395
  4. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  5. Alvarez B, Morís J, Luque D, Loy I (2014): Extinction, spontaneous recovery and reinstatement in the garden snail, Helix aspersa. Anim Behav 92: 75–83
  6. Webb B (2013): Issues in Invertebrate Learning Raised by Robot Models. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p81-90
  7. Hastings M, Farah CA, Sossin WS (2013): Roles of Protein Kinase C and Protein Kinase M in Aplysia Learning. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p221-235
  8. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  9. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  10. Cai J, Ao D, Yu R (2013): Bionic learning strategy applied on snake robot motion control. International Journal of Modelling, Identification and Control 19: 265
  11. Zisopoulou S, Asimaki O, Leondaritis G, Vasilaki A, Sakellaridis N, Pitsikas N, Mangoura D (2013): PKC-epsilon activation is required for recognition memory in the rat. Behav Brain Res. 253:280-289
  12. Cai J, Li L (2013): Autonomous Navigation Strategy in Mobile Robot. J. Comp. 8(8): 2118-2125 doi:10.4304/jcp.8.8.2118-2125
  13. Garren MV, Sexauer SB, Page TL (2013): Effect of Circadian Phase on Memory Acquisition and Recall: Operant Conditioning vs. Classical Conditioning. PLoS ONE 8(3): e58693
  14. Cai J, Yu R, Cheng R (2012): Autonomous navigation research for mobile robot. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), art. no. 6357893, pp. 331-335
  15. Chen J, Ruan XG, Dai LZ (2012): Behavior Cognition Computational Model Based on Cerebellum and Basal Ganglia Mechanism. Pattern Recognition and Artificial Intelligence 25(1): 29-36
  16. Cai JX, Sun X, Ma HR, Wang QS (2012): Research autonomous motion control for snake robot based on bionic learning strategy. 2012 Proceedings of International IEEE Conference on Modelling, Identification & Control (ICMIC), 826-831
  17. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  18. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  19. Ueda A, Wu CF (2012): Cyclic Adenosine Monophosphate Metabolism in Synaptic Growth, Strength, and Precision: Neural and Behavioral Phenotype-Specific Counterbalancing Effects between dnc Phosphodiesterase and rut Adenylyl Cyclase Mutations. J Neurogenet. 26(1):64-81
  20. Shuai Y, Hu Y, Qin H, Campbell RA, Zhong Y (2011): Distinct molecular underpinnings of Drosophila olfactory trace conditioning. Proc Natl Acad Sci U S A. 108(50):20201-20206
  21. Ruan X-G, Chen J (2011): Operant conditioning reflex learning control scheme based on SMC and Elman network. Control and Decision. 26(9):1398-1401
  22. Kahsai L, Zars T (2011): Learning and memory in Drosophila: behavior, genetics, and neural systems. Int Rev Neurobiol. 99:139-167
  23. Ruan X, Chen J, Dai L (2011): Motor Learning Based on the Cooperation of Cerebellum and Basal Ganglia for a Self-balancing Two-wheeled Robot. Intelligent Control and Automation 2(3): 57-68
  24. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  25. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. (2009): Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415
  26. Lorenzetti FD, Baxter DA, Byrne JH (2008): Molecular Mechanisms Underlying a Cellular Analog of Operant Reward Learning. Neuron 59: 815-828
Brembs, B.; Christiansen, F.; Pflüger, H.J.; Duch, C. (2007): Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J Neurosci 27: 11122–11131.
Citations:
  1. Berger SD, Crook SM (2015) Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila. Front. Comput. Neurosci., 9, DOI: 10.3389/fncom.2015.00139
  2. El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T (2015): Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res, 361: 669–684, DOI: 10.1007/s00441-015-2137-4
  3. Rillich J, Stevenson PA (2015): Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Front. Behav. Neurosci., 9:95 DOI: 10.3389/fnbeh.2015.00095
  4. Sadaf S, Reddy OV, Sane SP, Hasan G (2015) Neural Control of Wing Coordination in Flies. Curr Biol. 25: 80–86, DOI: 10.1016/j.cub.2014.10.069
  5. Gross AD, Kimber MJ, Coats JR (2014): G-Protein-Coupled Receptors (GPCRs) as Biopesticide Targets: A Focus on Octopamine and Tyramine Receptors. Biopesticides: State of the Art and Future Opportunities, DOI: 10.1021/bk-2014-1172.ch004
  6. Zhao H, Zheng N, Ribi WA, Zheng H, Xue L, Gong F, Zheng X, Hu F (2014): Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation. PLoS ONE 9(11):e113012, DOI: 10.1371/journal.pone.0113012
  7. Ryglewski S, Kadas D, Hutchinson K, Schuetzler N, Vonhoff F, Duch C (2014): Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior. Proc Natl Acad Sci U S A, 111(50): 18049–18054, DOI: 10.1073/pnas.1416247111
  8. Jezzini SH, Reyes-Colón D, Sosa MA (2014): Characterization of a Prawn OA/TA Receptor in Xenopus Oocytes Suggests Functional Selectivity between Octopamine and Tyramine. PLoS ONE 9(10):e111314, DOI: 10.1371/journal.pone.0111314
  9. Lehmann F-O (2014): Flight behavior: Degradation of flight muscle power and locomotor capacity in transgenic Drosophila. In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 77-87. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511920585.007.
  10. Sadaf S, Hasan G (2014): Serotonergic neurons of the Drosophila air-puff-stimulated flight circuit. J Biosci, 39: 575–583, DOI: 10.1007/s12038-014-9449-5
  11. Luo J, Lushchak OV, Goergen P, Williams MJ, Nässel DR (2014): Drosophila Insulin-Producing Cells Are Differentially Modulated by Serotonin and Octopamine Receptors and Affect Social Behavior. PLoS ONE 9, e99732. DOI: 10.1371/journal.pone.0099732
  12. Fuchs S, Rende E, Crisanti A, Nolan T (2014): Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival. Sci. Rep. 4:5526, DOI: 10.1038/srep05526
  13. Ruppert MB (2013): Dissecting Tbh and Hangover function in ethanol tolerance in Drosophila melanogaster. Dissertation, Universität zu Köln.
  14. Sieling F, Bédécarrats A, Simmers J, Prinz AA, Nargeot R (2014): Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior. Curr Biol. 24(9):941-950
  15. Lee YJ (2014): Motion Vision Processing in Fly Lobula Plate Tangential Cells. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 984. 47 pp. ISBN 978-91-554-8908-3.
  16. Ohta H, Ozoe Y (2014): Molecular Signalling, Pharmacology, and Physiology of Octopamine and Tyramine Receptors as Potential Insect Pest Control Targets. Adv Insect Physiol 46: Target Receptors in the Control of Insect Pests: Part II: 73-166
  17. Rien D, Kern R, Kurtz R (2013): Octopaminergic modulation of a fly visual motion-sensitive neuron during stimulation with naturalistic optic flow. Front Behav Neurosci 7
  18. Agrawal T, Sadaf S, Hasan G (2013): A Genetic RNAi Screen for IP3/Ca2+ Coupled GPCRs in Drosophila Identifies the PdfR as a Regulator of Insect Flight. PLoS Genet 9(10): e1003849
  19. Homberg U, Seyfarth J, Binkle U, Monastirioti M, Alkema MJ (2013): Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, Schistocerca gregaria. J Comp Neurol. 521(9):2025-2041
  20. Fuenzalida-Uribe N, Meza RC, Hoffmann HA, Varas R, Campusano JM (2013): nAChR-induced octopamine release mediates the effect of nicotine on a startle response in Drosophila melanogaster. J Neurochem. 2013 Jan 19. doi: 10.1111/jnc.12161. [Epub ahead of print]
  21. Rillich J, Stevenson PA, Pflueger H-J (2013): Flight and Walking in Locusts–Cholinergic Co-Activation, Temporal Coupling and Its Modulation by Biogenic Amines. PLoS ONE 8(5): e62899
  22. Wosnitza A, Bockemühl T, Dübbert M, Scholz H, Büschges A. (2013): Inter-leg coordination in the control of walking speed in Drosophila. J Exp Biol. 216(Pt 3):480-491
  23. Schneider A, Ruppert M, Hendrich O, Giang T, Ogueta M, Hampel S, Vollbach M, Büschges A, Scholz H (2012): Neuronal Basis of Innate Olfactory Attraction to Ethanol in Drosophila. PLoS ONE 7(12): e52007
  24. Adamo SA (2013): Parasites: evolution’s neurobiologists. J Exp Biol. 216(Pt 1):3-10. doi: 10.1242/jeb.073601.
  25. Suver MP, Mamiya A, Dickinson MH (2012): Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila. Curr Biol. 22(24): 2294-2302
  26. Sadaf S, Birman S, Hasan G (2012): Synaptic Activity in Serotonergic Neurons Is Required for Air-Puff Stimulated Flight in Drosophila melanogaster. PLoS ONE 7(9): e46405
  27. Herrera-Valdez MA, McKiernan EC, Berger SD, Ryglewski S, Duch C, Crook S (2012): Relating ion channel expression, bifurcation structure, and diverse firing patterns in a model of an identified motor neuron. J Comput Neurosci. 34(2):211-229
  28. Todorovic D, Markovic T, Prolic Z, Mihajlovic S, Rauš S, Nikolic L, Janac B (2012): The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera). Int J Radiat Biol. 89(1):44-50
  29. Selcho M, Pauls D, Jundi BE, Stocker RF, Thum AS (2012): The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol. 2012 May 24. doi: 10.1002/cne.23152
  30. Adamo SA (2012): Parasites – Evolution’s neurobiologists. What have they learned after millions of years of evolution? Journal of Experimental Biology Symposium 2012, Tenuta Il Cicalino, Massa Marittima, Italy: 17–21 March 2012: http://jeb2012.biologists.com/PDF/Adamo.pdf
  31. Lehmann FO, Schutzner P, Wang, H (2012): Visual motion sensing and flight path control in flies. IN: Frontiers in Sensing: From Biology to Engineering. (Eds. F. Barth, P. Humphrey, M. Srinivasan) 129-141, ISBN: 978-3-211-99748-2
  32. Cossío-Bayúgar R, Miranda-Miranda E, Narváez Padilla V, Olvera-Valencia F, Reynaud E (2012): Perturbation of tyraminergic/octopaminergic function inhibits oviposition in the cattle tick Rhipicephalus (Boophilus) microplus. J Insect Physiol. 58(5):628-633
  33. Holden-Dye L, Walker RJ (2012): Report on the 12th symposium on invertebrate neurobiology held 31 August-4 September 2011 at the Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Tihany, Hungary. Invert Neurosci. 12(1): 69-79
  34. Vonhoff F, Williams A, Ryglewski S, Duch C (2012): Drosophila as a Model for MECP2 Gain of Function in Neurons. PLoS ONE 7(2): e31835
  35. Banks CN, Adams ME (2011): Biogenic amines in the nervous system of the cockroach, Periplaneta americana following envenomation by the jewel wasp, Ampulex compressa. Toxicon. 59(2):320-328
  36. Pflüger HJ, Duch C (2011): Dynamic Neural Control of Insect Muscle Metabolism Related to Motor Behavior. Physiology 26:293-303
  37. Jung SN, Borst A, Haag J (2011): Flight activity alters velocity tuning of fly motion-sensitive neurons. J Neurosci. 31(25): 9231-9237
  38. Palmer CR, Kristan WB Jr. (2011): Contextual modulation of behavioral choice. Curr Opin Neurobiol. 21(4):520-526
  39. Stocker B (2011): Locust thoracic dorsal unpaired median (DUM) neurons: Differential activation and peripheral distribution of octopamine and tyramine. PhD Thesis, Freie Universität Berlin, Germany.
  40. Sinakevitch I, Mustard JA, Smith BH (2011): Distribution of the Octopamine Receptor AmOA1 in the Honey Bee Brain. PLoS ONE 6(1): e14536
  41. Longden KD, Krapp HG (2010): Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front. Syst. Neurosci. 4:153
  42. Yarali A, Gerber B (2010): A Neurogenetic Dissociation between Punishment-, Reward-, and Relief-Learning in Drosophila. Front Behav Neurosci. 4:189
  43. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  44. Sitaraman D, Zars M, Zars T (2010): Place memory formation in Drosophila is independent of proper octopamine signaling. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 196(4):299-305
  45. Schnaitmann C, Vogt K, Triphan T and Tanimoto H (2010): Appetitive and aversive visual learning in freely moving Drosophila. Front. Behav. Neurosci. 4:10. doi:10.3389/fnbeh.2010.00010
  46. Maimon G, Straw AD, Dickinson MH (2010): Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci. 13(3):393-9
  47. Vierk R, Duch C, Pflüger HJ (2010): Postembryonic development of centrally generated flight motor patterns in the hawkmoth, Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(1): 37-50
  48. Longden KD, Krapp HG (2009): State-dependent performance of optic-flow processing interneurons. J Neurophysiol. 102(6):3606-3618
  49. Huang J, Ohta H, Inoue N, Takao H, Kita T, Ozoe F, Ozoe Y (2009): Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem Mol Biol. 39(11):842-849
  50. Blumenthal EM (2009): Isoform- and cell-specific function of tyrosine decarboxylase in the Drosophila Malpighian tubule. J Exp Biol. 212(Pt 23):3802-3809
  51. Hesselberg T, Lehmann FO (2009): The role of experience in flight behaviour of Drosophila. J Exp Biol. 212(Pt 20):3377-3386.
  52. Westmark S, Oliveira EE, Schmidt J (2009): Pharmacological analysis of tonic activity in motoneurons during stick insect walking. J Neurophysiol. 102(2):1049-1061
  53. Peric-Mataruga V, Mircic D, Vlahovic M, Mrdakovic M, Todorovic D, Stevanovic D, Milosevic V. (2009): Effects of ghrelin on the feeding behavior of Lymantria dispar L. (Lymantriidae) caterpillars. Appetite. 53(1): 147-150.
  54. Pirri JK, McPherson AD, Donnelly JL, Francis MM, Alkema MJ (2009): A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron. 62(4):526-538.
  55. Lange AB (2009): Tyramine: from octopamine precursor to neuroactive chemical in insects. Gen Comp Endocrinol. 162(1):18-26
  56. Vierk R, Pflueger HJ, Duch C (2009): Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 195(3): 265-277
  57. Kononenko NL, Wolfenberg H, Pflüger H-J (2009): Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system: An immunocytochemical study. J. comp. Neurol. 512: 433-452
  58. Socha R, Kodrík D, Zemek R. (2008): Stimulatory effects of bioamines norepinephrine and dopamine on locomotion of Pyrrhocoris apterus (L.): is the adipokinetic hormone involved? Comp Biochem Physiol B Biochem Mol Biol. 151(3):305-310
  59. Duch C, Vonhoff F, Ryglewski S. (2008): Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. J Neurophysiol. 100(5):2525-2536
  60. Buhl E, Schildberger K, Stevenson PA (2008): A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight. J Exp Biol. 211(Pt 14):2346-57.
  61. Dierick HA. (2008): Fly fighting: octopamine modulates aggression. Curr Biol. 18(4):R161-163
  62. Vömel M, Wegener C (2008): Neuroarchitecture of Aminergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster. PLoS ONE 3(3): e1848
  63. Ryglewski S (2008): Functional analysis of membrane properties in identified insect neurons: The roles of ionic currents for intracellular calcium signaling, intrinsic excitability and dendritic growth. Doctoral thesis , FU Berlin, Germany.
