CRISPR/Cas9-based genome editing of the FoxP locus in Drosophila melanogaster

Ottavia Palazzo^{1,2}, Anders Eriksson¹, Mathias Raß¹, Julia Dobbert¹, Klara Krmpotić¹, Nicole Schäfer², Diana Pauly², Björn Brembs¹

1. Introduction

1.1 The family of Fox genes groups a large number of transcription factors that share a conserved DNA-binding domain, called the Forkhead domain. In vertebrates the FoxP subfamily comprises four genes differentially expressed in different tissues. In Drosophila melanogaster on the contrary, only one gene of the FoxP subfamily has been identified (dFoxP). The Foxp2 gene sequence is highly conserved in vertebrates and has been etensively shown to have importance in vocal learning and the modulation of the interconnected neural circuits. One mutation in the FOXP2 gene appears to affect lan-

guage acquisition in afflicted patients, without other obvious impairments.

1.2 - operant world-learning, in which the subject is able to learn from casual cues in the environment - operant self-learning, in which the subject is able to learn from the outcome of its own behaviour

2. Experimental strategy

Homology recombination by CRISPR/Cas9

Flight simulator

Buridan's paradigm

¹ Institute of Zoology – Neurogenetics, University of Regensburg, Regensburg, Germany ² Experimental Ophthalmology - University Hospital, Regensburg, Germany

3. Results

2 3 4 5 6 7/8

Behavioral analysis

Buridan's paradigm

