Operant Conditioning using self-stimulation in Aplysia

Björn Brembs, Fred Lorenzetti, Elizabeth Wilkinson, Fredy Reyes, Douglas A. Baxter and John H. Byrne
Department of Neurobiology and Anatomy
6431 Fannin, Houston, Texas, USA
http://nba.uth.tmc.edu/homepage/jbyrne/

V. Conclusion

We have recorded afferent activity in the En. of feeding Aplysia that coincided with
biting and swallowing (see II). When freely moving Aplysia can control the amount of E . stimulation mimicking the activity during biting and swallowing food, they increase the behaviour controlling the stimulation compared to two control groups. after the experiment (see III). Comparing input resistance and burst threshold of buccal interneuron B51 in contingently reinforced animals versus yoked controls, a neuronal correlate of the operant memory can be detected (see IV). These findings parallel the results of previous experiments where a similar change
in the intrinsic properties of B51 was found in an in vitro analogue of operant conditioning (Nargeot et al. 1999a,b). Taken together, these experiments establish a direct line of evidence from a behavioural paradigm, via an operant analogue in the isolated nervous system to a single cell. This cell exhibits lasting modifications of
its intrinsic properties after operant conditioning in both the whole animal and the in vitro analogue. A parallel set of in vivo and in vitro studies is currently being vitro analogue. A parallel set of in vivo and in vitro studies is currently being
performed using classical training. Comparative studies of operant and classical conditioning in the same model system on a cellular and molecular level will finally
be feasible.
IV. Neuronal correlates of operant conditioning

I. Introduction

For most of the $20^{\text {th }}$ century there has been a debate over the equivalence of classical and operant learning processes. Due in part to studies of learning in Aplysia, a great deal is
known about the cellular basis of classical conditioning. In comparison relatively little is known about the cellular basis of classical conditioning. In comparison, relatively little is
known about the mechanisms underlying operant conditioning. This deficitit results, in part, from the lack of a suitably traceable model system that manifests operant conditioning and
that is amenable to cellular and molecular studies. If such a preparation existed, the old psythat is amenable to cellular and molecular studies. If such a prepara
chological problem could be developed into a biological experiment. chological problem could be developed into a biological experiment.
Ideally, both operant and classical processes should be studied in the same Ideally, both operant and classical processes should be studied in the same model system. As
part of our effort to develop operant and classical paradigms in $A p l y s i a ~ f e e d i n g ~ b e h a v i o u r ~$ part of our effort to develop operant and classical paradigms in Aplysia feeding behaviour,
we developed an in vivo operant conditioning procedure, complementing an already established classical protocol (Lechner at al. 2000a, b). Unlike the classical procedure that used food reinforcement, we replaced the food by virtual stimuli. Virtual reality encompasses the
replacement of physical stimuli with neural stimulation. Thus, we started by monitoring pureplacement of physical stimuli with neural stimulation. Thus, we started by monitoring pu-
tative afferent activity in the esophageal nerve (E .) in the feeding animal (see II). The recorded activity was then mimicked by electrical stimulation of the E n. as reinforcement. The effectiveness of the reinforcement was determined by pairing it with biting behaviour in an operant conditioning experiment. The animals controlled the electrical stimulation of the E n.
by their own behaviour (i.e. self-stimulation; see. III). Neuronal correlates of the operant by their own behaviour (i.e. seli-stimulation, see. III). Neuronal correlates of the operant
memory after reinforcement with virtual stimuli were obtained from an interneuron in the buccal ganglion of Aplysia (see IV).

II. In vivo recordings

Chronic extracellular recordings were performed by surgically implanting hook electrodes on intact
Aplysia nerves One set of electrodes was placed on buccal nerve 2 (n.2) and served as a behavioural monitor for biting and swallowing behaviour. The other was attached to the anterior branch of the esophageal nerve ((E .). Reference electrodes were floating freely in the hemocoel. The recordings
were performed one day after the surgery. Prolonged activity $3 \mathrm{~s} / 3 \mathrm{Hzz}$) in the E n. is generated when were performed one day after the surgery. Prolonged activity ($3 s / 30 \mathrm{~Hz}$) in the E . is generated whe
food is present in the buccal cavity (b), versus during spontaneous biting behaviour without food (a).

III. Operant conditioning

Operant conditioning of feeding behaviour was carried out in blocks of five minutes. A five minute baseline period was followed by either two or three 5 min training blocks. The animals were then either tested immediately after training or 2 hh after the start of the experiment. Before each experiment, the animals were randomly
assigned to one of three groups: an 'experimental' group in which each bite during training was followed by 3 seconds of $30 \mathrm{~Hz}(8 \mathrm{~V}$) stimulation of the E n., a 'yoked control' that received the same sequence of reinforcements as the experimental group, but independent of their behaviour and finally a 'no US' group that did not
receive any stimulation at all. During test phases, none of the animals received any stimulation.

Leff:In a pilot study for the search for neuronal cor
elates ree instead of two 5 min training blocks.
pparently, three training blocks increase the difte-