Maye, A.; Hsieh, C.; Sugihara, G. and Brembs, B. (2007): Order in spontaneous behavior. PLoS ONE 2(5): e443
Citations:
  1. Calderon DP, Kilinc M, Maritan A, Banavar JR, Pfaff D (2016): Generalized CNS arousal: An elementary force within the vertebrate nervous system. Neurosci Biobehav Rev. 68:167-176. doi: 10.1016/j.neubiorev.2016.05.014
  2. Valenti D, Denaro G, Conversano F, Brunet C, Bonanno A, Basilone G, Mazzola S, Spagnolo B (2016): The role of noise on the steady state distributions of phytoplankton populations. J. Stat. Mech., 054044
  3. Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang CT, Schier AF, Freeman J, Engert F, Ahrens MB (2016): Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. Elife. 5. pii: e12741. doi: 10.7554/eLife.12741
  4. Reynolds AM, Bartumeus F, Kölzsch A, van de Koppel J (2016): Signatures of chaos in animal search patterns. Sci Rep. 6:23492. doi: 10.1038/srep23492
  5. Chmielarz P, Kreiner G, Kusmierczyk J, Kowalska M, Roman A, Tota K, Nalepa I (2016): Depressive-like immobility behavior and genotype?×?stress interactions in male mice of selected strains. Stress 3:1-8, DOI: 10.3109/10253890.2016.1150995
  6. Kane R (2016): The complex tapestry of free will: striving will, indeterminism and volitional streams, Springer Science, DOI: 10.1007/s11229-016-1046-8
  7. Hunt ER, Baddeley RJ, Worley A, Sendova-Franks AB, Franks NR (2016): Ants determine their next move at rest: motor planning and causality in complex systems. R. Soc. open sci. 3(1):150534 DOI: 10.1098/rsos.150534
  8. Waller BN (2015): Restorative Free Will: Back to the Biological Base. Lexington Books, ISBN: 9781498522380, 328pp
  9. Sims DW (2015): Intrinsic Lévy behaviour in organisms–searching for a mechanism: Comment on “Liberating Lévy walk research from the shackles of optimal foraging” by A.M. Reynolds. Phys Life Rev. 14:111-114. doi: 10.1016/j.plrev.2015.06.002
  10. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  11. Moy K, Li W, Tran HP, Simonis V, Story E, Brandon C, Furst J, Raicu D, Kim H. (2015) Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior. PLOS ONE 10(12):e0145870, DOI:10.1371/journal.pone.0145870
  12. Abe MS, Shimada M (2015): Lévy Walks Suboptimal under Predation Risk. PLoS Comput Biol. 11(11):e1004601, DOI: 10.1371/journal.pcbi.1004601
  13. Kane R (2015): On the role of indeterminism in libertarian free will. Philosophical Explorations, DOI: 10.1080/13869795.2016.1085594
  14. Neuringer A (2015): Reinforced (un)predictability and the voluntary operant. Europ J Behav Anal, DOI: 10.1080/15021149.2015.1084767
  15. Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AE (2015): Changes in Postural Syntax Characterize Sensory Modulation and Natural Variation of C. elegans Locomotion. PLoS Comput Biol. 11(8):e1004322 DOI: 10.1016/j.procs.2015.08.297
  16. Ishida Y (2015): A Note on Continuous Self-Identification as Self-Awareness: An Example of Robot Navigation. Procedia Computer Science, 60: 1865–1874, DOI: 10.1371/journal.pcbi.1004322
  17. Valenti D, Denaro G, Spagnolo B, Mazzola S, Basilone G, Conversano F, Brunet C, Bonanno A (2015): Stochastic models for phytoplankton dynamics in Mediterranean Sea. Ecol Complex DOI: 10.1016/j.ecocom.2015.06.001
  18. Kim AJ, Fitzgerald JK, Maimon G (2015): Cellular evidence for efference copy in Drosophila visuomotor processing. Nat Neurosci. 18: 1247–1255, DOI: 10.1038/nn.4083
  19. Sullivan C, Loughlin R, Schank JC, Joshi SS (2015): Genetic algorithms produce individual robotic rat pup behaviors that match Norway rat pup behaviors at multiple scales. Artif Life Robotics 20: 93–102, DOI: 10.1007/s10015-015-0208-y
  20. Kölzsch A, Alzate A, Bartumeus F, de Jager M, Weerman EJ, Hengeveld GM, Naguib M, Nolet BA, van de Koppel J (2015): Experimental evidence for inherent Lévy search behaviour in foraging animals. Proc Biol Sci. 282: 20150424–20150424, DOI: 10.1098/rspb.2015.0424
  21. Nurzaman SG, Yu X, Kim Y, Iida F (2015): Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics. Bioinspir. Biomim. 10(2):025004, DOI: 10.1088/1748-3190/10/2/025004
  22. Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH (2015): Body saccades of Drosophila consist of stereotyped banked turns. J Exp Biol. 218: 864–875, DOI: 10.1242/jeb.114280
  23. Bell HC (2014): Behavioral Variability in the Service of Constancy, International Journal of Comparative Psychology, 27(2): 338-360
  24. Humphries NE, Sims DW (2014): Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. J Theor Biol. 358: 179–193, DOI: 10.1016/j.jtbi.2014.05.032
  25. Christensen K, Papavassiliou D, de Figueiredo A, Franks NR, Sendova-Franks AB (2014): Universality in ant behaviour. J R Soc Interface. 12(102):20140985, DOI: 10.1098/rsif.2014.0985
  26. Pyke GH (2014): Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol Evol, 6: 1–16, DOI: 10.1111/2041-210X.12298
  27. Humphries NE, Weimerskirch H, Sims DW (2013): A new approach for objective identification of turns and steps in organism movement data relevant to random walk modelling. Methods Ecol Evol. 4(10): 930–938 DOI: 10.1111/2041-210X.12096
  28. Hillebrandt H, Friston KJ, Blakemore SJ (2014): Effective connectivity during animacy perception – dynamic causal modelling of Human Connectome Project data. Sci Rep. 4: 6240. DOI: 10.1038/srep06240
  29. Jung K, Jang H, Kralik JD, Jeong J (2014): Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions. PLoS Comput Biol, 10: e1003759. DOI: 10.1371/journal.pcbi.1003759
  30. Palmer D (2014): Libertarian Free Will: Contemporary Debates, Oxford University Press, ISBN 978-0-19-986008-1
  31. Sinnott-Armstrong W (2014): Moral Psychology, Volume 4: Free Will and Moral Responsibility, MIT Press, 474pp., ISBN 9780262525473
  32. MacIntosh AJJ (2014): The Fractal PrimatePrimate: Interdisciplinary Science and the Math behind the Monkey. Primate Res. 30: 95–119. DOI: 10.2354/psj.30.011
  33. Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF (2014) Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci, 17: 1455–1462. DOI: 10.1038/nn.3812
  34. Heisenberg M (2014): The Beauty of the Network in the Brain and the Origin of the Mind in the Control of Behavior. J Neurogen, 28: 389–399. DOI: 10.3109/01677063.2014.912279
  35. Moritz JM (2014): Animal suffering, evolution, and the origins of evil: toward a “free creatures” defense. Zygon 49: 348–380. DOI: 10.1111/zygo.12085
  36. Mix LJ, Masel J (2014): Chance, purpose, and progress in evolution and christianity. Evolution. 68(8):2441-2451, 10.1111/evo.12434. DOI:10.1111/evo.12434
  37. Nurzaman S, Yu X, Kim Y, Iida F (2014): Guided Self-Organization in a Dynamic Embodied System Based on Attractor Selection Mechanism. Entropy 16: 2592–2610
  38. Wearmouth VJ, McHugh MJ, Humphries NE, Naegelen A, Ahmed MZ, Southall EJ, Reynolds AM, Sims DW (2014): Scaling laws of ambush predator ‘waiting’ behaviour are tuned to a common ecology. Proc Biol Sci. 281(1782):20132997
  39. Wang R, Wang G, Zheng J (2014): An Exploration of the Range of Noise Intensity That Affects the Membrane Potential of Neurons. Abstract and Applied Analysis 2014:Article ID 801642, 1–11
  40. Seuront L, Stanley HE (2014): Anomalous diffusion and multifractality enhance mating encounters in the ocean. Proc Natl Acad Sci. 111:2206–2211
  41. Salvador LC, Bartumeus F, Levin SA, Ryu WS (2014): Mechanistic analysis of the search behaviour of Caenorhabditis elegans. J R Soc Interface. 11(92):2013.1092
  42. Benhamou S (2014): Of scales and stationarity in animal movements. Ecol Lett. 17:261–272
  43. Nayakar CSM, Omkar S, Srikanth R (2014): Consciousness, Libertarian Free Will and Quantum Randomness. pp 307-323 In: Menon S, Sinha A, Sreekantan BV (Eds.): Interdisciplinary Perspectives on Consciousness and the Self. 328p, Springer-Verlag, ISBN: 978-81-322-1587-5
  44. Griffith M (2013): Free Will: The basics. Routledge. ISBN: 0415562198
  45. Briffa M (2013): Plastic proteans: reduced predictability in the face of predation risk in hermit crabs. Biol Lett 9(5):20130592
  46. Kawabata M, Ueno T, Tomita J, Kawatani J, Tomoda A, Kume S, Kume K (2013): Temporal organization of rest defined by actigraphy data in healthy and childhood chronic fatigue syndrome children. BMC Psychiatry 13:281
  47. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  48. Dickinson MH (2014): Death Valley, Drosophila , and the Devonian Toolkit . Annu Rev Entomol. 59: 51–72
  49. Biro PA, Adriaenssens B (2013): Predictability as a Personality Trait: Consistent Differences in Intraindividual Behavioral Variation. Amer. Nat. 182: 621–629
  50. Heisenberg M (2013): Action Selection: The Brain as a Behavioral Organizer. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p9-13
  51. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  52. Humphries NE, Weimerskirch H, Sims DW (2013): A new approach for objective identification of turns and steps in organism movement data relevant to random walk modelling. Methods in Ecology and Evolution: n/a–n/a. DOI:http://dx.doi.org/10.1111/2041-210X.12096
  53. Denaro G, Valenti D, Spagnolo B, Basilone G, Mazzola S, Zgosi SW, Aronica S, Nonanno A (2013) Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion Model. PLoS ONE 8(6): e66765
  54. Raja S (2013): The neuronal basis of spontaneous flight behavior in Drosophila. PhD dissertation, FU Berlin
  55. Briffa M, Bridger D, Biro PA (2013): How does temperature affect behaviour? Multilevel analysis of plasticity, personality and predictability in hermit crabs. Anim Behav 86(1): 47–54
  56. Gomez-Marin, A. (2013): Tools, flies and what to do next. American Institute of Physics. AIP Conf. Proc. 1510: 120-123 doi:10.1063/1.4776508
  57. Censi A, Straw AD, Sayaman RW, Murray RM, Dickinson MH (2013): Discriminating external and internal causes for heading changes in freely flying Drosophila. PLoS Comput Biol. 9(2):e1002891
  58. Nepomnyashchikh VA (2013): Increases in variations in animal behavior induced by autocorrelations. Biol Bull Rev, 3(1), 49–56
  59. Wong KFE, Cheng C (2013): Predictable or Not? Individuals’ Risk Decisions Do Not Necessarily Predict Their Next Ones. PLoS ONE 8(2): e56811
  60. Heisenberg, M. (2013): The Origin of Freedom in Animal Behaviour. 95–103 In: Suarez, Antoine; Adams, Peter (Eds.) Is Science Compatible with Free Will? Is Science Compatible with Free Will? Exploring Free Will and Consciousness in the Light of Quantum Physics and Neuroscience. Springer 312p ISBN 978-1-4614-5212-6
  61. Martius G, Der R, Ay N (2013): Information driven self-organization of complex robotic behaviors PLoS One. 8(5):e63400
  62. Libersat F, Gal R (2013): What can parasitoid wasps teach us about decision-making in insects? J Exp Biol. 216(Pt 1):47-55. doi: 10.1242/jeb.073999
  63. Warzecha AK, Rosner R, Grewe J (2013): Impact and sources of neuronal variability in the fly’s motion vision pathway. J Physiol – Paris 07(1-2): 26-40. DOI: 10.1016/j.jphysparis.2012.10.002
  64. Nayakar CSM, Srikanth R (2012): Uncomputability and free will, arXiv:1210.6301 [physics.hist-ph]
  65. Sreedhar M, Upadhyay NM, Mishra S (2012): Optimized solutions for an optimization technique based on minority charge carrier inspired algorithm applied to selective harmonic elimination in induction motor drive. 2012 1st International Conference on Recent Advances in Information Technology (RAIT), DOI: 10.1109/RAIT.2012.6194523
  66. Petrou G (2012): Kinematics of cricket phonotaxis. PhD Thesis, University of Edinburgh
  67. Sreedhar M, Dasgupta A (2012): Experimental verification of Minority Charge Carrier Inspired Algorithm applied to voltage source inverter. In: 2012 IEEE 5th India International Conference on Power Electronics (IICPE). Institute of Electrical and Electronics Engineers, pp 1–6. [online] URL: http://dx.doi.org/10.1109/IICPE.2012.6450395
  68. Sims DW, Humphries NE (2012): Lévy flight search patterns of marine predators not questioned: a reply to Edwards et al. arXiv:1210.2288 [q-bio.PE]
  69. Paulk A, Millard SS, van Swinderen B (2012): Vision in Drosophila: Seeing the World Through a Model’s Eyes. Annu Rev Entomol. 58:313–332
  70. van Swinderen B (2012): Competing visual flicker reveals attention-like rivalry in the fly brain. Front Integr Neurosci. 6:96. doi: 10.3389/fnint.2012.00096
  71. Hartston W (2012): The Things That Nobody Knows: 501 Mysteries of Life, the Universe and Everything. Atlantic Books, ISBN-13: 978-1848878259
  72. Nurzaman SG, Matsumoto Y, Nakamura Y, Shirai K, Ishiguro H (2012): Bacteria-inspired underactuated mobile robot based on a biological fluctuation, Adapt Behav. 20(4) 225–236
  73. Koch C (2012): Consciousness: Confessions of a Romantic Reductionist. MIT Press ISBN-13: 978-0262017497
  74. Proekt A, Banavar JR, Maritan A, Pfaff DW (2012): Scale invariance in the dynamics of spontaneous behavior. Proc Natl Acad Sci U S A. 2012 Jun 7. [Epub ahead of print]
  75. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  76. Bazazi S, Bartumeus F, Hale JJ, Couzin ID (2012): Intermittent motion in desert locusts: behavioural complexity in simple environments. PLoS Comput Biol. 8(5):e1002498
  77. Magdziarz M, Metzler R, Szczotka W, Zebrowski P (2012): Correlated continuous-time random walks – Scaling limits and Langevin picture. J Stat Mech: Theor Exp. 4: P04010
  78. Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, Sims DW (2012): Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci U S A. 109(19):7169-7174
  79. Sims DW, Humphries NE, Bradford RW, Bruce BD (2012): Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J Anim Ecol. 81(2):432-442
  80. Barham JA (2012): Normativity, agency, and life. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 43(1): 92–103
  81. Joseph J, Dunn FA, Stopfer M (2012): Spontaneous olfactory receptor neuron activity determines follower cell response properties. J Neurosci. 32(8):2900-2910
  82. Mandayam Nayakar CS, Omkar S, Srikanth R (2012): Libertarian free will and quantum indeterminism. arXiv:1202.4440v2
  83. Ueno T, Masuda N, Kume S, Kume K (2012); Dopamine Modulates the Rest Period Length without Perturbation of Its Power Law Distribution in Drosophila melanogaster. PLoS ONE 7(2): e32007
  84. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  85. Barham JA (2011): Teleological Realism in Biology, PhD Thesis, University of Notre Dame, USA.
  86. Bendesky A, Bargmann CI (2011): Genetic contributions to behavioural diversity at the gene-environment interface. Nat Rev Genet. 12(12):809-820
  87. Rosner R, Warzecha AK (2011): Relating neuronal to behavioral performance: variability of optomotor responses in the blowfly. PLoS One. 6(10):e26886
  88. Mele AR (2011): Libertarianism and Human Agency. Phil Phen Res. DOI: 10.1111/j.1933-1592.2011.00529.x
  89. Sims DW, Humphries NE, Bradford RW, Bruce BD (2011): Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J Anim Ecol. 2011 Oct 17. doi: 10.1111/j.1365-2656.2011.01914.x. [Epub ahead of print]
  90. Windecker R (2011): Stochastic Artificial Neural Networks and random walks. The 2011 International Joint Conference on Neural Networks, 1134-1140
  91. He BJ (2011): Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task. J Neurosci. 31(39):13786-13795
  92. Nurzaman SG, Matsumoto Y, Nakamura Y, Koizumi S, Ishiguro H (2011): ‘Yuragi’-Based Adaptive Mobile Robot Search With and Without Gradient Sensing: From Bacterial Chemotaxis to a Lévy Walk. Adv. Robot. 25(16): 2019-2037
  93. Lewejohann L, Zipser B, Sachser N (2011): “Personality” in laboratory mice used for biomedical research: A way of understanding variability? Dev Psychobiol. 53(6):624-630
  94. Hays GC, Bastian T, Doyle TK, Fossette S, Gleiss AC, Gravenor MB, Hobson VJ, Humphries NE, Lilley MK, Pade NG, Sims DW (2011): High activity and Lévy searches: jellyfish can search the water column like fish. Proc Biol Sci. 279(1728):465-473
  95. Sorribes A, Armendariz BG, Lopez-Pigozzi D, Murga C, de Polavieja GG (2011): The Origin of Behavioral Bursts in Decision-Making Circuitry. PLoS Comput Biol 7(6): e1002075
  96. Abidin ZZ, Arshad MR, Ngah UK (2011): A simulation based fly optimization algorithm for swarms of mini autonomous surface vehicles application. Ind. J. Geo-Mar. Sci. 40(2): 250-266
  97. Flammang BE, Porter ME (2011): Bioinspiration: Applying Mechanical Design to Experimental Biology. Integr Comp Biol. 51 (1): 128-132
  98. Zou S, Liedo P, Altamirano-Robles L, Cruz-Enriquez J, Morice A, Ingram DK, Kaub K, Papadopoulos N, Carey JR (2011): Recording Lifetime Behavior and Movement in an Invertebrate Model. PLoS ONE 6(4): e18151.
  99. Glaser SM, Ye H, Maunder MN, MacCall AD, Fogarty MJ, Sugihara G (2011): Detecting and forecasting complex nonlinear dynamics in spatially-structured catch-per-unit-effort time series for North Pacific albacore (Thunnus alalunga). Can. J. Fish. Aquat. Sci. 68: 400–412
  100. Nurzaman SG, Matsumoto Y, Nakamura Y, Shirai K, Koizumi S, Ishiguro H. (2011): From Lévy to Brownian: a computational model based on biological fluctuation. PLoS One. 6(2):e16168
  101. Nayakar CSM, Srikanth R (2010): Quantum randomness and free will. arXiv:1011.4898v1
  102. Tang S, Juusola M (2010): Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices. PLoS ONE 5(12): e14455. doi:10.1371/journal.pone.0014455
  103. Abidin ZZ, Arshad MR, Ngah UK (2010): Waypoint control of drosobots: Swarms of mini ASVs. IEEE Symposium on Industrial Electronics and Applications, art. no. 5679401, pp. 556-561
  104. Tanimura Y, Yang MC, Ottens AK, Lewis MH (2010): Development and temporal organization of repetitive behavior in an animal model. Dev Psychobiol. 52(8):813-824
  105. Gal R, Libersat F (2010): On predatory wasps and zombie cockroaches: Investigations of “free will” and spontaneous behavior in insects. Commun Integr Biol. 3(5):458-61
  106. Abidin ZZ, Ngah UK, Arshad MR, Ping OB (2010): A novel fly optimization algorithm for swarming application2010 IEEE Conference on Robotics Automation and Mechatronics (RAM) 425-428, DOI: 10.1109/RAMECH.2010.5513157
  107. Tanimura Y, Yang MC, Ottens AK, Lewis MH (2010): Development and temporal organization of repetitive behavior in an animal model. Dev Psychobiol. 2010 Jul 6. DOI: 10.1002/dev.20477
  108. Gardiner J, Overall R, Marc J (2010): The Fractal Nature of the Brain: EEG Data Suggests That the Brain Functions as a “Quantum Computer” in 5-8 Dimensions. NeuroQuantology 2: 137-141
  109. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010): The temporal structures and functional significance of scale-free brain activity. Neuron. 66(3):353-369
  110. Stewart FJ, Baker DA, Webb B (2010): A model of visual-olfactory integration for odour localisation in free-flying fruit flies. J Exp Biol. 213(11):1886-1900
  111. Gal R, Libersat F (2010): A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey. PLoS ONE 5(4): e10019
  112. Frye MA (2010): Multisensory systems integration for high-performance motor control in flies. Curr Opin Neurobiol. 20 (3): 347-352
  113. Hong YY, Velegol D, Chaturvedi, N, Sen, A (2010): Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. Phys. Chem. Chem. Phys. 12(7): 1423-1435
  114. Kagaya K, Takahata m (2010): Readiness Discharge for Spontaneous Initiation of Walking in Crayfish. J Neurosci. 30(4):1348-1362
  115. Nurzaman SG, Matsumoto Y, Nakamura Y, Koizumi S, Ishiguro H (2009): Biologically inspired adaptive mobile robot search with and without gradient sensing. Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, St. Louis, MO, USA Pages: 142-147
  116. Remy SL (2009): How to teach a new robot new tricks-an interactive learning framework applied to service robotics. PhD Dissertation, Georgia Institute of Technology, USA
  117. Abidin ZZ, Arshad MR, Ngah UK (2009): A Survey: Animal-Inspired Metaheuristic Algorithms. 2nd Postgraduate Colloquium School of Electrical & Electronic USM, EEPC 2009, Bukit Jawi Golf Resort, 2nd November 2009
  118. Stewart FJ (2009): Modelling visual-olfactory integration in free-flying Drosophila. PhD dissertation, University of Edinburgh, UK
  119. Koch C (2009): Free Will, Physics, Biology, and the Brain. In: Understanding Complex Systems: Downward Causation and the Neurobiology of Free Will. (Springer Berlin / Heidelberg); 31-52. ISBN: 978-3-642-03204-2
  120. Bartumeus F Catalan J (2009): Optimal search behavior and classic foraging theory. J Phys A: Math Theor. 42(43): 434002
  121. Chechkin, AV, Hofmann, M,; Sokolov, IM (2009): Continuous-time random walk with correlated waiting times Phys Rev. E 80 (3): Art. No. 031112 Part 1
  122. Chow DM, Frye MA (2009): The neuro-ecology of resource localization in Drosophila: behavioral components of perception and search. Fly (Austin). 3(1):50-61
  123. Yanagawa T, Mogi K. (2009): Analysis of ongoing dynamics in neural networks. Neurosci Res. 64(2):177-184.
  124. Steven Shaviro (2009): Without Criteria: Kant, Whitehead, Deleuze, and Aesthetics (Cambridge: MIT Press).
  125. Ryser, P (2009): Creative Choice: How the Mind could Causally Affect the Brain. J Consc Stud. 16(2-3): 6-29
  126. Bartumeus F (2009): Behavioral intermittence, Lévy patterns, and randomness in animal movement. Oikos. 118(4): 488-494
  127. Krstic D, Boll W, Noll M (2009): Sensory integration regulating male courtship behavior in Drosophila. PLoS ONE. 4(2):e4457
  128. Vacariu G (2008): Epistemologicallky different worlds. Editura Universitatii din Bucuresti, ISBN 978-973-737-442-4
  129. Bartumeus F, Levin SA (2008): Fractal reorientation clocks: Linking animal behavior to statistical patterns of search. Proc Natl Acad Sci U S A. 105(49):19072-19077
  130. Dees ND, Bahar S, Moss F (2008): Stochastic resonance and the evolution of Daphnia foraging strategy. Phys. Biol. 5: 1-6
  131. Chikamoto K, Kagaya K, Takahata M (2008): Electromyographic Characterization of Walking Behavior Initiated Spontaneously in Crayfish. Zool. Sci. 25(8): 783–792
  132. Takahashi H, Horibe N, Ikegami T, Shimada M (2008): Analyzing house fly’s exploration behavior with autoregression methods. J. Phys. Soc. Jpn. 77(8): 084802
  133. Schoppik D, Nagel KI, Lisberger SG (2008): Cortical Mechanisms of Smooth Eye Movements Revealed by Dynamic Covariations of Neural and Behavioral Responses. Neuron 58, 248–260
  134. Meixner U (2008): New Perspectives for a Dualistic Conception of Mental Causation. J. Consc. Stud. 15(1): 17-38
  135. Artzy-Randrup Y, Bartumeus F, Mahoney J (2007): Human Random Search Strategies in a Soccer Field. Paper presented at the 2007 Complex Systems Summer School, Santa Fe.
  136. Paixão T (2007): The Stochastic Basis of Somatic Variation. Doctoral thesis, University of Porto, Portugal.
  137. Hong Y, Blackman NMK, Kopp ND, Sen A, Velegol D (2007): Chemotaxis of Nonbiological Colloidal Rods. Phys. Rev. Let. 99, 178103
  138. Niven JE (2007): Ghost in the machine? J. exp. Biol. 210(19): V
Brembs B, Hempel de Ibarra N. (2006): Different parameters support generalization and discrimination learning in Drosophila at the flight simulator. Learn Mem. 13(5): 629-637
Citations:
  1. White TE, Kemp DJ (2016): Color polymorphic lures target different visual channels in prey. Evolution. 70(6):1398-1408. doi: 10.1111/evo.12948
  2. Germain M, Blanchet S, Loyau A, Danchin É (2016): Mate-choice copying in Drosophila melanogaster: Impact of demonstration conditions and male-male competition. Behav Processes. 125:76-84. doi: 10.1016/j.beproc.2016.02.002
  3. Cohen S, Benjamini Y, Golani I (2015): Coping with Space Neophobia in Drosophila melanogaster: The Asymmetric Dynamics of Crossing a Doorway to the Untrodden. PLOS ONE 10:(12):e0140207, DOI: 10.1371/journal.pone.0140207
  4. Kelly MM, Gaskett AC (2014): UV reflectance but no evidence for colour mimicry in a putative brood-deceptive orchid Corybas cheesemanii. Curr Zool 60 (1), 104-113
  5. Giurfa M, Menzel R (2013): Cognitive components of insect behavior. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p14-25
  6. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  7. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  8. Niggebrügge, C (2008): Untersuchungen zum Farbensehen und Farbenlernen der Honigbiene (Apis mellifera): vom Photorezeptor zum Verhalten. Doctoral thesis , FU Berlin, Germany.
  9. Peng Y, Xi W, Zhang W, Zhang K, Guo A (2007): Experience Improves Feature Extraction in Drosophila. J. Neurosci. 27:5139-5145
Brembs B. and Wiener J. (2006): Context and occasion setting in Drosophila visual learning. Learn. Mem. 13(5): 618-628
Citations:
  1. Liu Q, Yang X, Tian J, Gao Z, Wang M, Li Y, Guo A (2016): Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila.. Elife. 5. pii: e13238. doi: 10.7554/eLife.13238
  2. Farris SM (2016): Insect societies and the social brain. Curr Op Ins Sci. 15: 1-8
  3. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  4. Avargués-Weber A, Lihoreau M, Isabel G, Giurfa M (2015): Information transfer beyond the waggle dance: observational learning in bees and flies. Front Ecol Evol, 3, DOI: 10.3389/fevo.2015.00024
  5. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014): Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife, 3:e02395, DOI: 10.7554/eLife.02395
  6. Kottler B, van Swinderen B (2014): Taking a new look at how flies learn. eLife, 3:e03978, DOI: 10.7554/eLife.03978
  7. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  8. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  9. Zhang X, Ren Q, Guo A (2013): Parallel pathways for cross-modal memory retrieval in Drosophila. J Neurosci. 33(20):8784-8793
  10. Fustiñana MS, Carbó Tano M, Romano A, Pedreira ME (2013): Contextual Pavlovian conditioning in the crab Chasmagnathus. Anim Cogn. 16(2):255-272
  11. Ren Q, Li H, Wu Y, Ren J, Guo A (2012): A GABAergic inhibitory neural circuit regulates visual reversal learning in Drosophila. J Neurosci. 32(34):11524-11538
  12. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  13. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  14. Wessnitzer J, Young JM, Armstrong JD, Webb B (2011): A model of non-elemental olfactory learning in Drosophila. J Comput Neurosci. 32(2):197-212
  15. Young JM, Wessnitzer J, Armstrong JD, Webb B (2011): Elemental and non-elemental olfactory learning in Drosophila. Neurobiol Learn Mem. 96(2):339-352
  16. Farris SM (2011): Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev. 40(4):368-379
  17. Mota T, Giurfa M, Sandoz JC (2011): Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem. 18(3):144-155
  18. Farris SM, Schulmeister S (2010): Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci. 278 (1707): 940-951
  19. Foucaud J, Burns JG, Mery F (2010): Use of Spatial Information and Search Strategies in a Water Maze Analog in Drosophila melanogaster. PLoS ONE 5(12): e15231
  20. Lau HL (2010): Chemosensory context conditioning in Ceanorhabditis elegans. MSc dissertation, The University of British Columbia
  21. Dunlap-Lehtilä AS (2009): Change and Reliability in the Evolution of Learning and Memory. PhD dissertation, University of Minnesota
  22. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  23. van Swinderen B, McCartney A, Kauffman S, Flores K, Agrawal K, Wagner J, Paulk A (2009): Shared Visual Attention and Memory Systems in the Drosophila Brain. PLoS ONE 4(6): e5989.
  24. Seugnet L, Suzuki Y, Stidd R, Shaw PJ. (2009): Aversive Phototaxic Suppression: evaluation of a short-term memory assay in Drosophila melanogaster. Genes Brain Behav. 8(4): 377-389
  25. Bueno JL, Holland PC (2008): Occasion setting in Pavlovian ambiguous target discriminations. Behav Processes. 79(3):132-147
  26. Tanaka NK, Tanimoto H, Ito K. (2008): Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol. 508(5):711-755.
  27. van Swinderen B. (2007): Attention-like processes in Drosophila require short-term memory genes. Science. 315(5818):1590-1593
  28. Peng Y, Xi W, Zhang W, Zhang K, Guo A (2007): Experience Improves Feature Extraction in Drosophila. J. Neurosci. 27:5139-5145
Menzel R.; Brembs, B. and Giurfa M. (2006): Cognition in Invertebrates. In: Kaas, J.H. (ed.) Evolution of Nervous Systems. Academic Press, Oxford ; pp. 403-442
Citations:
  1. Service EW, Plowright CMS (2015): Food restriction and threat of predation affect visual pattern choices by flower-naïve bumblebees. Learn Motiv. 50: 3-10, DOI:10.1016/j.lmot.2014.10.006
  2. Arien Y, Dag A, Zarchin S, Masci T, Shafir S (2015): Omega-3 deficiency impairs honey bee learning. Proc Natl Acad Sci U S A. 112(51):15761-15766, DOI: 10.1073/pnas.1517375112.
  3. Roth G (2015): Convergent evolution of complex brains and high intelligence. Philos Trans R Soc Lond B Biol Sci. 370(1684). pii: 20150049, DOI: 10.1098/rstb.2015.0049
  4. Falibene A, Roces F, Rössler W (2015): Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants. Front. Behav. Neurosci., 9:84 DOI: 10.3389/fnbeh.2015.00084
  5. Tew ER, Adamson A, Hesselberg T (2015): The web repair behaviour of an orb spider. Anim Behav. 103: 137–146, DOI: 10.1016/j.anbehav.2015.02.016
  6. Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MD, Gallistel CR, Warman GR, Menzel R (2014): Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc Natl Acad Sci U S A. 111: 8949–8954, DOI: 10.1073/pnas.1408039111
  7. Cruse H, Schilling M (2013): How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network. Front. Psychol. 4:324
  8. Parmir E (2013): From behavioral plasticity to neuronal computation: An investigation of associative learning in the honeybee brain. PhD thesis, Freie Universität Berlin http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094475
  9. Hussaini SA, Menzel R (2013): Mushroom body extrinsic neurons in the honeybee brain encode cues and contexts differently. J Neurosci. 33(17):7154-7164
  10. Eckstein MP, Mack SC, Liston DB, Bogush L, Menzel R, Krauzlis RJ (2013): Rethinking human visual attention: Spatial cueing effects and optimality of decisions by honeybees, monkeys and humans. Vision Res. 2013 Jan 5. doi:pii: S0042-6989(12)00416-6. 10.1016/j.visres.2012.12.011
  11. Carazo P, Fernández-Perea R, Font E (2012): Quantity estimation based on numerical cues in the mealworm beetle (Tenebrio molitor). Front. Psychology 3:502. doi: 10.3389/fpsyg.2012.00502
  12. Jeanson R, Dussutour A, Fourcassié V (2012): Key factors for the emergence of collective decision in invertebrates. Front Neurosci. 6:121
  13. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  14. Giurfa M, Sandoz JC (2012): Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem. 19(2):54-66
  15. Pamir E, Chakroborty NK, Stollhoff N, Gehring KB, Antemann V, Morgenstern L, Felsenberg J, Eisenhardt D, Menzel R, Nawrot MP. (2011): Average group behavior does not represent individual behavior in classical conditioning of the honeybee. Learn Mem. 18(11):733-741
  16. Vinauger C, Buratti L, Lazzari CR (2011): Learning the way to blood: first evidence of dual olfactory conditioning in a blood-sucking insect, Rhodnius prolixus. I. Appetitive learning. J Exp Biol. 214(Pt 18):3032-3038
  17. Matsumoto CS, Matsumoto Y, Watanabe H, Nishino H, Mizunami M. (2011): Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches. Neurobiol Learn Mem. 2011 Sep 10. [Epub ahead of print]
  18. Cruse H, Wehner R (2011): No Need for a Cognitive Map: Decentralized Memory for Insect Navigation. PLoS Comput Biol 7(3): e1002009
  19. Bar-Shaia N, Keasarb T, Shmida A (2011): The use of numerical information by bees in foraging tasks. Behav Ecol 22 (2): 317-325
  20. Gal R, Libersat F (2010): On predatory wasps and zombie cockroaches: Investigations of “free will” and spontaneous behavior in insects. Commun Integr Biol. 3(5):458-61
  21. Roussel E, Sandoz JC, Giurfa M (2010): Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honeybees. Front Behav. Neurosci. 4: 155
  22. Abramson CI, Nolf SL, Mixson TA, Well H (2010): Can Honey Bees Learn the Removal of a Stimulus as a Conditioning Cue? Ethology 116: 1–12 doi: 10.1111/j.1439-0310.2010.01796.x
  23. Bar-Shai N, Keasar T, Shmida A (2010): The use of numerical information by bees in foraging tasks. Center for the study of rationality – Hebrew University of Jerusalem, Discussion Paper # 555 June 2010
  24. Tomina Y, Takahata M. (2010): A behavioral analysis of force-controlled operant tasks in American lobster. Physiol Behav. 101(1): 108-116
  25. Abramson CI (2009): A Study in Inspiration: Charles Henry Turner (1867–1923) and the Investigation of Insect Behavior. Annu. Rev. Entomol. 54:343–359
  26. Wehner R (2009): The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecological News, 12: 85-96
  27. Bozkurt A, Gilmour RF, Sinha A, Stern D, Lal A (2009): Insect–Machine Interface Based Neurocybernetics. IEEE Transactions on Biomedical Engineering 56(6): 1727 – 1733
  28. Josens R, Eschbach C, Giurfa M (2009): Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants. J Exp Biol. 212(Pt 12):1904-1911
  29. Carazo P, Font E, Forteza-Behrendt E, Desfilis E (2009): Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate? Anim Cogn. 12(3):463-470
  30. Garzón PC, Keijzer F (2009): Cognition in plants. In: F. Baluška (Ed.) Plant – environment interactions: Behavioral perspective. Elsevier.
  31. Menzel R. (2009): Serial position learning in honeybees. PLoS ONE 4(3): e4694.
  32. Platt M, Dayan P, Dehaene S, McCabe K, Menzel R, Phelps E, Plassmann H, Ratcliff R, Shadlen M, Singer W (2008): Neuronal correlates of decision making. In: Engel C and Singer W (Eds.) Better Than Conscious? Decision Making, the Human Mind, and Implications For Institutions. MIT Press
  33. Menzel R. (2008): Insect minds for human minds. In: Benjamin AS, de Belle JS, Etnyre B, Polk TA(eds.) Human Learning, pp. 271-285, Elsevier
  34. Menzel R. (2007): Electrophysiology and Optophysiology of Complex Brain Functions in Insects. In: North G and Greenspan RJ (eds.) Invertebrate Neurobiology, pp. 53-78, CSHL Press.
  35. Okada R, Rybak J, Manz G, Menzel R. (2007): Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci. 27(43):11736-11747.
  36. van Duijn M, Keijzer F, Franken D (2006): Principles of minimal cognition: Casting cognition as sensorimotor coordination. Adapt. Behav. 14 (2): 157-170
Phillips A.M.; Smart R.; Strauss R.; Brembs B. and Kelly L.E. (2005): The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele. Gene 351:131-142
Citations:
  1. Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2016): Cuticle formation and pigmentation in beetles. Curr Opin Insect Sci. 17, 1–9. doi: 10.1016/j.cois.2016.05.004
  2. Connahs H, Rhen T, Simmons RB (2016): Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development. BMC Genomics. 17(1):270. doi: 10.1186/s12864-016-2586-5
  3. Dai F, Qiao L, Cao C, Liu X, Tong X, He S, Hu H, Zhang L, Wu S, Tan D, Xiang Z, Lu C (2015) Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori. Sci. Rep., 5, 10885.
  4. Chaturvedi R, Reddig K, Li H-S (2014): Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila. Proc Natl Acad Sci. 111:2812–2817
  5. Müller R, Jenny A, Stanley P (2013): The EGF Repeat-Specific O-GlcNAc-Transferase Eogt Interacts with Notch Signaling and Pyrimidine Metabolism Pathways in Drosophila. PLoS ONE 8(5): e62835
  6. Ziegler AB, Brüsselbach F, Hovemann BT (2013): Activity and coexpression of Drosophila black with ebony in fly optic lobes reveals putative cooperative tasks in vision that evade electroretinographic detection. J Comp Neurol. 521(6):1207-1224
  7. Aleksandrov ID, Namolovan LN, Aleksandrova MV (2012): Radiation biology of structurally different Drosophila genes. Report III. The black gene: general and molecular characteristics of its radiomutability. Radiats Biol Radioecol. 52(5):453-466
  8. Pulver SR, Berni J (2012): The fundamentals of flying: simple and inexpensive strategies for employing Drosophila genetics in neuroscience teaching laboratories. J Undergrad Neurosci Educ. 11(1):A139-148
  9. Ilg T, Berger M, Noack S, Rohwer A, Gaßel M (2012): Glutamate decarboxylase of the parasitic arthropods Ctenocephalides felis and Rhipicephalus microplus: gene identification, cloning, expression, assay development, identification of inhibitors by high throughput screening and comparison with the orthologs from Drosophila melanogaster and mouse. Insect Biochem Mol Biol. 43(2): 162-177
  10. Pulver SR, Berni J (2012): The Fundamentals of Flying: Simple and Inexpensive Strategies for Employing Drosophila Genetics in Neuroscience Teaching Laboratories. The Journal of Undergraduate Neuroscience Education (JUNE) 11(1):A139-A148
  11. Saenko SV, Jerónimo MA, Beldade P (2012): Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation. Heredity (Edinb). 108(6):594-601
  12. Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O’Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M (2012): Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science. 336(6083):925-931
  13. Borycz J, Borycz JA, Edwards TN, Boulianne GL, Meinertzhagen IA (2012): The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: ß-alanine recycles through the retina. J Exp Biol. 215(Pt 8):1399-1411
  14. Saenko SV, Jerónimo MA, Beldade P (2012): Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation. Heredity (Edinb). 2012 Jan 11. doi: 10.1038/hdy.2011.127. [Epub ahead of print]
  15. Rund SS, Hou TY, Ward SM, Collins FH, Duffield GE (2011): Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A. 108(32):E421-430
  16. Ziegler, AB; Hovemann, BT (2011): Aspartate decarboxylase Black as a part of visual signal transduction. J. Neurogen. 24: 51
  17. Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J (2010): An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep. 37(7):3199-3205
  18. Gallot A, Rispe C, Leterme N, Gauthier JP, Jaubert-Possamai S, Tagu D (2010): Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem Mol Biol. 40(3):235-240
  19. Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J (2009): An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep. [Epub ahead of print]
  20. Le Trionnaire G, Francis F, Jaubert-Possamai S, Bonhomme J, De Pauw E, Gauthier JP, Haubruge E, Legeai F, Prunier-Leterme N, Simon JC, Tanguy S, Tagu D (2009): Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. BMC Genomics 10:456
  21. Arakane Y, Lomakin J, Beeman RW, Muthukrishnan S, Gehrke SH, Kanost MR, Kramer KJ (2009): Molecular and Functional Analyses of Amino Acid Decarboxylases Involved in Cuticle Tanning in Tribolium castaneum. J Biol Chem. 284(24):16584-16594
  22. Davis MM, Primrose DA, Hodgetts RB (2008): A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response. Mol Cell Biol. 28(15):4883-4895.
  23. Stuart AE, Borycz J, Meinertzhagen IA (2007): The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol. 82(4):202-227
Brembs B.; Baxter D.A. and Byrne J.H. (2004): Extending In Vitro Conditioning in Aplysia to Analyze Operant and Classical Processes in the Same Preparation. Learn. Mem. 11: 412-420.
Citations:
  1. Basil J, Crook R (2014): Evolution of behavioral and neural complexity: Learning and memory in chambered nautilus. In: Darmaillacq AS, Dickel L, Mather J (eds.): Cephalopod Cognition, pp. 31 – 56, Cambridge University Press.
  2. Bédécarrats A (2014): Étude cellulaire de la genèse et de l’apprentissage d’un comportement motivé chez l’aplysie, PhD dissertation, L´Université de Bordeaux
  3. Dasgupta S, Wörgötter F, Manoonpong P (2014): Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits, 8:126, DOI: 10.3389/fncir.2014.00126
  4. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  5. Mozzachiodi R, Baxter DA, Byrne JH (2013): Comparison of Operant and Classical Conditioning of Feeding Behavior in Aplysia. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p183-193
  6. Bédécarrats A, Cornet C, Simmers J, Nargeot R (2013): Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem. 20(6):318-327
  7. Guerra, LGGC, Silva, MTA (2010): Learning processes and the neural analysis of conditioning. Psych Neur. 3(2), doi: 10.3922/j.psns.2010.2.xxx
  8. Nargeot R, Simmers J (2010): Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci. 68(5): 803-816
  9. Katzoff A, Miller N, Susswein AJ (2009): Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia. Learn Mem. 17(1):839-851
  10. Grasso FW, Basil JA (2009): The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain Behav Evol. 74(3):231-245
  11. Tomsic D, de Astrada MB, Sztarker J, Maldonado H. (2009): Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem. 92(2):176-182
  12. Jing J, Vilim FS, Cropper EC, Weiss KR (2008): Neural analog of arousal: persistent conditional activation of a feeding modulator by serotonergic initiators of locomotion. J Neurosci. 28(47):12349-12361.
  13. Nargeot R, Petrissans C, Simmers J. (2007): Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. J Neurosci. 27(30): 8059-8070
  14. Silva MTA, Goncalves FL, Garcia-Mijares M (2007): Neural events in the reinforcement contingency. Behav. Anal. 30(1): 17-30
  15. Krylov AK, Aleksandrov YI (2007): “Situatedness in an environment” as alternative to stimuli presentation: Model study. Psykhologicheskii Zhurnal 28(2): 106-113
  16. Wright JW, Olson ML, Harding JW (2006): The role of the brain angiotensin system in learning, memory and neural plasticity. In: Trends in Learning Research (ed.: Hogan SH). Nova Publishers, pp. 1-39
  17. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  18. Goel P, Gelperin A. (2006): A neuronal network for the logic of Limax learning. J Comput Neurosci. 21(3):259-270
  19. Katzoff A, Ben-Gedalya T, Hurwitz I, Miller N, Susswein YZ, Susswein AJ. (2006): Nitric oxide signals that aplysia have attempted to eat, a necessary component of memory formation after learning that food is inedible. J Neurophysiol. 96(3):1247-1257
  20. Diaz-Rios M, Miller MW (2006): Target-specific regulation of synaptic efficacy in the feeding central pattern generator of Aplysia: potential substrates for behavioral plasticity? Biol Bull. 210(3):215-29.
  21. Hawkins RD, Clark, GA, Kandel, ER (2006): Operant Conditioning of Gill Withdrawal in Aplysia. J. Neurosci. 26(9):2443-2448
  22. Agin V, Chichery R, Dickel L, Chichery MP. (2006): The “prawn-in-the-tube” procedure in the cuttlefish: habituation or passive avoidance learning? Learn Mem. 13(1):97-101
  23. Jezzini SH, Bodnarova M, Moroz LL. (2005): Two-color in situ hybridization in the CNS of Aplysia californica. J Neurosci Methods. 149(1): 15-25
  24. Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH (2005): Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: Blockade by a dopamine antagonist. Learn. Mem. 12: 216-220
  25. Zhurov Y, Proekt A, Weiss KR, Brezina V. (2005): Changes of internal state are expressed in coherent shifts of neuromuscular activity in Aplysia feeding behavior. J Neurosci. 25(5): 1268-1280.
  26. Giurfa M (2004): “This paper shows that it is possible to study the two major forms of associative…” Evaluation of: [Brembs B et al. Extending in vitro conditioning in Aplysia to analyze operant and classical processes in the same preparation. Learn Mem. 2004 Jul-Aug; 11(4):412-20; doi: 10.1101/lm.74404]. Faculty of 1000, 11 Nov 2004. F1000.com/1022188
Brembs, B (2003): Operant Conditioning in Invertebrates. Curr. Opin. Neurobiol. 13(6): 710-717.
Citations:
  1. Bhimani R, Huber R (2015): Operant avoidance learning in crayfish, Orconectes rusticus: Computational ethology and the development of an automated learning paradigm. Learn Behav. 2015 Nov 5. [Epub ahead of print]
  2. Mirwan HB, Mason GJ, Kevan PG (2015): Complex operant learning by worker bumblebees (Bombus impatiens): detour behaviour and use of colours as discriminative stimuli. Insectes Sociaux, 62: 365–377, DOI: 10.1007/s00040-015-0414-6
  3. Soltoggio A (2014): Short-term plasticity as cause–effect hypothesis testing in distal reward learning. Biol Cybern. 109: 75–94, DOI: 10.1007/s00422-014-0628-0
  4. Hermann PM, Watson SN, Wildering WC (2014): Phospholipase A2 – nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet. 5:419 DOI: 10.3389/fgene.2014.00419
  5. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  6. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdiscip Rev Cogn Sci. 4(5): 561–582., DOI: 10.1002/wcs.1248
  7. Palminteri S, Pessiglione M (2013): Reinforcement learning and Tourette syndrome. Int Rev Neurobiol. 112:131-153
  8. Søvik E, Barron AB (2013): Invertebrate Models in Addiction Research. Brain Behav Evol. 82: 153–165
  9. DuRousseau, D. R. (2013): QEEG Biomarkers: Assessment and Selection of Special Operators, and Improving Individual Performance (pp. 562–571). Lecture Notes in Computer Science. Springer-Verlag. doi:10.1007/978-3-642-39454-6_60
  10. Lukowiak K, Dalesman S (2013): Operant Conditioning of Respiration in Lymnaea: The Environmental Context. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p265-279
  11. Mozzachiodi R, Baxter DA, Byrne JH (2013): Comparison of Operant and Classical Conditioning of Feeding Behavior in Aplysia. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p183-193
  12. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  13. Thran J (2013): Ein räumliches Orientierungsgedächtnis im Zentralkomplex von Drosophila melanogaster und die spezifische Rolle von ellipsoid-body-open. PhD thesis. University of Mainz. http://ubm.opus.hbz-nrw.de/volltexte/2013/3415/
  14. Kirkerud NH, Wehmann H-N, Galizia CG and Gustav D (2013): APIS—a novel approach for conditioning honey bees. Front. Behav. Neurosci. 7:29. doi: 10.3389/fnbeh.2013.00029
  15. Alberini CM, Bambah-Mukku D, Chen DY (2012): Memory Consolidation and Its Underlying Mechanisms. In: Memory Mechanisms in Health and Disease: Mechanistic Basis of Memory (ed.: Karl Peter Giese). World Scientific, ISBN 9814366692, 444 pages, pp. 147-171
  16. Milinkeviciute G, Gentile C, Neely GG (2012): Drosophila as a tool for studying the conserved genetics of pain. Clin Genet. 82(4):359-366
  17. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  18. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  19. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  20. Kapustjansky, A (2012): In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster. PhD Thesis, Julius-Maximilians Universität Würzburg
  21. Dalesman S, Lukowiak K (2012): How Stress Alters Memory in ‘Smart’ Snails. PLoS ONE 7(2): e32334
  22. Dalesman S, Braun MH, Lukowiak K. (2011): Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiol Learn Mem. 95(4):393-403
  23. Nargeot R, Simmers J (2010): Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci. 68(5): 803-816
  24. Tomina Y, Takahata M. (2010): A behavioral analysis of force-controlled operant tasks in American lobster. Physiol Behav. 2010 Apr 29. [Epub ahead of print]
  25. Sokolowski MBC, Disma G, Abramson CI (2010): A paradigm for operant conditioning in Blow Flies (Phormia terrae novae Robineau-Desvoidy, 1830). J exp. Anal. Behav. 93 (1): 81-89
  26. Dayan P, Huys QJ. (2009): Serotonin in Affective Control. Annu Rev Neurosci. 32: 95-126
  27. Khan AM, Spencer GE (2009): Novel neural correlates of operant conditioning in normal and differentially reared Lymnaea. J Exp Biol. 212(Pt 7):922-933
  28. Pitman JL, Dasgupta S, Krashes MJ, Leung B, Perrat PN, Waddell S. (2009): There are many ways to train a fly. Fly (Austin). 3(1): 3-9
  29. Vandersal ND (2008): Rapid spatial learning in a velvet ant (Dasymutilla coccineohirta). Anim Cogn. 11(3):563-567
  30. Lukowiak K, Martens K, Rosenegger D, Browning K, de Caigny P, Orr M (2008): The perception of stress alters adaptive behaviours in Lymnaea stagnalis. J Exp Biol. 211(Pt 11):1747-1756.
  31. VanderSal ND, Hebets EA. (2007): Cross-modal effects on learning: a seismic stimulus improves color discrimination learning in a jumping spider. J Exp Biol. 210(Pt 20):3689-3695.
  32. Henry F, Dauce E, Soula H (2007): Temporal pattern identification using spike-timing dependent plasticity. Neurocomp. 70(10-12): 2009-2016
  33. Kim YC, Lee HG, Han KA. (2007): Classical reward conditioning in Drosophila melanogaster. Genes Brain Behav. 6(2):201-207
  34. Daucé E, Henry F (2006): Hebbian learning in large recurrent neural networks. Paper presented at NeuroComp 2006, 202
  35. Dupuy F, Sandoz JC, Giurfa M, Josens R (2006): Individual olfactory learning in Camponotus ants. Anim. Behav. 72: 1081-1091
  36. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  37. Aragona BJ, Carelli RM. (2006): Dynamic neuroplasticity and the automation of motivated behavior. Learn Mem. 13(5):558-559
  38. Hawkins RD, Clark, GA, Kandel, ER (2006): Operant Conditioning of Gill Withdrawal in Aplysia. J. Neurosci. 26(9):2443-2448
  39. Barbas D, Zappulla JP, Angers S, Bouvier M, Mohamed HA, Byrne JH, Castellucci VF, Desgroseillers L. (2006): An aplysia dopamine-like receptor: molecular and functional characterization. J Neurochem. 96(2):414-427
  40. Burggren WW, Monticino MG. (2005): Assessing physiological complexity.J Exp Biol. 208(17): 3221-3232.
  41. Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH (2005): Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: Blockade by a dopamine antagonist. Learn. Mem. 12: 216-220
  42. Manev H, Dimitrijevic N. (2005): Fruit flies for anti-pain drug discovery. Life Sci. 76(21):2403-7.
  43. Dacher M (2005): Role des recepteurs nicotiniques dans differentes formes de memoire chez l’abeille Apis mellifera. Doctoral thesis, Université de Toulouse, Paul Sabatier, France
  44. Demirci S, Esel E (2004): The biological mechanisms of learning and memory, and their relationships with psychiatric disorders. Anatol. J. Psych. 5:239-248
  45. Lamme VAF (2004): Weg met de psychologie! Netherlands journal of psychology 59: 90–100
Brembs, B (2003): Operant Reward Learning in Aplysia. Curr. Dir. Psych. Sci. 12 (6): 218-221.
Citations:
  1. Sakurai A, Katz PS (2015): Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 201: 829–839, DOI: 10.1007/s00359-015-1007-6
  2. Shi Z, Lu C, Sun X, Wang Q, Chen S, Li Y, Qu L, Chen L, Bu L, Liao D, Liu X (2015): Tong Luo Jiu Nao ameliorates Aß1–40-induced cognitive impairment on adaptive behavior learning by modulating ERK/CaMKII/CREB signaling in the hippocampus. BMC Complement Altern Med. 15, DOI: 10.1186/s12906-015-0584-9
  3. Bédécarrats A (2014): Étude cellulaire de la genèse et de l’apprentissage d’un comportement motivé chez l’aplysie, PhD dissertation, L´Université de Bordeaux
  4. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  5. Le Pelley ME (2014): Primate polemic: Commentary on Smith, Couchman, and Beran (2014). J Comp Psych 128: 132–134, DOI:10.1037/a0034227
  6. Radecki G, Nargeot R, Jelescu IO, Le Bihan D, Ciobanu L (2014): Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica. Proc Natl Acad Sci U S A 111: 8667–8672, DOI: 10.1073/pnas.1403739111
  7. Sieling F, Bédécarrats A, Simmers J, Prinz AA, Nargeot R (2014): Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior. Curr Biol. 24(9):941-950
  8. Jain P, Bhalla US (2014): Transcription Control Pathways Decode Patterned Synaptic Inputs into Diverse mRNA Expression Profiles. PLoS ONE, 9:e95154. DOI: 10.1371/journal.pone.0095154
  9. Zilio D (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  10. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  11. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res 229: 91–105, DOI: 10.1016/j.bbr.2011.12.044
  12. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  13. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  14. Goldman MS, Darkes J, Reich RR, Brandon KO (2006): From DNA to conscious thought: The influence of anticipatory processes on human alcohol consumption. In: Munafò M, Albery IP (Eds) Cognition and addiction. (pp. 147-184). New York, NY, US: Oxford University Press. x, 307 pp.
  15. Reich RR, Noll JA, Goldman MS. (2005): Cue patterns and alcohol expectancies: how slight differences in stimuli can measurably change cognition. Exp Clin Psychopharmacol. 13(1): 65-71.
Brembs B.; Lorenzetti F.D.; Reyes F.D.; Baxter D.A. and Byrne J.H. (2002): Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms. Science 296: 1706-1709.
Citations:
  1. De Araujo IE (2016): High fat takes the low road to the brain’s reinforcement system. Curr Opin Behav Sci. 9, 158–162. doi: 10.1016/j.cobeha.2016.04.013
  2. Trout JD (2016): Wondrous Truths: The Improbable Triumph of Modern Science. Oxford University Press. 264p, ISBN: 9780199385072
  3. Lakin MR, Stefanovic D (2016): Supervised Learning in Adaptive DNA Strand Displacement Networks. ACS Synth Biol. 2016 May 11. [Epub ahead of print]
  4. Bartoszeck FK, Chang YC, Bartoszeck AB (2016): A Possible Role of Basic Neurophysiology in Explanation of Mind by Psychology. Revista Psicologia e Saúde 8(1): 44-51
  5. Silverman K, Jarvis BP, Jessel J, Lopez AA (2016): Incentives and motivation. Translational Issues in Psychological Science, 2: 97–100
  6. Yang CY, Yu K, Wang Y, Chen SA, Liu DD, Wang ZY, Su YN, Yang SZ, Chen TT, Livnat I, Vilim FS, Cropper EC, Weiss KR, Sweedler JV, Jing J (2016): Aplysia Locomotion: Network and Behavioral Actions of GdFFD, a D-Amino Acid-Containing Neuropeptide. PLOS ONE, 11, DOI: 10.1371/journal.pone.0147335
  7. Kemenes G (2015): Dynamic Molecular Mechanisms of Memory Consolidation after Single-Trial Food-Reward Classical Conditioning in Lymnaea. In: Sakakibara M, Ito E (eds.) Memory Consolidation. pp. 127-141. Nova. ISBN: 978-1-63482-623-5
  8. Newquist G, Gardner RA (2015): Reconsidering Food Reward, Brain Stimulation, and Dopamine: Incentives Act Forward. Am J Psychol. 128(4):431-444
  9. Carballo F, Freidin E, Bentosela M. (2015): Estudios sobre cooperación en perros domésticos: una revisión crítica. Revista Colombiana de Psicología, 24(1): 145-163, doi: 10.15446/rcp.v24n1.41221
  10. Dickinson KJ, Wainwright ML, Mozzachiodi R (2015): Change in excitability of a putative decision-making neuron in Aplysia serves as a mechanism in the decision not to feed following food satiation. Behav Brain Res. 281:131-136. doi: 10.1016/j.bbr.2014.12.022
  11. Kirszenblat L, van Swinderen B (2015): The Yin and Yang of Sleep and Attention. Trends Neurosci. 38: 776–786, DOI: 10.1016/j.tins.2015.10.001
  12. Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M (2015): Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci. Rep. 5:15885 DOI: 10.1038/srep15885
  13. Dorenbosch MM (2015): The Idea of Will, J Cons Expl & Res. 6(7): 449-472
  14. Gillette R, Brown JW (2015): The Sea Slug, Pleurobranchaea californica?: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior . Integr Comp Biol. DOI: 10.1093/icb/icv081
  15. Hawkins RD, Byrne JH (2015): Associative Learning in Invertebrates. Cold Spring Harb Perspect Biol. 7: a021709, DOI: 10.1101/cshperspect.a021709
  16. Cyr A, Thériault F (2015): Action Selection and Operant Conditioning: A Neurorobotic Implementation. Journal of Robotics, 2015, 1–10, DOI: 10.1155/2015/643869
  17. Sakurai A, Katz PS (2015): Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 201: 829–839, DOI: 10.1007/s00359-015-1007-6
  18. Shi Z, Lu C, Sun X, Wang Q, Chen S, Li Y, Qu L, Chen L, Bu L, Liao D, Liu X (2015): Tong Luo Jiu Nao ameliorates Aß1–40-induced cognitive impairment on adaptive behavior learning by modulating ERK/CaMKII/CREB signaling in the hippocampus. BMC Complement Altern Med. 15, DOI: 10.1186/s12906-015-0584-9
  19. Aunger R, Curtis V (2015): Gaining Control – How human Behaviour evolved, Oxford University Press, ISBN: 978-0-19-968895-1
  20. Buchta WC, Riegel AC (2015): Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res. 1628: 88–103, DOI: 10.1016/j.brainres.2015.02.003
  21. Soltoggio A (2014): Short-term plasticity as cause–effect hypothesis testing in distal reward learning. Biol Cybern. 109: 75–94, DOI: 10.1007/s00422-014-0628-0
  22. Jun H (2014): Cognitive Learning and Memory Systems using Spiking Neural, PhD dissertation, National University of Singapore
  23. Lakin MR, Minnich A, Lane T, Stefanovic D (2014): Design of a biochemical circuit motif for learning linear functions. J R Soc Interface 11, DOI: 10.1098/rsif.2014.0902
  24. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  25. Le Pelley ME (2014): Primate polemic: Commentary on Smith, Couchman, and Beran (2014). J Comp Psych 128: 132–134, DOI:10.1037/a0034227
  26. Dasgupta S, Wörgötter F, Manoonpong P (2014): Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits, 8:126, DOI: 10.3389/fncir.2014.00126
  27. Soltoggio,A., Lemme,A., Reinhart,F. and Steil,J.J. (2013) Rare Neural Correlations Implement Robotic Conditioning with Delayed Rewards and Disturbances. Front. Neurorobot., 7, DOI: 10.3389/fnbot.2013.00006
  28. Radecki G, Nargeot R, Jelescu IO, Le Bihan D, Ciobanu L (2014): Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica. Proc Natl Acad Sci U S A 111: 8667–8672, DOI: 10.1073/pnas.1403739111
  29. Sieling F, Bédécarrats A, Simmers J, Prinz AA, Nargeot R (2014): Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior. Curr Biol. 24(9):941-950
  30. Jain P, Bhalla US (2014): Transcription Control Pathways Decode Patterned Synaptic Inputs into Diverse mRNA Expression Profiles. PLoS ONE 9(5): e95154
  31. Kandel ER, Dudai Y, Mayford MR (2014): The molecular and systems biology of memory. Cell. 157(1):163-186
  32. Schacher S, Hu J-Y (2014): The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learn Mem 21:128–134
  33. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  34. Kemenes G (2013): Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p252-264
  35. Benjamin P (2013): A Systems Analysis of Neural Networks Underlying Gastropod Learning and Memory. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p163-172
  36. Mozzachiodi R, Baxter DA, Byrne JH (2013): Comparison of Operant and Classical Conditioning of Feeding Behavior in Aplysia. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p183-193
  37. Hastings M, Farah CA, Sossin WS (2013): Roles of Protein Kinase C and Protein Kinase M in Aplysia Learning. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p221-235
  38. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  39. Weatherill DB, Dunn TW, McCamphill PK, Sossin WS (2013): Exploring mechanisms of synaptic plasticity using exogenous expression of proteins at the sensory-to-motor neuron synapse of Aplysia. Neuromethods, 81: 61-91
  40. Shi Z, Chen L, Li S, Chen S, Sun X, Sun L, Li Y, Zeng J, He Y, Liu X (2013): Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology (Berl). 230:245–260
  41. Bédécarrats A, Cornet C, Simmers J, Nargeot R (2013): Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem. 20(6):318-327
  42. Schultz W (2013): Updating dopamine reward signals. Curr Opin Neurobiol. 23(2): 229–238. doi:pii: S0959-4388(12)00186-9. 10.1016/j.conb.2012.11.012.
  43. Shields-Johnson ME, Hernandez JS, Torno C, Adams KM, Wainwright ML, Mozzachiodi R (2012): Effects of aversive stimuli beyond defensive neural circuits: Reduced excitability in an identified neuron critical for feeding in Aplysia. Learn Mem. 20(1):1-5
  44. Shi Z, Chen S, Chen L, Sun X, Song G, Wang Q, Chang Q, Li H, Li Y, Qu L, Liu X (2012): Evaluation of reward-relevant learning and memory behavior with operant conditioning task in rats. Acta Laboratorium Animalis Scientia Sinica, 20 (4): 9-15
  45. Gantt EE, Melling BS, Reber JS (2012): Mechanisms or metaphors? The emptiness of evolutionary psychological explanations. Theory Psychology 22(6): 823-841
  46. Hirayama K, Catanho M, Brown JW, Gillette R (2012): A core circuit module for cost/benefit decision. Front Neurosci. 6:123
  47. Soltoggio A, Stanley KO (2012): From modulated Hebbian plasticity to simple behavior learning through noise and weight saturation. Neural Netw. 34:28-41
  48. Shi Z, Sun X, Liu X, Chen S, Chang Q, Chen L, Song G, Li H. (2012): Evaluation of an Aß(1-40)-induced cognitive deficit in rat using a reward-directed instrumental learning task. Behav Brain Res. 234(2):323-333
  49. Harris CA, Buckley CL, Nowotny T, Passaro PA, Seth AK, Kemenes G, O’Shea M (2012): Multi-neuronal refractory period adapts centrally generated behaviour to reward. PLoS One. 7(7):e42493
  50. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  51. Susswein AJ, Chiel HJ. (2012): Nitric oxide as a regulator of behavior: New ideas from Aplysia feeding. Prog Neurobiol. 97(3):304-317
  52. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  53. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  54. Acheampong A, Kelly K, Shields-Johnson M, Hajovsky J, Wainwright M, Mozzachiodi R (2012): Rapid and persistent suppression of feeding behavior induced by sensitization training in Aplysia. Learn Mem. 19(4):159-163
  55. Cheu EY, Quek C, Ng SK (2012): ARPOP: An Appetitive Reward-Based Pseudo-Outer-Product Neural Fuzzy Inference System Inspired From the Operant Conditioning of Feeding Behavior in Aplysia. IEEE Transactions on Neural Networks and Learning Systems, 23(2): 317 – 329
  56. Kappeler PM (2012): Entwicklung und Kontrolle des Verhaltens. In: Verhaltensbiologie, Springer Lehrbuch, DOI: 10.1007/978-3-642-20653-5
  57. Ponulak F, Kasinski A (2011): Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol Exp (Wars). 71(4):409-433
  58. Lorenzetti FD, Baxter DA, Byrne JH (2011): Classical conditioning analog enhanced acetylcholine responses but reduced excitability of an identified neuron. J Neurosci. 31(41):14789-14793.
  59. Miller N, Saada R, Markovich S, Hurwitz I, Susswein AJ. (2011): L-arginine via nitric oxide is an inhibitory feedback modulator of Aplysia feeding. J Neurophysiol. 105(4):1642-1650
  60. Cheu EY, Quek C, Ng SK (2010): Time Series Forecasting With Appetitive Reward-based Pseudo-Outer-Product Fuzzy Neural Network. The 2010 International Joint Conference on Neural Networks (IJCNN), doi: 10.1109/IJCNN.2010.5596738
  61. Guerra, LGGC, Silva, MTA (2010): Learning processes and the neural analysis of conditioning. Psych Neur. 3(2), doi: 10.3922/j.psns.2010.2.xxx
  62. Barron AB, Søvik E, Cornish JL (2010): The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci. 4:163
  63. Nargeot R, Simmers J (2010): Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci. 68(5): 803-816
  64. Pirger Z, László Z, Kemenes I, Tóth G, Reglodi D, Kemenes G (2010): A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate. J Neurosci. 30(41):13766-13773
  65. Wu JS, Vilim FS, Hatcher NG, Due MR, Sweedler JV, Weiss KR, Jing J. (2010): A Composite Modulatory Feedforward Loop Contributes to the Establishment of a Network State. J Neurophysiol. 2010 Feb 24. [Epub ahead of print]
  66. Mozzachiodi R, Byrne JH (2010): More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory. Trends Neurosci. 33 (1): 17-26
  67. Katzoff A, Miller N, Susswein AJ (2009): Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia. Learn Mem. 17(1):839-851
  68. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  69. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. (2009): Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415
  70. Kemenes G (2009): Learning and Memory: How Sea Slug Behaviors Become Compulsive. Curr Biol. 19(13):R515-R517
  71. Nargeot R, Le Bon-Jego M, Simmers J (2009): Cellular and network mechanisms of operant learning-induced compulsive behavior in Aplysia. Curr Biol. 19(12):975-984
  72. Dayan P, Huys QJ. (2009): Serotonin in Affective Control. Annu Rev Neurosci. 32: 95-126
  73. Martínez-Rubio C, Serrano GE, Miller MW (2009): Localization of biogenic amines in the foregut of Aplysia californica: catecholaminergic and serotonergic innervation. J Comp Neurol. 514(4):329-342
  74. Khan AM, Spencer GE (2009): Novel neural correlates of operant conditioning in normal and differentially reared Lymnaea. J Exp Biol. 212(Pt 7):922-933
  75. Kisch J, Haupt SS (2009): Side-specific operant conditioning of antennal movements in the honey bee. Behav Brain Res. 196(1):131-133
  76. Kappeler PM (2008): Verhaltensbiologie 2nd edition. Springer-Lehrbuch ISSN 0937-7433
  77. Soltoggio A (2008): Neuromodulation Increases Decision Speed in Dynamic Environments. In: Schlesinger, M., Berthouze, L., and Balkenius, C. (2008): Proceedings of the Eighth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Studies, 139.
  78. Lee YS, Bailey CH, Kandel ER, Kaang BK (2008): Transcriptional regulation of long-term memory in the marine snail Aplysia. Mol Brain. 1(1):3.
  79. Proekt A, Wong J, Zhurov Y, Kozlova N, Weiss KR, Brezina V. (2008): Predicting adaptive behavior in the environment from central nervous system dynamics. PLoS ONE. 3(11): e3678
  80. Mozzachiodi R, Lorenzetti FD, Baxter DA, Byrne JH. (2008): Changes in neuronal excitability serve as a mechanism of long-term memory for operant conditioning. Nat Neurosci. 11: 1146-1148
  81. Lorenzetti FD, Byrne JH (2008): Cellular mechnaisms of associative learning in Aplysia. In: Byrne, JH (ed.) Concise Learning and Memory: The Editor’s Selection. Academic Press, London San Diego
  82. Lorenzetti FD, Baxter DA, Byrne JH (2008): Molecular Mechanisms Underlying a Cellular Analog of Operant Reward Learning. Neuron 59: 815-828
  83. Soltoggio A, Bullinaria JA, Mattiussi C, Dürr P, Floreano D (2008): Evolutionary Advantages of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. Proc 11th Int. Conf. Art. Life (Alife XI), 2008. LIS-CONF-2008-012
  84. Levitan D, Lyons LC, Perelman A, Green CL, Motro B, Eskin A, Susswein AJ. (2008): Training with inedible food in Aplysia causes expression of C/EBP in the buccal but not cerebral ganglion. Learn Mem. 15(6):412-416.
  85. Benjamin PR, Kemenes G, Kemenes I. (2008): Non-synaptic neuronal mechanisms of learning and memory in gastropod molluscs. Front Biosci. 13: 4051-4057
  86. Barandiaran X, Moreno A (2008): On the nature of neural information: A critique of the received view 50 years later. Neurocomp. 71 (4-6): 681-692
  87. Hurwitz I, Ophir A, Korngreen A, Koester J, Susswein AJ. (2008): Currents contributing to decision making in neurons b31/b32 of Aplysia. J Neurophysiol. 99(2): 814-830
  88. Nikitin ES, Korshunova TA, Zakharov IS, Balaban PM. (2008): Olfactory experience modifies the effect of odour on feeding behaviour in a goal-related manner. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 194(1):19-26
  89. Barandiaran X, Moreno A (2008): Adaptivity: From Metabolism to Behavior. Adapt Behav. 16 (5): 325-344
  90. Glanzman DL (2007): Simple Minds: The Neurobiology of Invertebrate Learning and Memory. Chapter 14 in: North G (ed.) Invertebrate Neurobiology, p. 347-380. Cold Spring Harbor Press.
  91. Alcaro A, Huber R, Panksepp J. (2007): Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev. 56(2): 283-321.
  92. Philips GT, Tzvetkova EI, Carew TJ. (2007): Transient mitogen-activated protein kinase activation is confined to a narrow temporal window required for the induction of two-trial long-term memory in Aplysia. J Neurosci. 27(50):13701-13705.
  93. Martin GG, Oakes CT, Tousignant HR, Crabtree H, Yamakawa R (2007): Structure and function of haemocytes in two marine gastropods, Megathura crenulata and Aplysia californica. J. Mollusc. Stud. 73: 355-365
  94. Rumbaugh DM, King JE, Beran MJ, Washburn DA, Gould K (2007): A Salience Theory of Learning and Behavior: With Perspectives on Neurobiology and Cognition. Int. J. Primatol. 28(5): 973-996
  95. Nargeot R, Petrissans C, Simmers J. (2007): Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. J Neurosci. 27(30): 8059-8070
  96. Serrano GE, Martinez-Rubio C, Miller MW. (2007): Endogenous motor neuron properties contribute to a program-specific phase of activity in the multifunctional feeding central pattern generator of Aplysia. J Neurophysiol. 98(1):29-42
  97. Silva MTA, Goncalves FL, Garcia-Mijares M (2007): Neural events in the reinforcement contingency. Behav. Anal. 30(1): 17-30
  98. Daucé E (2007): Learning and control with large dynamic neural networks. Eur. Phys. J. Special Topics 142, 123–161
  99. Shaywitz SE, Shaywitz BA (2007): What neuroscience really tells us about reading instructions – A response to Judy Willis. Educational Leadership 64 (5): 74-76
  100. Willis J (2007): The gully in the “brain glitch” theory. Educational Leadership 64 (5): 68-73
  101. Cataldo E, Brunelli M, Av-Ron E, Cai Y, Baxter DA (2007): Geometry, activity-dependent mechanisms, membrane kinetics and channel density distribution interplay in single neuron plasticity: a computational study. In: Mondaini RP, Dilão R (eds.) Biomat 2007: International Symposium on Mathematical and Computational Biology. 154-178
  102. Kappeler PM (2006): Verhaltensbiologie, Springer-Lehrbuch, ISBN: 978-3-540-24056-3
  103. Rossini L, Rossini P (2006): Pharmacotherapeutic receptor specificities and selectivity classes, and plecebo effects: a perspective. Pharmacologyonline 2: 206-235
  104. Cataldo E, Byrne JH, Baxter DA (2006): Computational model of a central pattern generator. Computational Methods in Systems Biology, Proceedings Lecture Notes in Computer Science 4210: 242-256
  105. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  106. Giurfa, M (2006): Associative Learning: The Instructive Function of Biogenic Amines. Curr. Biol. 16(20): R892-R895
  107. Paolucci, M; Conte, R; Di Tosto, G (2006): A model of social organization and the evolution of food sharing in vampire bats. Adapt. Behav. 14 (3): 223-238
  108. Katzoff A, Ben-Gedalya T, Hurwitz I, Miller N, Susswein YZ, Susswein AJ. (2006): Nitric oxide signals that aplysia have attempted to eat, a necessary component of memory formation after learning that food is inedible. J Neurophysiol. 96(3):1247-1257
  109. Diaz-Rios M, Miller MW. (2006): Target-specific regulation of synaptic efficacy in the feeding central pattern generator of Aplysia: potential substrates for behavioral plasticity? Biol Bull. 210(3):215-29.
  110. Kemenes I, Straub VA, Nikitin ES, Staras K, O’shea M, Kemenes G, Benjamin PR. (2006): Role of delayed nonsynaptic neuronal plasticity in long-term associative memory. Curr Biol. 16(13):1269-1279
  111. Cheng J, Feenstra MG. (2006): Individual differences in dopamine efflux in nucleus accumbens shell and core during instrumental learning. Learn. Mem. 13(2):168-177
  112. Fioravante D, Smolen PD, Byrne JH. (2006): The 5-HT- and FMRFa-activated signaling pathways interact at the level of the Erk MAPK cascade: potential inhibitory constraints on memory formation. Neurosci Lett. 396(3):235-240
  113. Lowe MR, Spencer GE. (2006): Perturbation of the activity of a single identified neuron affects long-term memory formation in a molluscan semi-intact preparation. J Exp Biol. 209(Pt 4):711-721
  114. Shirinyan D, Teshiba T, Taylor K, O’neill P, Lee SC, Krasne FB. (2006): Rostral Ganglia are required for induction but not expression of crayfish escape reflex habituation: role of higher centers in reprogramming low-level circuits. J Neurophysiol. 95(4):2721-2724
  115. Hawkins RD, Clark, GA, Kandel, ER (2006): Operant Conditioning of Gill Withdrawal in Aplysia. J. Neurosci. 26(9):2443-2448
  116. Teague CL (2006): Perceptions of the Silent Majority: Projects as Assessments in a Brain Compatible Curriculum. ED thesis, University Of Cincinnati, USA
  117. Barbas D, Zappulla JP, Angers S, Bouvier M, Mohamed HA, Byrne JH, Castellucci VF, Desgroseillers L. (2006): An aplysia dopamine-like receptor: molecular and functional characterization. J Neurochem. 96(2):414-427
  118. Lorenzetti FD, Mozzachiodi R, Baxter DA, Byrne JH. (2006): Classical and operant conditioning differentially modify the intrinsic properties of an identified neuron. Nat Neurosci. 9(1):17-19.
  119. Silva MTA, Guerra LGGC (2005): Behavioral Models in Neuroscience: Braz J Behav Anal. 1(2): 167-185
  120. Douglas SJ, Dawson-Scully K, Sokolowski MB. (2005): The neurogenetics and evolution of food-related behaviour. Trends Neurosci. 28(12):644-652.
  121. Kristan WB Jr, Calabrese RL, Friesen WO. (2005): Neuronal control of leech behavior. Prog Neurobiol. 76(5): 279-327
  122. Kazdin AE (2005): Treatment for oppositional, aggressive and antisocial behavior n children and adolescents . Oxford University Press, UK
  123. Tobler PN, O’Doherty JP, Dolan RJ, Schultz W. (2005): Human neural learning depends on reward prediction errors in the blocking paradigm. J Neurophysiol. 95(1):301-310
  124. McComb C, Rosenegger D, Varshney N, Kwok HY, Lukowiak K. (2005): Operant conditioning of an in vitro CNS – pneumostome preparation of Lymnaea. Neurobiol Learn Mem. 84(1): 9-24.
  125. Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH (2005): Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: Blockade by a dopamine antagonist. Learn. Mem. 12: 216-220
  126. Frick A, Johnston D (2005): Plasticity of dendritic excitability. J Neurobiol. 64 (1): 100-115
  127. Diaz-Rios M, Miller MW.(2005): Rapid dopaminergic signaling by interneurons that contain markers for catecholamines and GABA in the feeding circuitry of Aplysia. J Neurophysiol. 93(4):2142-2156.
  128. Smith WB, Starck SR, Roberts RW, Schuman EM, (2005): Dopaminergic Stimulation of Local Protein Synthesis Enhances Surface Expression of GluR1 and Synaptic Transmission in Hippocampal Neurons. Neuron. 45(5):765-79
  129. Reich RR, Noll JA, Goldman MS. (2005): Cue patterns and alcohol expectancies: how slight differences in stimuli can measurably change cognition. Exp Clin Psychopharmacol. 13(1): 65-71.
  130. Cooper SJ (2005): Donald O. Hebb’s synapse and learning rule: a history and commentary. Neurosci Biobehav Rev. 28(8): 851-874.
  131. Dacher M (2005): Role des recepteurs nicotiniques dans differentes formes de memoire chez l’abeille Apis mellifera. Doctoral thesis, Université de Toulouse, Paul Sabatier, France
  132. Haupt, SH (2005): Das gustatorische System und antennales Lernen der Honigbiene (Apis mellifera L.). Doktoral thesis, TU Berlin, Germany.
  133. Shtonda BB (2004): Electrophysiological and behavioral mechanisms od Caenorhabditis elegans feeding. PhD dissertation, The University of Texas Southwestern Medical Center at Dallas.
  134. Schroeder T (2004): Three faces of desire. Oxford University Press, 213pp
  135. Friedel RO (2004): Dopamine dysfunction in borderline personality disorder: a hypothesis. Neuropsychopharm. 29(6): 1029-39.
  136. Grünewald B (2004): ionic bases of olfactory memory. Membrane currents and modulations of neurons within the honeybee olfactory pathway. Habilitation thesis, Freie Universität Berlin, Germany
  137. Kelley, AE (2004): Memory and addiction: Shared neural circuitry and molecular mechanisms. NEURON 44 (1): 161-179
  138. Zull JE (2004): The art of changing the brain. EDUCATIONAL LEADERSHIP 62 (1): 68-72
  139. Panksepp JB, Huber R (2004): Ethological analyses of crayfish behavior: a new invertebrate system for measuring the rewarding properties of psychostimulants. BEHAV. BRAIN RES. 153 (1): 171-180
  140. Leonard JL, Edstrom JP (2004):Parallel processing in an identified neural circuit: the Aplysia californica gill-withdrawal response model system. BIOL REV 79 (1): 1-59
  141. Cropper EC, Evans CG, Hurwitz I, Jing J, Proekt A, Romero A, Rosen SC (2004): Feeding neural networks in the mollusc Aplysia. NEUROSIGNALS 13 (1-2): 70-86
  142. Lorenzetti FD, Byrne JH (2004): Classical Conditioning and Operant Conditioning. In: Byrne JH (ed.) Learning and Memory, Macmillan Psychology Reference Series, Macmillan, New York
  143. Scholz RW, Binder CR (2003): The Paradigm of Human-Environment Systems (Working Paper, 37). Zürich: ETH Zürich, Umweltnatur- und Umweltsozialwissenschaften.
  144. Wickens JR, Reynolds JNJ, Hyland BI (2003): Neural mechanisms of reward-related motor learning. CURR OPIN NEUROBIOL 13 (6): 685-690
  145. Roberts AC, Glanzman DL (2003): Learning in Aplysia: looking at synaptic plasticity from both sides. TRENDS NEUROSCI 26 (12): 662-670
  146. Daoudal G, Debanne D (2003): Long-term plasticity of intrinsic excitability: Learning rules and mechanisms. LEARN MEM 10 (6): 456-465
  147. Mozzachiodi R, Lechner HA, Baxter DA, Byrne, JH (2003): In vitro analog of classical conditioning of feeding behavior in Aplysia. LEARN MEM 10 (6): 478-494
  148. Barbas D, DesGroseillers L, Castellucci VF, Carew TJ, Marinesco S (2003): Multiple serotonergic mechanisms contributing to sensitization in Aplysia: Evidence of diverse serotonin receptor subtypes. LEARN MEM 10 (5): 373-386
  149. Dembrow NC, Jing J, Proekt A, Romero A, Vilim FS, Cropper EC, Weiss KR (2003): A newly identified buccal interneuron initiates and modulates feeding motor programs in Aplysia. J NEUROPHYSIOL 90 (4): 2190-2204
  150. Johnson LR, Byrne JH (2003): Essential medical physiology. Academic Press, 1008pp
  151. Shaik S (2003): Chemistry – A central pillar of human culture. ANGEW CHEM INT EDIT 42 (28): 3208-3215
  152. Nargeot R (2003): Voltage-dependent switching of sensorimotor integration by a lobster central pattern generator. J NEUROSCI 23 (12): 4803-4808
  153. Jones NG, Kemenes I, Kemenes G, et al. (2003): A persistent cellular change in a single modulatory neuron contributes to associative long-term memory. CURR BIOL 13 (12): 1064-1069 JUN 17 2003
  154. Shaik S (2003): Die Chemie – eine zentrale Säule der menschlichen Kultur. Angew. Chem. 115, 3326–3333
  155. Schultz W (2002): “The authors tested the reinforcing effects of dopamine in an in vitro cellular model of…” Evaluation of: [Brembs B et al. Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science. 2002 May 31; 296(5573):1706-9; doi: 10.1126/science.1069434]. Faculty of 1000, 11 Jul 2002. F1000.com/1007610
  156. Menzel R (2002): “This paper analyses for the first time operant reward learning in the mollusc Aplysia at…” Evaluation of: [Brembs B et al. Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science. 2002 May 31; 296(5573):1706-9; doi: 10.1126/science.1069434]. Faculty of 1000, 11 Sep 2002. F1000.com/1007610
  157. Katzoff A, Ben-Gedalya T, and Susswein AJ 2002: Nitric Oxide is necessary for multiple memory processes after learning that a food is inedible in Aplysia. J NEUROSCI 22(21): 9581-9594
  158. Schultz W 2002: Getting formal with dopamine and reward. NEURON 36: 241-263
  159. Carew TJ 2002: Neurobiology – Understanding the consequences. NATURE 417: 803-806
  160. Rankin CH 2002: Neuroscience: A bite to remember. SCIENCE 296 (5573): 1624-1625
Baier A.; Wittek B. and Brembs B. (2002): Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205 (9): 1233–1240.
Citations:
  1. Buhl J, Rogers S (2016): Mechanisms underpinning aggregation and collective movement by insect groups. Curr Opin Insect Sci. 15, 125–130. doi: 10.1016/j.cois.2016.04.011
  2. Hoopfer ED (2016): Neural control of aggression in Drosophila. Curr Opin Neurobiol. 38:109-118. doi: 10.1016/j.conb.2016.04.007
  3. Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ (2016): P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. Elife. 4. pii: e11346. doi: 10.7554/eLife.11346
  4. Hong KB, Park Y, Suh HJ (2016): Sleep-promoting effects of a GABA/5-HTP mixture: Behavioral changes and neuromodulation in an invertebrate model. Life Sci. 150: 42-49. doi: 10.1016/j.lfs.2016.02.086
  5. Schneider J, Atallah J, Levine JD (2016): Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev Camb Philos Soc. doi: 10.1111/brv.12267
  6. Kravitz EA, Fernandez Mde L (2015): Aggression in Drosophila. Behav Neurosci. 129(5):549-63. doi: 10.1037/bne0000089
  7. Peterson EK, Carrico P (2015): Laboratory exercise in behavioral genetics using team-based learning strategies, Bioscene 41(2): 32-39.
  8. Zwarts L, Vanden Broeck L, Cappuyns E, Ayroles JF, Magwire MM, Vulsteke V, Clements J, Mackay TF, Callaerts P (2015): The genetic basis of natural variation in mushroom body size in Drosophila melanogaster. Nat Commun. 6:10115, DOI: 10.1038/ncomms10115
  9. Maximino C, Silva RX, da Silva Sde N, Rodrigues Ldo S, Barbosa H, de Carvalho TS, Leão LK, Lima MG, Oliveira KR, Herculano AM (2015): Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci. 9: DOI: 10.3389/fnbeh.2015.00233
  10. Schneider J (2015): Group Dynamics in Drosophila melanogaster, PhD dissertation, University of Toronto
  11. Newland PL, Al Ghamdi MS, Sharkh S, Aonuma H, Jackson CW (2015): Exposure to static electric fields leads to changes in biogenic amine levels in the brains of Drosophila. Proc Biol Sci. 282: 20151198, DOI: 10.1098/rspb.2015.1198
  12. Bubak AN, Rieger NS, Watt MJ, Renner KJ, Swallow JG (2015): David vs. Goliath: Serotonin modulates opponent perception between smaller and larger rivals. Behav Brain Res 292: 521–527, DOI: 10.1016/j.bbr.2015.07.028
  13. Shorter J, Couch C, Huang W, Carbone MA, Peiffer J, Anholt RR, Mackay TF (2015): Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior . Proc Natl Acad Sci U S A. 112: E3555–E3563, DOI: 10.1073/pnas.1510104112
  14. Rohrscheib CE, Bondy E, Josh P, Riegler M, Eyles D, van Swinderen B, Weible MW 2nd, Brownlie JC (2015): Wolbachia Influences the Production of Octopamine and Affects Drosophila Male Aggression. Appl Environ Microbiol. 81(14): 4573–4580, DOI: 10.1128/AEM.00573-15
  15. Haynes PR, Christmann BL, Griffith LC (2015): A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 4, DOI: 10.7554/eLife.03868
  16. Benelli G (2015): Should I fight or should I flight? How studying insect aggression can help integrated pest management. Pest Manag Sci 71: 885–892, DOI: 10.1002/ps.3974
  17. Rillich J, Stevenson PA (2015): Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Front. Behav. Neurosci., 9, DOI: 10.3389/fnbeh.2015.00095
  18. Ostrowski D, Kahsai L, Kramer EF, Knutson P, Zars T (2015) Place memory retention in Drosophila. Neurobiol Learn Mem 123: 217–224. DOI: 10.1016/j.nlm.2015.06.015
  19. Ostrowski D, Zars T (2014): Place memory, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 125-134. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511920585.007
  20. Ruiz-Rubio M, Calahorro F, Gámez-del-Estal MM (2014): Invertebrate Models of Synaptic Transmission in Autism Spectrum Disorders. Organism Models of Autism Spectrum Disorders IN: Neuromethods 100: pp 157-182 DOI: 10.1007/978-1-4939-2250-5_6
  21. Bubak AN, Grace JL, Watt MJ, Renner KJ, Swallow JG (2014): Neurochemistry as a bridge between morphology and behavior: Perspectives on aggression in insects, Curr Zool 60(6): 778–790
  22. Jezzini SH, Reyes-Colón D, Sosa MA (2014): Characterization of a Prawn OA/TA Receptor in Xenopus Oocytes Suggests Functional Selectivity between Octopamine and Tyramine. PLoS ONE, 9 DOI: 10.1371/journal.pone.0111314
  23. Yapici N, Zimmer M, Domingos AI (2014): Cellular and molecular basis of decision-making. EMBO Rep 15: 1023–1035. DOI: 10.15252/embr.201438993
  24. Goergen P (2014): The Molecular Mechanism of Aggression and Feeding Behaviour in Drsophila melanogaster. PhD dissertation, Uppsala Universitet, ISBN: 978-91-554-8985-4
  25. Luo J, Lushchak OV, Goergen P, Williams MJ, Nässel DR (2014): Drosophila Insulin-Producing Cells Are Differentially Modulated by Serotonin and Octopamine Receptors and Affect Social Behavior. PLoS ONE 9, e99732. DOI: 10.1371/journal.pone.0099732
  26. Penick CA, Brent CS, Dolezal K, Liebig J (2014): Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant Harpegnathos saltator. J Exp Biol 217: 1496–1503. DOI: 10.1242/jeb.098301
  27. Selcho M, Pauls D, Huser A, Stocker RF, Thum AS (2014): Characterization of the octopaminergic and tyraminergic neurons in the central brain of Drosophila larvae . J Comp Neurol 522: 3485–3500. DOI:10.1002/cne.23616
  28. Moore D, Paquette C, Shropshire JD, Seier E, Joplin KH (2014): Extensive reorganization of behavior accompanies ontogeny of aggression in male flesh flies. PLoS One. 9(4):e93196
  29. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, González CR, Eyjólfsdóttir EA, Perona P, Anderson DJ (2014) Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila. Cell 156:221–235
  30. Strauss R (2014): Neurobiological Models of the Central Complex and the Mushroom Bodies. In: Arena P, Patane L (Eds.): Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Springer-Verlag, ISBN 978-3-319-02362-5
  31. Briffa M, Hardy ICW, Mowles SL (2013): Prospects for animal contests. In: Ian C. W. Hardy and Mark Briffa (eds.) Animal Contests. pp. 335-341. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9781139051248.018
  32. Williams MJ, Goergen P, Rajendran J, Klockars A, Kasagiannis A, Fredriksson R, Schiöth HB (2013): Regulation of Aggression by Obesity-Linked Genes TfAP-2 and Twz Through Octopamine Signaling in Drosophila. Genetics 196: 349–362. DOI: 10.1534/genetics.113.158402
  33. Blenau W, Thamm M, Baumann A (2013): Serotonin in insects: Distribution, biosynthesis, uptake, inactivation, receptors, functions, and implications for human health. In: F.S. Hall (ed.). Serotonin: Biosynthesis, Regulation and Health Implications, NOVA Science Publishers, 1-26. ISBN: 9781624176364
  34. Herberholz J (2013): Serotonergic modulation of aggression. In: F.S. Hall (ed.). Serotonin: Biosynthesis, Regulation and Health Implications, NOVA Science Publishers, 27-51. ISBN: 9781624176364
  35. Szczuka A, Korczynska J, Wnuk A, Symonowicz B, Szwacka AG, Mazurkiewicz P, Kostowski W, Godzinska EJ (2013): The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol Exp (Wars). 73(4):495-520
  36. Klowden MJ (2013): Behavioral Systems. In: Physiological Systems in Insects, 696p, Elsevier, ISBN-13: 978-0124158191
  37. Kamhi JF, Traniello JFA (2013): Biogenic Amines and Collective Organization in a Superorganism: Neuromodulation of Social Behavior in Ants. Brain Behav Evol 82:220–236
  38. Williams MJ, Goergen P, Rajendran J, Klockars A, Kasagiannis A, Fredriksson R, Schiöth HB (2014): Regulation of Aggression by Obesity-Linked Genes TfAP-2 and Twz Through Octopamine Signaling in Drosophila. Genetics 196: 349–362 DOI: 10.1534/genetics.113.158402
  39. Bubak AN, Swallow JG, Renner KJ (2013): Whole Brain Monoamine Detection and Manipulation in a Stalk-eyed Fly. J Neurosci Methods. 219(1):124-130
  40. Donnelly JL, Clark CM, Leifer AM, Pirri JK, Haburcak M, et al. (2013): Monoaminergic Orchestration of Motor Programs in a Complex C. elegans Behavior. PLoS Biol 11(4): e1001529. doi:10.1371/journal.pbio.1001529
  41. van Alphen B, van Swinderen B (2013): Drosophila strategies to study psychiatric disorders. Brain Res Bull. 92:1-11
  42. Stevenson PA, Schildberger K (2013): Mechanisms of experience dependent control of aggression in crickets. Curr Opin Neurobiol. 23(3): 318-323
  43. Huang Q, Sun P, Zhou X, Lei C (2012): Characterization of Head Transcriptome and Analysis of Gene Expression Involved in Caste Differentiation and Aggression in Odontotermes formosanus (Shiraki). PLoS One. 7(11):e50383
  44. Neckameyer WS, Argue KJ (2012): Comparative Approaches to the Study of Physiology: Drosophila as a Physiologic Tool. Am J Physiol Regul Integr Comp Physiol. 304(3):R177-188
  45. Zwarts L, Clements J, Callaerts P (2012): Deciphering the Adult Brain: From Neuroanatomy to Behavior. In: Hassan BA (ed.):The Making and Un-Making of Neuronal Circuits in Drosophila. Neuromethods 69, pp 3-48 ISBN 978-1-61779-829-0
  46. Stevenson PA, Rillich J (2012): The decision to fight or flee – insights into underlying mechanism in crickets. Front Neurosci. 6:118
  47. Zwarts L, Clements J, Callaerts P (2012): Deciphering the Adult Brain: From Neuroanatomy to Behavior. Neuromethods, 69(1): 3-48, DOI: 10.1007/978-1-61779-830-6_1
  48. Selcho M, Pauls D, Jundi BE, Stocker RF, Thum AS (2012): The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol. 2012 May 24. doi: 10.1002/cne.23152
  49. Zwarts L, Versteven M, Callaerts P (2012): Genetics and neurobiology of aggression in Drosophila. Fly (Austin). 6(1):35-48
  50. Cossío-Bayúgar R, Miranda-Miranda E, Narváez Padilla V, Olvera-Valencia F, Reynaud E (2012): Perturbation of tyraminergic/octopaminergic function inhibits oviposition in the cattle tick Rhipicephalus (Boophilus) microplus. J Insect Physiol. 58(5):628-633
  51. Zwarts L, Magwire MM, Carbone MA, Versteven M, Herteleer L, Anholt RR, Callaerts P, Mackay TF (2011): Complex genetic architecture of Drosophila aggressive behavior. Proc Natl Acad Sci U S A. 108(41):17070-17075
  52. Brooks ES, Greer CL, Romero-Calderón R, Serway CN, Grygoruk A, Haimovitz JM, Nguyen BT, Najibi R, Tabone CJ, Steven de Belle J, Krantz DE (2011): A Putative Vesicular Transporter Expressed in Drosophila Mushroom Bodies that Mediates Sexual Behavior May Define a Neurotransmitter System. Neuron. 72(2):316-329.
  53. Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E. (2011): Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes. 2(3):190-192
  54. Pflüger HJ, Duch C (2011): Dynamic Neural Control of Insect Muscle Metabolism Related to Motor Behavior. Physiology 26:293-303
  55. Jonsson T, Kravitz EA, Heinrich R (2011): Sound production during agonistic behavior of male Drosophila melanogaster. Fly (Austin) 5(1):29-38
  56. Strauss R, Berg C (2010): The Central Control of Oriented Locomotion in Insects – Towards a Neurobiological Model. The 2010 International Joint Conference on Neural Networks (IJCNN), doi: 10.1109/IJCNN.2010.5596461
  57. Bolduc FV, Valente D, Nguyen AT, Mitra PP, Tully T (2010): An assay for social interaction in Drosophila fragile X mutants. Fly (Austin) 4(3).
  58. Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger HJ, Blenau W, Broeck JV (2010): The role of octopamine in locusts and other arthropods. J Insect Physiol. 56(8):854-867
  59. Börner J, Duch C (2010): An average shape standard atlas for the adult Drosophila ventral nerve cord. J comp. Neurol. 518(13): 2437-2455
  60. Wang L, Anderson DJ (2010): Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463(7278):227-231
  61. Ueda A, Wu CF (2009): Effects of social isolation on neuromuscular excitability and aggressive behaviors in Drosophila: altered responses by Hk and gsts1, two mutations implicated in redox regulation. J. Neurogenet. 23(4):378-294
  62. Edwards AC, Ayroles JF, Stone EA, Carbone MA, Lyman RF, Mackay TF (2009): A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biol. 10(7): R76
  63. Avanesian A, Semnani S, Jafari M (2009): Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions? Drug Discovery Today 14(15-16): 761-766
  64. Cholewa J, Pflüger HJ (2009): Descending unpaired median neurons with bilaterally symmetrical axons in the suboesophageal ganglion of Manduca sexta larvae. Zoology 112(4): 251-262
  65. Pain SP (2009): Signs of anger: Representation of agonistic behaviour in invertebrate cognition. Biosemiotics 2(2): 181-191
  66. Edwards A, Mackay TF (2009): Quantitative Trait Loci for Aggressive Behavior in Drosophila melanogaster. Genetics. 182(3): 889-897
  67. Edwards AC, Zwarts L, Yamamoto A, Callaerts P, Mackay TF (2009): Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol. 7(1):29
  68. Kim YK (2009): Sexual Selection and Aggressive Behavior in Drosophila. In: Kim YK (ed.) Handbook of Behavior Genetics. Springer ISBN 978-0-387-76726-0 (Print) 978-0-387-76727-7 (Online), 317-330
  69. Börner J (2009): Standardized Drosophila ventral nerve cord morphology: Atlas generation and atlas applications. PhD thesis, Freie Universität Berlin, Germany
  70. Kotsyuba, EP (2009): Effect of temperature stress on activities of nitric oxide synthase and tyrosine hydroxylase in the central nervous system of bivalve molluscs. Zh Evol Biokhim Fiziol. 45(1):122-129
  71. Serway CN, Kaufman RR, Strauss R, de Belle JS (2009): Mushroom bodies enhance initial motor activity in Drosophila. J Neurogenet. 23(1):173-184
  72. Iliadi KG (2009): The genetic basis of emotional behavior: has the time come for a Drosophila model? J Neurogenet. 23(1):136-146
  73. Vierk R, Pflueger HJ, Duch C (2009): Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 195(3): 265-277
  74. Johnson O, Becnel J, Nichols CD (2009): Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience 158(4): 1292-1300
  75. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Taniguchi T, Agata K. (2008): Characterization of tyramine beta-hydroxylase in planarian Dugesia japonica: Cloning and expression. Neurochem Int. 53(6-8):184-192
  76. Paquette C, Joplin KH, Seier E, Peyton JT, Moore D (2008): Sex-specific differences in spatial behaviour in the flesh fly Sarcophaga crassipalpis. Physiol. Entomol. 33 (4): 382-388
  77. Potter CJ, Luo L (2008): Octopamine fuels fighting flies. Nat Neurosci. 11: 989-990
  78. Zhou C, Rao Y, Rao Y. (2008): A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci. 11: 1059-1067
  79. Paquette C (2008): Gender-Specific Differences in Spatial Behavior of the Flesh Fly, Sarcophaga crassipalpis. Master’s thesis, East Tennessee State University. USA
  80. Cabral LG, Foley BR, Nuzhdin SV (2008): Does Sex Trade with Violence among Genotypes in Drosophila melanogaster? PLoS ONE 3(4): e1986
  81. Wang L, Dankert H, Perona P, Anderson DJ (2008): A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci USA. 105(15): 5657-5663
  82. Dierick HA. (2008): Fly fighting: octopamine modulates aggression. Curr Biol. 18(4):R161-163
  83. Hoyer SC, Eckart A, Herrel A, Zars T, Fischer SA, Hardie SL, Heisenberg M. (2008): Octopamine in male aggression of Drosophila. Curr Biol. 18(3):159-167.
  84. Dierick HA. (2007): A method for quantifying aggression in male Drosophila melanogaster. Nat Protoc. 2(11):2712-2718.
  85. Chan YB, Kravitz EA (2007): Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster. Proc Natl Acad Sci USA. 104(49): 19577-19582
  86. Simon AF, Krantz DE. (2007): Road rage and fruit flies. Nat Genet. 39(5): 581-582
  87. Kaun KR, Hendel T, Gerber B, Sokolowski MB. (2007): Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem. 14(5): 342-349
  88. Dierick HA, Greenspan RJ. (2007): Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet. 39(5):678-682.
  89. Certel SJ, Savella MG, Schlegel DC, Kravitz EA. (2007): Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci USA. 104(11): 4706-4711.
  90. Robin C, Daborn PJ, Hoffmann AA. (2006): Fighting fly genes. Trends Genet. 23(2):51-54
  91. Scott MP. (2006): The role of juvenile hormone in competition and cooperation by burying beetles. J Insect Physiol. 52(10):1005-1011
  92. Edwards AC, Rollmann SM, Morgan TJ, Mackay TFC (2006): Quantitative Genomics of Aggressive Behavior in Drosophila melanogaster. PLoS Genet 2(9): e154
  93. Beaver KM (2006): The Intersection of Genes, the Environment, and Crime and Delinquency: A Longitudinal Study of Offending. Doctoral thesis, University of Cincinnati, Ohio, USA.
  94. Dierick HA, Greenspan RJ. (2006): Molecular analysis of flies selected for aggressive behavior. Nat Genet. 38(9):1023-1031
  95. Yuan Q, Joiner WJ, Sehgal A. (2006): A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol. 16(11):1051-1062
  96. Gonzales E, Hamrick JL, Smouse PE, Dyer RJ. (2006): Pollen-mediated gene dispersal within continuous and fragmented populations of a forest understorey species, Trillium cuneatum. Mol Ecol. 15(8):2047-2058.
  97. Fox LE, Soll DR, Wu CF. (2006): Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine Beta hydroxlyase mutation. J Neurosci. 26(5):1486-1498.
  98. Sinakevitch I, Strausfeld NJ. (2006): Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol. 494(3):460-475
  99. Hoyer SC, Liebig J, Rossler W (2005): Biogenic amines in the ponerine ant Harpegnathos saltator: serotonin and dopamine immunoreactivity in the brain. Arth. Struct. Dev. 34(4): 429-440
  100. Carbone MA, Llopart A, Deangelis M, Coyne JA, Mackay TF. (2005): Quantitative Trait Loci Affecting the Difference in Pigmentation Between Drosophila yakuba and D. santomea.Genetics. 171(1): 211-325.
  101. Blenau W, Baumann A. (2005): Molecular characterization of the ebony gene from the American cockroach, Periplaneta americana. Arch Insect Biochem Physiol. 59(3):184-95.
  102. Svetec N, Ferveur JF. (2005): Social experience and pheromonal perception can change male-male interactions in Drosophila melanogaster. J Exp Biol. 208(Pt 5):891-8.
  103. Stevenson PA, Dyakonova V, Rillich J, Schildberger K. (2005): Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci. 25(6):1431-1441.
  104. Pagé MP, Cooper RL (2004): Novelty stress and reproductive state alters responsiveness to sensory stimuli and 5-HT neuromodulation in crayfish. Comp Biochem Physiol A Mol Integr Physiol. 139(2):149-158
  105. Fox LE, Ueda A, Berke B, Peng IF, Wu CF (2004): Movement disorders in Drosophila mutants of potassium channels and biogenic amine pathways . In: Animal models of movement disorders (LeDoux MS, ed.) , pp. 487–504. San Diego: Academic/Elsevier.
  106. Zhang B, Lu H, Xi W, Zhou X, Xu S, Zhang K, Jiang J, Li Y, Guo A. (2004): Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci Lett. 371(2-3):190-195.
  107. Banerjee S, Lee J, Venkatesh K, Wu CF, Hasan G (2004): Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila. J. NEUROSCI. 24 (36): 7869-7878
  108. Ye Y, Xi W, Peng Y, Wang Y, Guo A. (2004): Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm. Eur J Neurosci. 20 (4):1001-1007.
  109. Knaden M, Wehner R (2004): Path integration in desert ants controls aggressiveness. SCIENCE 305 (5680): 60-60
  110. Park DK, Han M, Kim YC, Han KA, Taghert PH (2004): Ap-let neurons – a peptidergic circuit potentially controlling ecdysial behavior in Drosophila. DEV BIOL 269 (1): 95-108
  111. Saraswati S, Fox LE, Soll DR, Wu CF (2004): Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J NEUROBIOL 58 (4): 425-441
  112. Dasari S, Cooper RL (2004): Modulation of sensory-CNS-motor circuits by serotonin, octopamine, and dopamine in semi-intact Drosophila larva. NEUROSCI RES 48 (2): 221-227
  113. Libersat F, Pflueger HJ (2004): Monoamines and the orchestration of behavior. BIOSCIENCE 54 (1): 17-25
  114. Kravitz EA, Huber R (2003): Aggression in invertebrates. CURR OPIN NEUROBIOL 13 (6): 736-743
  115. Monastirioti M (2003): Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. DEV BIOL 264 (1): 38-49
  116. Manev H, Dimitrijevic N, Dzitoyeva S (2003): Techniques: Fruit flies as models for neuropharmacological research. TRENDS PHARMACOLSCI 24 (1): 41-43
  117. Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA (2002): Fighting fruit flies: A model system for the study of aggression. PROC NATL ACAD SCI USA 99 (8): 5664-5668
Brembs B.; Wilkinson E.; Reyes F.; Baxter D.A. and Byrne J.H. (2001): Operant conditioning of feeding behavior in Aplysia using self-stimulation. Soc. Neurosci. Abstr. 644.19.
Citations:
  1. Susswein AJ, Hurwitz I, Thorne R, Byrne JH, Baxter DA (2002): Mechanisms underlying fictive feeding in Aplysia: Coupling between a large neuron with plateau potentials activity and a spiking neuron. J. Neurophys. 87 (5): 2307-2323.
Brembs B. (2001): Hamilton’s Theory. In: Brenner, S. and Miller, J. (eds) Encyclopedia of Genetics, Academic Press, London, New York; pp. 906-910.
Citations:
  1. Barr A, Dekker M, Fafchamps M (2015): The Formation of Community-Based Organizations: An Analysis of a Quasi-Experiment in Zimbabwe. World Development, 66: 131–153, DOI: 10.1016/j.worlddev.2014.08.003
  2. Tokumitsu M, Ishida Y (2012): A systemic payoff in a self-repairing network. Artif Life Robotics 16:563–566
  3. Tokumitsu M, Ishida Y (2011): An Adaptive Control Technique for a Connection Weight of Agents in a Self-repairing Network. Self-Organizing Systems. In: Lecture Notes in Computer Science 6557, 44-55
  4. Bar A, Dekker M, Fafchamps M (2010): The formation of community based organizations in sub-Saharan Africa: An analysis of a quasi-experiment. The Centre for the Study of African Economies Working Paper Series: WPS/2010/21
  5. Fafchamps M (2009): Household Separation and Child Well-Being. The Centre for the Study of African Economies Working Paper Series: WPS/2009-12. The Berkeley Electronic Press (bepress).
  6. Bar A, Dekker M, Fafchamps M (2008): Risk Sharing Relations and Enforcement Mechanisms. The Centre for the Study of African Economies Working Paper Series: Paper 294. The Berkeley Electronic Press (bepress).
  7. Fokker J, de Ridder H, Westendorp P, Pouwelse J (2007): Psychological Backgrounds for Inducing Cooperation in Peer-to-Peer Television. Lect. Notes Comp. Sci. 4471, 136-145
  8. Fafchamps M, Wahba J (2006): Child labor, urban proximity, and household composition. J. dev. Econ. 79(2): 374-397.
Heisenberg M.; Wolf R. and Brembs B. (2001): Flexibility in a single behavioral variable of Drosophila. Learn. Mem. 8:1-10.
Citations:
  1. Leung JC, Taylor-Kamall RW, Hilliker AJ, Rezai P (2015): Agar-polydimethylsiloxane devices for quantitative investigation of oviposition behaviour of adult Drosophila melanogaster. Biomicrofluidics, 9(3):034112, DOI: 10.1063/1.4922737
  2. Giurfa M (2015): Learning and cognition in insects. Wiley Interdisciplinary Reviews: Cognitive Science, 6(4): 383–395, DOI: 10.1002/wcs.1348
  3. Ghimire S, Kim MS (2015): Defensive Behavior against Noxious Heat Stimuli Is Declined with Aging Due to Decreased Pain-Associated Gene Expression in Drosophila. Biomol Ther (Seoul) 23: 290–295, DOI: 10.4062/biomolther.2014.147
  4. Avargués-Weber A, Lihoreau M, Isabel G, Giurfa M (2015): Information transfer beyond the waggle dance: observational learning in bees and flies. Front Ecol Evol, 3, DOI: 10.3389/fevo.2015.00024
  5. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511920585.007.
  6. Anholt RRH, Mackay TFC, Stone EA (2014): Systems Genetics of Behavior in Drosophila, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 217-230. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511920585.007.
  7. Guo C, Du Y, Yuan D, Li M, Gong H, Gong Z, Liu L (2014) A conditioned visual orientation requires the ellipsoid body in Drosophila. Learn Mem 22: 56–63, DOI: 10.1101/lm.036863.114
  8. Ros T, J Baars B, Lanius RA, Vuilleumier P (2014): Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci 8,1008. DOI: 10.3389/fnhum.2014.01008
  9. Moritz JM (2014): Animal suffering, evolution, and the origins of evil: toward a “free creatures” defense. Zygon 49: 348–380. DOI: 10.1111/zygo.12085
  10. Paparo GD, Dunjko V, Makmal A, Martin-Delgado MA, Briegel HJ (2014): Quantum speed-up for active learning agents. arXiv:1401.4997v1
  11. Dickinson MH (2014): Death Valley, Drosophila, and the Devonian Toolkit. Annu Rev Entomol. 59: 51–72
  12. Giurfa M, Menzel R (2013): Cognitive components of insect behavior. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p14-25
  13. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  14. Giurfa M (2013): Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5):285-294
  15. Zhang X, Ren Q, Guo A (2013): Parallel pathways for cross-modal memory retrieval in Drosophila. J Neurosci. 33(20):8784-8793
  16. Heisenberg, M. (2013): The Origin of Freedom in Animal Behaviour. 95–103 In: Suarez, Antoine; Adams, Peter (Eds.) Is Science Compatible with Free Will? Is Science Compatible with Free Will? Exploring Free Will and Consciousness in the Light of Quantum Physics and Neuroscience. Springer 312p ISBN 978-1-4614-5212-6
  17. Bekinschtein TA, Peeters M, Shalom D, Sigman M (2012): Sea slugs, subliminal pictures, and vegetative state patients: boundaries of consciousness in classical conditioning. Front Psychol. 2:337
  18. Giurfa M (2012): Social learning in insects: a higher-order capacity? Front Behav Neurosci. 6:57
  19. Iliadi KG, Knight D, Boulianne GL (2012): Healthy aging – insights from Drosophila. Front Physiol. 3:106
  20. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  21. Valente A, Huang KH, Portugues R, Engert F (2012): Ontogeny of classical and operant learning behaviors in zebrafish. Learn Mem. 19(4):170-177
  22. Giurfa M, Sandoz JC (2012): Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem. 19(2):54-66
  23. Bekinschtein TA, Peeters M, Shalom D, Sigman M (2011): Sea slugs, subliminal pictures, and vegetative state patients: boundaries of consciousness in classical conditioning. Front Psychol. 2:337
  24. Kahsai L, Zars T (2011): Learning and memory in Drosophila: behavior, genetics, and neural systems. Int Rev Neurobiol. 99:139-167
  25. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  26. Young JM, Wessnitzer J, Armstrong JD, Webb B (2011): Elemental and non-elemental olfactory learning in Drosophila, Neurobiol Learn Mem. doi: 10.1016/j.nlm.2011.06.009
  27. Sorribes A, Armendariz BG, Lopez-Pigozzi D, Murga C, de Polavieja GG (2011): The Origin of Behavioral Bursts in Decision-Making Circuitry. PLoS Comput Biol 7(6): e1002075
  28. Wu Z, Guo A (2011): A model study on the circuit mechanism underlying decision-making in Drosophila. Neural Netw. 24(4):333-344
  29. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  30. Schnaitmann C, Vogt K, Triphan T and Tanimoto H (2010): Appetitive and aversive visual learning in freely moving Drosophila. Front. Behav. Neurosci. 4:10. doi:10.3389/fnbeh.2010.00010
  31. Dunlap-Lehtilä AS (2009): Change and Reliability in the Evolution of Learning and Memory. PhD dissertation, University of Minnesota
  32. Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L. (2009): Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem. 16(5): 289-295
  33. Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang S (2009): Number-based visual generalisation in the honeybee. PLoS ONE. 4(1):e4263
  34. Iliadi KG (2009): The genetic basis of emotional behavior: has the time come for a Drosophila model? J Neurogenet. 23(1):136-146
  35. Menzel R (2009): Working memory in bees: also in flies? J Neurogenet. 23(1):92-99
  36. Pitman JL, Dasgupta S, Krashes MJ, Leung B, Perrat PN, Waddell S. (2009): There are many ways to train a fly. Fly (Austin). 3(1): 3-9
  37. Mustard JA, Edgar EA, Mazade RE, Wu C, Lillvis JL, Wright GA (2008): Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol Learn Mem. 90(4):633-643
  38. Xi W, Peng Y, Guo J, Ye Y, Zhang K, Yu F, Gu A (2008): Mushroom bodies modulate salience-based selective fixation behavior in Drosophila. Eur. J. Neurosci 27(6): 1441-1451
  39. Maimon G, Straw AD, Dickinson MH (2008): A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila. Curr. Biol. 18 (6): 464-470
  40. Isabel G, Comas D, Preat T (2007): From Molecule to Memory System: Genetic Analyses in Drosophila. In: Bontempi B, Silva AJ, Christen Y (eds.): Research and Perspectives in Neurosciences: Memories: Molecules and Circuits, 41-57. Springer Berlin Heidelberg
  41. Yurkovic A, Wang O, Basu AC, Kravitz EA. (2006): Learning and memory associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci U S A. 103(46):17519-17524
  42. Dupuy F, Sandoz JC, Giurfa M, Josens R (2006): Individual olfactory learning in Camponotus ants. Anim. Behav. 72: 1081-1091
  43. Zars M, Zars T. (2006): High and low temperatures have unequal reinforcing properties in Drosophila spatial learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 192(7):727-735.
  44. Katsov A, Clandinin TR. (2006): Insect vision: remembering the shape of things. Curr Biol. 16(10):R369-371.
  45. Guo J, Guo A. (2005): Crossmodal interactions between olfactory and visual learning in Drosophila. Science. 309(5732):307-310.
  46. Polavieja, GG (2005): Inteligencia en cerebros de un milímetro cúbico. Apuntes de Ciencia y Tecnología, N°16, septiembre de 2005, 28-36
  47. Manev H, Dimitrijevic N. (2005): Fruit flies for anti-pain drug discovery. Life Sci. 76(21):2403-2407.
  48. Zhang B, Lu H, Xi W, Zhou X, Xu S, Zhang K, Jiang J, Li Y, Guo A. (2004): Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci Lett. 371(2-3):190-195.
  49. Ye Y, Xi W, Peng Y, Wang Y, Guo A. (2004): Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm. Eur J Neurosci. 20(4):1001-1007.
  50. Tang SM, Wolf R, Xu SP, Heisenberg M (2004): Visual pattern recognition in Drosophila is invariant for retinal position. SCIENCE 305 (5686): 1020-1022
  51. Fentrop N (2003): Auswirkiungen eines defizits des neuronalen Zelladhäsionsmoleküls (NCAM) im Telencephalon auf Lernen, Ged?chtnis und Individualit?t bei einer gentechnisch veränderten Labormaus. PhD thesis, Universität Hamburg, Germany
  52. Schwärzel M (2003): Localizing engrams of olfactory memories in Drosophila. Subcellular organization of appetitive, aversive and extinguished memories? Dissertation, Julius-Maximilians-Universität Würzburg
  53. Siwicki KK, Ladewski L (2003): Associative learning and memory in Drosophila: beyond olfactory conditioning. BEHAV PROCESS 64 (2): 225-238
  54. Wang SP, Li Y, Feng CH, Guo AK (2003): Dissociation of visual associative and motor learning in Drosophila at the flight simulator. BEHAV PROCESS 64 (1): 57-70
  55. Wang SP, Li Y, Feng CH, Guo AK (2003): Behavioral modification in choice process of Drosophila. SCI CHINA SER C 46 (4):399-413
  56. Scherer S, Stocker RF, Gerber B (2003): Olfactory learning in individually assayed Drosophila larvae. Learn. Mem. 10(3): 217-225 MAY-JUN 2003
  57. Heisenberg M (2003) Mushroom Body Memoir: From maps to models. Nat Rev Neurosci 4: 266-275
  58. Schubert M, Lachnit H, Francucci S, Giurfa M (2002): Nonelementalvisual learning in honeybees. ANIM BEHAV 64: 175-184
  59. Wen A, Liu L (2002): Molecular mechanism of learning and memory in Drosophila. PROG BIOCHEM BIOPHYS 29 (5):670-673
  60. Tang SM, Guo A (2001): Choice behavior of Drosophila facing contradictory visual cues. Science 294 (5546):1543-1547
Brembs B. and Heisenberg M. (2001): Conditioning with compound stimuli in Drosophila at the flight simulator. J. Exp. Biol. 204 (16): 2849-2859.
Citations:
  1. Bostock E (2015): Megaselia scalaris (Diptera: Phoridae), a fly of forensic interest: advances in chronobiology and biology. PhD dissertation , University of Huddersfield.
  2. Avargués-Weber A, Lihoreau M, Isabel G, Giurfa M (2015): Information transfer beyond the waggle dance: observational learning in bees and flies. Front Ecol Evol, 3, DOI: 10.3389/fevo.2015.00024
  3. Terao K, Matsumoto Y, Mizunami M (2015): Critical evidence for the prediction error theory in associative learning. Sci. Rep., 5, 8929, DOI: 10.1038/srep08929
  4. Schubert M, Sandoz JC, Galizia G, Giurfa M (2015): Odourant dominance in olfactory mixture processing: what makes a strong odourant? Proc Biol Sci 282(1802). pii: 20142562, DOI: 10.1098/rspb.2014.2562
  5. Sanderson CE, Cook P, Hill PSM, Orozco BS, Abramson CI, Wells H (2013): Nectar quality perception by honey bees (Apis mellifera ligustica). J Comp Psychol. 127:341–351
  6. Heisenberg M (2013): Action Selection: The Brain as a Behavioral Organizer. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p9-13
  7. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  8. Matsumoto Y, Hirashima D, Mizunami M (2013): Analysis and modeling of neural processes underlying sensory preconditioning. Neurobiol Learn Mem. 101C:103-113
  9. Paulk A, Millard SS, van Swinderen B (2012): Vision in Drosophila: Seeing the World Through a Model’s Eyes. Annu Rev Entomol. 58:313–332
  10. Milinkeviciute G, Gentile C, Neely GG (2012): Drosophila as a tool for studying the conserved genetics of pain. Clin Genet. 82(4):359-366
  11. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  12. Young JM, Wessnitzer J, Armstrong JD, Webb B (2011): Elemental and non-elemental olfactory learning in Drosophila. Neurobiol Learn Mem. 96(2):339-352
  13. Cammaerts M-C, Rachidi Z, Beke S, Essaadi Y (2011): Use of olfactory and visual cues for orientation by the ant Myrmica ruginodis (Hymenoptera: Formicidae). Myrmecol. News 16: 45-55
  14. Tabone CJ, de Belle JS (2011): Second-order conditioning in Drosophila. Learn Mem.18(4): 250-253
  15. LaBrecque A (2010): Compound Conditioning in Honeybees: No Evidence for Overshadowing in Honeybee Classical Conditioning. Thesis, New College of Florida
  16. Abramson CI, Nolf SL, Mixson TA, Well H (2010): Can Honey Bees Learn the Removal of a Stimulus as a Conditioning Cue? Ethology 116(9): 843–854
  17. Guo AK, Zhang K, Peng YQ, Xi W (2010): Research progress on Drosophila visual cognition in China. SCIENCE CHINA-Life Sciences 53 (3): 374-384
  18. Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009): Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol. 7:46
  19. Dunlap-Lehtilä AS (2009): Change and Reliability in the Evolution of Learning and Memory. PhD dissertation, University of Minnesota
  20. Bolduc FV, Tully T. (2009): Fruit Flies and Intellectual Disability. Fly (Austin). 3(1): 91-104
  21. Smith D, Wessnitzer J, Webb B. (2008): A model of associative learning in the mushroom body. Biol Cybern. 99(2): 89-103
  22. Schubert M (2007): A Comprehensive Study of Olfactory Coding in the Insect Brain, Doctoral thesis, FU Berlin, Germany
  23. Hussaini SA, Komischke B, Menzel R, and Lachnit H (2007): Forward and backward second-order Pavlovian conditioning in honeybees. Learn. Mem. 14:678-683
  24. Hazlett BA (2007): Conditioned reinforcement in the crayfish Orconectes rusticus. Behaviour 144: 847-859
  25. van Swinderen B, Flores KA. (2007): Attention-like processes underlying optomotor performance in a Drosophila choice maze. Dev Neurobiol. 67(2):129-145.
  26. Goel P, Gelperin A. (2006): A neuronal network for the logic of Limax learning. J Comput Neurosci. 21(3):259-270
  27. Yarali A, Hendel T, Gerber B. (2006): Olfactory learning and behaviour are ‘insulated’ against visual processing in larval Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 192(10):1133-1145.
  28. Guo J, Guo A. (2005): Crossmodal interactions between olfactory and visual learning in Drosophila. Science. 309(5732):307-310.
  29. Guerrieri F, Lachnit H, Gerber B, Giurfa M. (2005): Olfactory blocking and odorant similarity in the honeybee. Learn Mem. 12(2): 86-95.
  30. van Swinderen B (2005): The remote roots of consciousness in fruit-fly selective attention? Bioessays, 27 (3): 321-330
  31. Greenspan RJ, van Swinderen B (2004): Cognitive consonance: complex brain functions in the fruit fly and its relatives. Trends Neurosci. 27(12): 707-711.
  32. Siwicki KK, Ladewski L (2003): Associative learning and memory in Drosophila: beyond olfactory conditioning. BEHAV PROCESS 64 (2): 225-238
Baxter D.A.; Cai Y.; Brembs B. and Byrne J.H. (2000): Simulating physiological and morphological properties of neurons with SNNAP (Simulator for Neural Networks and Action Potentials). Soc. Neurosci. Abstr. 26:21.64.
Citations:
  1. Cai, Y; Baxter, DA; Crow, T (2003): Computational Study of Enhanced Excitability in Hermissenda: Membrane Conductances Modulated by 5-HT J Comp Neurosci. 15: 105-121
  2. M Flynn, Y Cai, DA Baxter, T Crow (2003): A Computational Study of the Role of Spike Broadening in Synaptic Facilitation of Hermissenda. J Comp Neurosci. 15, 29-41.
Brembs B. (2000): An Analysis of Associative Learning in Drosophila at the Flight Simulator. Dissertation, Julius Maximilians Universität Würzburg.
Citations:
  1. Raja S (2013): The neuronal basis of spontaneous flight behavior in Drosophila. PhD dissertation, FU Berlin
  2. Ginsburg S, Jablonka E (2007): The Transition to Experiencing: II. The Evolution of Associative Learning Based on Feelings. Biol Theor, 2(3): 231-243
  3. Diegelmann S, Zars M, Zars T. (2006): Genetic dissociation of acquisition and memory strength in the heat-box spatial learning paradigm in Drosophila. Learn Mem. 13(1):72-83.
Brembs B. and Heisenberg M. (2000): The Operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learn. Mem. 7:104–115.
Citations:
  1. Ljubicic I, Hyland Bruno J, Tchernichovski O (2016): Social influences on song learning. Curr Op Behav Sci, 7: 101–107, DOI: 10.1016/j.cobeha.2015.12.006
  2. Taylor GJ, Paulk AC, Pearson TW, Moore RJ, Stacey JA, Ball D, van Swinderen B, Srinivasan MV (2015): Insects modify their behaviour depending on the feedback sensor used when walking on a trackball in virtual reality. J Exp Biol, 218, 3118–3127, DOI: 10.1242/jeb.125617
  3. Paulk AC, Kirszenblat L, Zhou Y, van Swinderen B (2015): Closed-Loop Behavioral Control Increases Coherence in the Fly Brain. J Neurosci 35: 10304–10315, DOI: 10.1523/JNEUROSCI.0691-15.2015
  4. Peckmezian T, Taylor PW (2015) A virtual reality paradigm for the study of visually mediated behaviour and cognition in spiders. Anim Behav, 107: 87–95, DOI: 10.1016/j.anbehav.2015.06.018
  5. Roth G (2014): The Long Evolution of Brains and Minds, Springer, ISBN 978-94-007-6259-6, pp. 1-320.
  6. Mirwan HB, Mason GJ, Kevan PG (2015): Complex operant learning by worker bumblebees (Bombus impatiens): detour behaviour and use of colours as discriminative stimuli. Insectes Sociaux, 62: 365–377, DOI: 10.1007/s00040-015-0414-6
  7. Schleyer M, Reid SF, Pamir E, Saumweber T, Paisios E, Davies A, Gerber B, Louis M (2015): The impact of odor–reward memory on chemotaxis in larval Drosophila . Learn Mem 22: 267–277,DOI: 10.1101/lm.037978.114
  8. Giurfa M (2015): Learning and cognition in insects. Wiley Interdisciplinary Reviews: 6, 383–395, DOI: 10.1002/wcs.1348
  9. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511920585.007.
  10. Dasgupta S, Wörgötter F, Manoonpong P (2014): Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits, 8:126, DOI: 10.3389/fncir.2014.00126
  11. Klowden MJ (2013): Behavioral Systems. In: Physiological Systems in Insects, 696p, Elsevier, ISBN-13: 978-0124158191
  12. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  13. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  14. Panoonpong P, Kolodziejski C, Wörgötter F (2013): Combining correlation-based and reward-based learning in neural control for policy improvement. Advs. Complex Syst. 16: 1350015
  15. Giurfa M (2013): Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5):285-294
  16. Zwarts L, Clements J, Callaerts P (2012): Deciphering the Adult Brain: From Neuroanatomy to Behavior. In: Hassan BA (ed.):The Making and Un-Making of Neuronal Circuits in Drosophila. Neuromethods 69, pp 3-48 ISBN 978-1-61779-829-0
  17. Mery F (2012): Natural variation in learning and memory. Curr Opin Neurobiol. 23(1):52-56
  18. Nuwal N, Stock P, Hiemeyer J, Schmid B, Fiala A, Buchner E (2012): Avoidance of Heat and Attraction to Optogenetically Induced Sugar Sensation as Operant Behavior in Adult Drosophila. J Neurogenet. 26 (3-4):298-305
  19. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  20. Guo AK, Zhang K, Peng YQ, Xi W (2010): Research progress on Drosophila visual cognition in China. SCIENCE CHINA-Life Sciences 53 (3): 374-384
  21. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  22. Sokolowski MBC, Disma G, Abramson CI (2010): A paradigm for operant conditioning in Blow Flies (Phormia terrae novae Robineau-Desvoidy, 1830). J exp. Anal. Behav. 93 (1): 81-89
  23. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. (2009): Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415
  24. Bolduc FV, Tully T (2009): Fruit flies and intellectual disability. Fly (Austin). 3(1):91-104
  25. Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009): Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol. 7:46
  26. Dayan P, Huys QJ. (2009): Serotonin in Affective Control. Annu Rev Neurosci. 32: 95-126
  27. Wurbel, H (2009): Ethology applied to animal ethics. Appl Anim Behav Sci. 118 (3-4): 118-127
  28. Seugnet L, Suzuki Y, Stidd R, Shaw PJ. (2009): Aversive Phototaxic Suppression: evaluation of a short-term memory assay in Drosophila melanogaster. Genes Brain Behav. 8(4): 377-389
  29. Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L. (2009): Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem. 16(5): 289-295
  30. Menzel R (2009): Working memory in bees: also in flies? J Neurogenet. 23(1):92-99
  31. Pitman JL, Dasgupta S, Krashes MJ, Leung B, Perrat PN, Waddell S. (2009): There are many ways to train a fly. Fly (Austin). 3(1): 3-9
  32. Krylov AK, Aleksandrov YI (2007): “Situatedness in an environment” as alternative to stimuli presentation: Model study. Psykhologicheskii Zhurnal 28(2): 106-113
  33. Dupuy F, Sandoz JC, Giurfa M, Josens R (2006): Individual olfactory learning in Camponotus ants. Anim. Behav. 72: 1081-1091
  34. Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L. (2006): Distinct memory traces for two visual features in the Drosophila brain. Nature. 439(7076): 551-556
  35. Hayden A (2005): The Role of Learning in the Feeding Behavior of Antlions. PhD thesis, Mount Holyoke College, USA http://hdl.handle.net/10090/4017
  36. Giurfa M, Malun D (2004): Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learn. Mem. 11 (3): 294-302
  37. Siwicki KK, Ladewski L (2003): Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav. Process. 64 (2): 225-238
  38. Wang SP, Li Y, Feng CH, Guo AK (2003): Dissociation of visual associative and motor learning in Drosophila at the flight simulator. Behav. Process. 64 (1): 57-70
  39. Wang SP, Tang S, Li Y, Guo AK (2003): Behavioral modification in choice process of Drosophila. SCI CHINA SER C 46 (4): 399-413
  40. Tracey WD, Wilson RI, Laurent G, Benzer S (2003): painless, a Drosophila gene essential for nociception . Cell 113(2): 261-273
  41. Le Bourg E, Buecher C (2002): Learned suppression of photopositive tendencies in Drosophila melanogaster. Anim. Learn. Behav. 30(4): 330-341
  42. Wen A, Liu L (2002): Molecular mechanism of learning and memory in Drosophila. PROG BIOCHEM BIOPHYS 29 (5):670-673
  43. Kisch J (2001): Verhaltens- und elektrophysiologische Untersuchungen zur operanten Konditionierung von Antennenbewegungen der Honigbiene. Doctoral thesis, FU Berlin, Germany.
Cutts C.J.; Brembs B.; Metcalfe N.B. and Taylor A.C. (1999): Prior residence, territory quality and life-history strategies in juvenile Atlantic salmon (Salmo salar L.). J. Fish. Biol. 55: 784-794.
Citations:
  1. Näslund J, Sandquist L, Johnsson JI (2016): Is behaviour in a novel environment associated with bodily state in brown trout Salmo trutta fry? Ecology of Freshwater Fish. DOI: 10.1111/eff.12291
  2. Tiira K, Primmer CR (2015): Genetic diversity and fitness-related traits in endangered salmonids. In: Population Genetics for Animal Conservation. pp. 241-268. Conservation Biology. (No. 17). Cambridge: Cambridge University Press. Available from: Cambridge Books Online http://dx.doi.org/10.1017/CBO9780511626920.012
  3. Régnier T, Labonne J, Chat J, Yano A, Guiguen Y, Bolliet V (2015): No early gender effects on energetic status and life history in a salmonid. R. Soc. open sci., 2, DOI: 10.1098/rsos.150441
  4. Solberg MF, Fjelldal PG, Nilsen F, Glover KA (2014): Hatching Time and Alevin Growth Prior to the Onset of Exogenous Feeding in Farmed, Wild and Hybrid Norwegian Atlantic Salmon. PLoS ONE, 9, DOI: 10.1371/journal.pone.0113697
  5. Moreau DTR, Gamperl AK, Fletcher GL, Fleming IA (2014): Delayed Phenotypic Expression of Growth Hormone Transgenesis during Early Ontogeny in Atlantic Salmon (Salmo salar)? PLoS ONE, 9, e95853.
  6. Warnock WG, Rasmussen JB (2014): Comparing competitive ability and associated metabolic traits between a resident and migratory population of bull trout against a non-native species. Environ Biol Fish 97:415–423
  7. Sørensen C, Johansen IB, Øverli Ø (2013): Physiology of Social Stress in Fishes, p289-325 In: Evans DH, Claiborne JB, Currie S (Eds.): The Physiology of Fishes, CRC Press, 491p, ISBN 9781439880302
  8. Sigourney, D. B., Letcher, B. H., Obedzinski, M. and Cunjak, R. A. (2013): Interactive effects of life history and season on size-dependent growth in juvenile Atlantic salmon. Ecology of Freshwater Fish. 22: 495–507
  9. Simmons RK, Quinn TP, Seeb LW, Schindler DE, Hilborn R (2013): Summer emigration and resource acquisition within a shared nursery lake by sockeye salmon (Oncorhynchus nerka) from historically discrete rearing environments. Can J Fish Aquat Sci. 70(1): 57-63
  10. Mogensen S, Hutchings JA (2012): Maternal fitness consequences of interactions among agents of mortality in early life of salmonids. Can J Fish Aquat Sci. 69(9): 1539-1555, doi: 10.1139/f2012-071
  11. van Leeuwen TE, Rosenfeld JS, Richards JG (2011): Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch). J Anim Ecol. 81(2): 395-402
  12. van Leeuwen TE, Rosenfeld JS, Richards JG (2011): Failure of physiological metrics to predict dominance in juvenile pacific salmon (Oncorhynchus spp.): Habitat effects on the allometry of growth in dominance hierarchies. Can. J. Fish. Aquat. Sci. 68(10): 1811-1818
  13. Reid D, Armstrong JD, Metcalfe NB (2011): Estimated standard metabolic rate interacts with territory quality and density to determine the growth rates of juvenile Atlantic salmon. Functional Ecology. 25(6): 1360-1367
  14. Kim JW, Grant JWA, Brown GE (2011): Do juvenile Atlantic salmon (Salmo salar) use chemosensory cues to detect and avoid risky habitats in the wild? Can. J. Fish. Aquat. Sci. 68:655-662, 10.1139/f2011-011
  15. Moreau DTR, Fleming IA, Fletcher GL, Brown JA (2011): Growth hormone transgenesis does not influence territorial dominance or growth and survival of first-feeding Atlantic salmon Salmo salar in food-limited stream microcosms. J Fish Biol. DOI: 10.1111/j.1095-8649.2010.02888.x
  16. Kvingedal E, Einum S (2011): Prior residency advantage for Atlantic salmon in the wild: effects of habitat quality. Behav Ecol Sociobiol 65(6): 1295-1303
  17. Jonsson B, Jonsson N (2009): Restoration and Enhancement of Salmonid Populations and Habitats with Special Reference to Atlantic Salmon. International Symposium on Challenges for Diadromous Fishes in a Dynamic Global Environment, JUN 18-21, 2007 Halifax, CANADA: Challenges for diadromius fishes in a dynamic global environment. 69: 497-535
  18. Seiler SM, Keeley ER (2009): Competition between native and introduced salmonid fishes: cutthroat trout have lower growth rate in the presence of cutthroat-rainbow trout hybrids. Can J Fish Aqu Sci. 66 (1): 133-141
  19. Montero D, Lalumera G, Izquierdo MS, Caballero MJ, Saroglia M, Tort L (2009): Establishment of dominance relationships in gilthead sea bream Sparus aurata juveniles during feeding: effects on feeding behaviour, feed utilization and fish health. J Fish Biol. 74 (4): 790-805
  20. Neregård L, Sundt-Hansen L, Björnsson BT, Johnsson JI (2008): Growth hormone affects behaviour of wild brown trout Salmo trutta in territorial owner-intruder conflicts. J Fish Biol. 73 (10): 2341-2351
  21. Jönsson M, Skov C, Kod A, Ander Nilsson P (2008): Temporal clumping of prey and coexistence of unequal interferers: experiments on social forager groups of brown trout feeding on invertebrate drift. Oikos 117(12): 1782-1787
  22. Lelong A, Bolliet V, Bancel D, Gaudin P (2008): Detection of elemental composition and caloric value variability at individual level in newly emerged brown trout Salmo trutta L. J Fish Biol.72 (10): 2695-2699
  23. Seppänen E, Kuukka H, Huuskonen H, Piironen J (2008): Relationship between standard metabolic rate and parasite-induced cataract of juveniles in three Atlantic salmon stocks. J Fish Biol. 72 (7): 1659-1674
  24. Martin AL, Moore PA (2008): The influence of dominance on shelter preference and eviction rates in the crayfish, Orconectes rusticus. Ethology 114 (4): 351-360.
  25. Martin AL (2007): Underlying mechanisms that affect crayfish agonistic interactions and resource acquisition. Doctoral thesis, Bowling Green State University, USA
  26. Schjolden J, Winberg S. (2007): Genetically determined variation in stress responsiveness in rainbow trout: behavior and neurobiology. Brain Behav Evol. 70(4):227-238.
  27. Beckman, BR; Gadberry, B; Parkins, P; Cooper, KA; Arkush, KD (2007): State-dependent life history plasticity in Sacramento River winter-run chinook salmon (Oncorhynchus tshawytscha): interactions among photoperiod and growth modulate smolting and early male maturation. Can. J. Fish. Aquat. Sci. 64 (2): 256-271
  28. Jönsson M (2006): Fluctuating prey availability and coexistence of unequal interferers: experiments on drifting invertebrates and social foraging groups of brown trout (Salmo trutta L.), Master thesis, Lund University, Sweden
  29. Hoffman JI, Trathan PN, Amos W. (2006): Genetic tagging reveals extreme site fidelity in territorial male Antarctic fur seals Arctocephalus gazella. Mol Ecol. 15(12):3841-3847
  30. Jonsson, B; Jonsson, N (2006): Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES J. Mar. Sci. 63 (7): 1162-1181
  31. Hedger, RD; Dodson, JJ; Bergeron, NE; Caron, F (2005): Habitat selection by juvenile Atlantic salmon: the interaction between physical habitat and abundance. J. Fish Biol. 67 (4): 1054-1071
  32. DiBattista JD, Anisman H, Whitehead M, Gilmour KM. (2005): The effects of cortisol administration on social status and brain monoaminergic activity in rainbow trout Oncorhynchus mykiss. J Exp Biol. 208 (14): 2707-2718
  33. Gilmour, KM; DiBattista, JD; Thomas, JB (2005): Physiological Causes and Consequences of Social Status in Salmonid Fish. Int. Comp. Biol. 45 (2) 263273.
  34. Letcher, BH; Dubreuil, T; O’Donnell, MJ; Obedzinski, M; Griswold, K; Nislow, KH (2004): Long-term consequences of variation in timing and manner of fry introduction on juvenile Atlantic salmon (Salmo salar) growth, survival, and life-history expression. Can. J. Fish. Aquat. Sci. 61 (12): 2288-2301
  35. Hoffman, JI; Boyd, IL; Amos, W (2004): Exploring the relationship between parental relatedness and male reproductive success in the antarctic fur seal Arctocephalus
    gazella.
    EVOLUTION, 58 (9): 2087-2099
  36. Weber ED, Fausch KD (2003): Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. CAN J FISH AQUAT SCI 60 (8): 1018-1036
  37. Vollestad LA, Quinn TP (2003): Trade-off between growth rate and aggression in juvenile coho salmon, Oncorhynchus kisutch. ANIM BEHAV 66: 561-568
  38. Harwood AJ, Griffiths SW, Metcalfe NB, et al. (2003): The relative influence of prior residency and dominance on the early feeding behaviour of juvenile Atlantic salmon. ANIM BEHAV 65: 1141-1149
  39. Lewis C, Olive PJW, Bentley MG (2003): Pre-emptive competition as a selective pressure for early reproduction in the polychaete Nereis virens. MARECOL-PROG SER 254: 199-211
  40. Jones M, Laurila A, Peuhkuri N, et al. (2003): Timing an ontogenetic niche shift: responses of emerging salmon alevins to chemical cues from predators and competitors. OIKOS 102 (1): 155-163
  41. Cutts CJ, Metcalfe NB, Taylor AC (2002): Fish may fight rather than feed in a novel environment: metabolic rate and feeding motivation in juvenile Atlantic salmon. J FISH BIOL 61 (6): 1540-1548
  42. Sloman KA, Armstrong JD (2002): Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? J FISH BIOL 61: 1-23
  43. Cutts CJ, Metcalfe NB, Taylor AC (2002): Juvenile Atlantic Salmon (Salmo salar) with relatively high standard metabolicrates have small metabolic scopes. FUNCT ECOL 16 (1): 73-78.
  44. Johnsson JI, Forser A (2002): Residence duration influences the outcome of territorial conflicts in brown trout (Salmo trutta). BEHAV ECOL SOCIOBIOL 51 (3): 282-286.
  45. Railsback SF, Harvey, BC (2001): Individual-Based Model Formulation for Cutthroat Trout, Little Jones Creek, California, General Tech. Report PSW-GTR-182, U.S. Forest Service, Pacific Southwest Research Station, Albany, California.
  46. Brown C (2001): Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim. Cogn. 4(2): 109 – 113
  47. McCarthy ID (2001): Competitive ability is related to metabolic asymmetry in juvenile rainbow trout. J FISH BIOL 59: 1002-1014
  48. Griffiths SW, Armstrong JD (2001): The benefits of genetic diversity outweigh those of kin association in a territorial animal. P ROY SOC LOND B BIO 268 (1473): 1293-1296
  49. Sloman KA, Taylor AC, Metcalfe NB, Gilmour KM (2001): Effects of an environmental perturbation on the social behaviour and physiological function of brown trout. ANIM BEHAV 61: 325-333
  50. Berg OK, Hendry AP, Svendsen B, Bech C, Arnekleiv JV, Lohrmann A (2001): Maternal provisioning of offspring and the use of those resources during ontogeny: variation within and between Atlantic Salmon families. FUNCT ECOL 15 (1): 13-23
  51. Volpe JP, Anholt BR, Glickman BW (2001): Competition among juvenile Atlantic salmon (Salmo salar) and steelhead (Oncorhynchusmykiss): relevance to invasion potential in British Columbia. Can. J. Fish. Aquat. Sci. 58 (1): 197-207
Brembs B. (1996): Chaos, cheating and cooperation: potential solutions to the Prisoner’s Dilemma. OIKOS 76: 14-24.
Citations:
  1. Sparks A, Burleigh T, Barclay P (2015): We can see inside: Accurate prediction of Prisoner’s Dilemma decisions in announced games following a face-to-face interaction. Evol Hum Behav, DOI: 10.1016/j.evolhumbehav.2015.11.003.
  2. Mendoza RL (2015): A Game-Theoretic Model of Marketing Skin Whiteners. Health Marketing Quarterly, 32: 367–381, DOI: 10.1080/07359683.2015.1093884
  3. Mariano P, Correia L (2015): The Give and Take Game: Analysis of a Resource Sharing Game. Int J Appl Math Comp Sci, 25, DOI: 10.1515/amcs-2015-0054
  4. Schroeder D A, Graziano WG, Barclay P, Van Vugt M (2015): The Evolutionary Psychology of Human Prosociality. The Oxford Handbook of Prosocial Behavior, DOI: 10.1093/oxfordhb/9780195399813.013.029
  5. Van den Berg P, Weissing FJ (2015): The importance of mechanisms for the evolution of cooperation. Proc Roy Soc B, 282, DOI: 10.1098/rspb.2015.1382
  6. Hartmann JA, Stetson S, Gaffney AM (2015): From turtles to tweets: a successful doctoral cohort reports on the development of within-group altruism. InSight: Rivier Academic Journal 11(1), p1
  7. Sparks A. (2015): Reputation Mechanisms and the Long-Term Consequences of Cooperative Behavior, PhD dissertation, The University of Guelph
  8. Enesco C. S. (2014): Tit-for-tat: La emergencia de la reciprocidad en niños y su relación
    con las conductas prosociales desde una perspectiva comparada, PhD dissertation, Universidad Complutense de Madrid
  9. Van Lange P, Balliet DP, Parks CD, van Vugt M (2014): Social Dilemmas: Understanding Human Cooperation. Oxford University Press, 208p, ISBN: 9780199897612
  10. Kemper KR (2013): Tribal Sovereignty Means Competition, Broadband Access, and Economic Development for Indian Country: A Law and Economics Analysis of the Efficiency of the efficiency of the FCC’s Standing Rock Sioux case. Journal of Information Policy 3: 442-463
  11. Franco JCA (2011): La conservación de los recursos naturales renovables. Una aproximación desde el estudio de los dilemas sociales. PhD thesis, Universidad Rey Juan Carlos, Departamento de Fundamentos del Análisis Económico
  12. Pomianek C, Palmer CT, Wadley RL, Coe K (2011): Cultural Traditions and the Treatment of Freeriders. J Int Global Stud. 3(1): 1-20
  13. Li J, Hingston P, Kendall G (2011): Engineering Design of Strategies for Winning Iterated Prisoner’s Dilemma Competitions. IEEE Transactions on Computational Intelligence and AI in Games 3(4): 348-360, Article number 6004823
  14. Wang RW, Sun BF, Zheng Q, Shi L, Zhu L (2011): Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism. J R Soc Interface. 8(63):1487-1496
  15. Stafford R Davies MS, Williams GA (2011): Cheats in a cooperative behaviour? Behavioural differences and breakdown of cooperative behaviour in aggregating, intertidal littorinids (Mollusca). Marine Ecology. 33(1): 66–74. doi: 10.1111/j.1439-0485.2011.00474.x
  16. Barclay P (2011): Competitive helping increases with the size of biological markets and invades defection. J Theor Biol. 281(1):47-55
  17. Wang RW, Sun BF, Zheng Q, Shi L, Zhu L (2011): Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism. J R Soc Interface. 7, 1487–1496
  18. Dyer M, Mohanaraj V (2011): The Iterated Prisoner’s Dilemma on a Cycle. arXiv:1102.3822v1 [cs.GT]
  19. Riedel-Kruse IH, Chung AM, Dura B, Hamilton AL, Lee BC (2011): Design, engineering and utility of biotic games. Lab Chip. 11(1):14-22
  20. Bentley PJ (2009): The game of funding: modelling peer review for research grants. Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, Montreal, Québec, Canada WORKSHOP SESSION: Evolutionary computation and multi-agent systems and simulation (ECoMASS) Pages 2597-2602
  21. Power C (2009): A Spatial Agent-Based Model of N-Person Prisoner’s Dilemma Cooperation in a Socio-Geographic Community. J Art Soc Soc Sim. 12(1)8
  22. Gardener T; Moffat J (2008): Changing behaviours in defence acquisition: a game theory approach. J. Op. Res. Soc. 59(2): 225-230
  23. Phillips T (2007): The evolution of human altruism towards non-kin through sexual selection. PhD thesis, University of Nottingham, UK
  24. Paolucci M, Conte R (2007): Roost Size for Multilevel Selection of Altruism Among Vampire Bats. In: Multi-Agent-Based Simulation VII, Springer Berlin / Heidelberg
  25. Thibert-Plante X, Charbonneau P. (2007): Crossover and Evolutionary Stability in the Prisoner’s Dilemma. Evol Comput. 15(3):321-344
  26. Thibert-Plante X, Parrott L (2007): Prisoner’s dilemma and clusters on small-world networks. Complexity 12 (6): 22-36
  27. Seip KL, Wenstøp F (2006): A primer on environmental decision-making. Springer, ISBN 1402040733, 9781402040733
  28. Galaz V (2006): Power in the Commons. The Politics of Water Management Institutions in Sweden and Chile. PhD thesis, Göterborgs Universitet, Sweden.
  29. Garcia J, Hernandez G, Galeano JC (2006): Cooperation, Solution Concepts and Long-term Dynamics in the Iterated Prisoner’s Dilemma. IEEE Congress on Evolutionary Computation CEC 2006: 1618 – 1623
  30. Conte R, Paolucci M, Di Tosto G (2006): Vampire Bats & The Micro-Macro Link. In: Billari FC, Fent T, Prskawetz A, Scheffran J (eds.) Agent-Based Computational Modelling – Applications in Demography, Social, Economic and Environmental Sciences. Physica-Verlag HD, Springer.
  31. Fishman MA. (2006): Involuntary defection and the evolutionary origins of empathy. J Theor Biol. 242(4):873-879
  32. Petersen CW (2006): Sexual selection and reproductive success in hermaphroditic seabasses. Int. Comp. Biol. 46 (4): 439-448
  33. Anthes N, Putz A, Michiels NK (2006): Sex role preferences, gender conflict and sperm trading in simultaneous hermaphrodites: a new framework. Anim. Behav. 72: 1-12
  34. Kun A, Boza G, Scheuring I (2006): Asynchronous snowdrift game with synergistic effect as a model of cooperation. Behav. Ecol. 17 (4): 633-641
  35. Corning PA (2005): Holistic Darwinism: Synergy, Cybernetics, and the Bioeconomics of Evolution. University of Chicago Press, 546pp.
  36. Waisel DB (2005): Developing Social Capital in the Operating Room: The Use of Population-based Techniques. Anesthesiology. 103(6):1305-1310
  37. Doebeli M, Hauert C (2005): Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. ECOLOGY LETTERS 8 (7): 748-766
  38. Kreft JU (2005): Conflicts of interest in biofilms. Biofilms 1: 265-276
  39. Green SP (2004): Cheating. Law Philosoph. 23(2): 137-185
  40. Daniels H (2004): Facultative butterfly-ant interactions – the role of variation in composition of nectar secretions. PhD thesis, University of Bayreuth, Germany
  41. Jang D. Whigham DA, Grant D (2004): On evolving fixed pattern strategies for Iterated Prisoner’s Dilemma. Proc. 27th Australasian conf. Comp. sci. – Vol 26. 241 – 247
  42. Gillinson S (2004): Why Cooperate? A Multi-Disciplinary Study of Collective Action. Working paper 234, Overseas Development Institute, London, UK
  43. Allen D, Griffiths L, Lyne P (2004): Understanding complex trajectories in health and social care provision. SOCIOLOGY OF HEALTH & ILLNESS 26 (7): 1008-1030
  44. Jang D, Wigham PA, Dick G (2004): On evolving fixed pattern strategies for Iterated Prisoner’s Dilemma. Proceedings of the 27th conference on Australasian computer science 26: 241-247
  45. Gutnisky DA, Zanutto BS (2004): Cooperation in the iterated prisoner’s dilemma is learned by operant conditioning mechanisms. ARTIFICIAL LIFE 10 (4): 433-461
  46. Foster KR. (2004): Diminishing returns in social evolution: the not-so-tragic commons. J Evol Biol. 17(5):1058-1072.
  47. McNamara JM, Barta Z, Houston AI (2004): Variation in behaviour promotes cooperation in the Prisoner’s Dilemma game. NATURE 428 (6984): 745-748
  48. Greig D, Travisano M (2004): The Prisoner’s Dilemma and polymorphism in yeast SUC genes. P ROY SOC LOND B BIO 271: S25-S26 Suppl. 3
  49. Wobser G (2003): Produktentwicklung in Kooperation mit Anwendern. In: Enke M (ed) Interaktivs Marketing – Wissenstransfer zwischen Theorie und Praxis. DUV Gabler Edition Wissenschaft.
  50. Mariano P, Correia L (2003): A resource sharing model to study social behaviours. LECT NOTES ARTIF INT 2902: 84-88
  51. Dubois F, Giraldeau LA (2003): The forager’s dilemma: Food sharing and food defense as risk-sensitive foraging options. AM NAT 162 (6): 768-779
  52. Gallanger, S, Park, S.H. (2003): Branching out. Potentials, IEEE 22(2): 20-21
  53. Lotem A, Fishman MA, Stone L (2003): From reciprocity to unconditional altruism through signalling benefits. P ROY SOC LOND B BIO 270(1511): 199-205
  54. Conte R, Paolucci M (2002): Reputation in Artificial Societies – Social Beliefs for Social Order ISBN: 978-1-4613-5421-5 (Print) 978-1-4615-1159-5 (Online)
  55. Simms EL, Taylor DL (2002): Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. INTEGR COMP BIOL 42:369-380
  56. Mariano P, Correia L (2002): The Effect of Agreements in a Game with Multiple Strategies for Cooperation. In: Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 375-378
  57. Bird RB, Bird DW, Smith EA, Kushnick GC (2002): Risk and reciprocity in Meriam food sharing. EVOLUTION AND HUMAN BEHAVIOR 23:297-321
  58. Hare JF, Atkins BA (2001): The squirrel that cried wolf: reliability detection by juvenile Richardson’s ground squirrels (Spermophilusrichardsonii). BEHAV ECOL SOCIOBIOL 51: 108-112
  59. Wakano JY, Yamamura N (2001): A simple learning strategy that realizes robust cooperation better than Pavlov in Iterated Prisoners’ Dilemma. J ETHOL 19: 1-8
  60. Flache, A, Torenvlied R (2001): Persistent instability in polarized opinion formation and collective decision-making. Paper presented at the fourth Summer School on Polarization and Conflict, July 23–27, San Sebastián, Spain.
  61. Bronstein JL (2001): The exploitation of mutualisms. ECOLLETT 4: 277-287
  62. Wilkinson DM, Sherratt TN. (2001): Horizontally acquired mutualisms, an unsolved problem in ecology? OIKOS 92:377-384
  63. Fishman MA, Lotem A, Stone L (2001): Heterogeneity stabilizes reciprocal altruism interactions J THEOR BIOL 209: 87-95
  64. Sigmund K, Nowak, MA (2000): A Tale of Two Selves. Science 290(5493): 949-950
  65. Sigmund K, Nowak, MA (2000): Shrewd Investments. Science 288(5467): 819-820
  66. Agrawal AA, Fordyce JA (2000): Induced indirect defence in a lycaenid-ant association: the regulation of a resourcein a mutualism. Proc. R. Soc. Lond. Ser. B-Biol. Sci., 267,1857-1861
  67. Bordini RH (1999): Contributions to an anthropological approach to the cultural adaptation of migrant agents. PhD thesis, University College London.
  68. Bazzan ALC, Bordini RH, Campbell JA (1999): Moral sentiments in multi-agent systems. Lect. Note. Artif. Intell.,1555, 113-131.
  69. Sherratt TN, Roberts G (1999): The evolution of quantitatively responsive cooperative trade. J. Theor. Biol., 200, 419-426.
  70. Wilkinson DM (1999): Bacterial ecology, antibiotics and selection for virulence. Ecol. Lett., 2, 207-209.
  71. Bazzan ALC, Bordini RH, Campbell JA (1998): Moral Sentiments in Multi-agent Systems. Paper presented at “Intelligent Agents V. Agent Theories, Architectures, and Languages”: 5th International Workshop, ATAL’98, Paris, France
  72. Doebeli M, Knowlton N (1998): The evolution of interspecific mutualisms. Proc. Natl. Acad. Sci. U. S. A., 95, 8676-8680.
  73. Sherratt, TN (1998): The evolution of generosity and choosiness in cooperative exchanges. J. Theor. Biol., 193, 167-177.
  74. Day T, Taylor PD (1998): The evolution of temporal patterns of selfishness, altruism, and group cohesion. Am. Nat.,152, 102-113.
  75. Borges RM (1998): Leviathan, natural selection, and ethics. Curr. Sci., 74, 750-758.
  76. Roberts G (1998): Competitive altruism: from reciprocity to the handicap principle. Proc. R. Soc. Lond. Ser. B-Biol. Sci.,265, 427-431
  77. Wedekind C (1998): Give and Ye Shall Be Recognized. Science 280(5372): 2070-2071