Do flies in groups make individual choices?

E. Axel Gorostiza, Isabelle Steymans, Björn Brembs

University of Regensburg, Institute of Zoology - Neurogenetics, Universitätsstrasse 31, 93040 Regensburg, Germany eagorostiza@gmail.com, http://lab.brembs.net

Abstract

In every behavioral population paradigm where groups of animals are being exposed to forced-choice situations, there is the question whether or not the individual animals can be assumed to make their own choices. We approach this hypothesis by testing Drosophila fruit
flies for their photopreference in a light/dark T-maze. Approximately 75% of a randomly chosen group of wild type flies decide to approach the bright arm of the T-Maze, while the remaining 25% walk into the dark tube. Taking these subgroups of flies and re-testing them revealed a similar 75-25 distribution in each subgroup.
In order to increase the number of choices each subgroup makes without losing too many flies in the process, we used the classic phototaxis experiment developed by Seymour Benzer in the 1960 s . In this experiment, flies are exposed to a light source while they are confined in transparent tubes aligned with the direction of light. Each round of the experiment consists of 5 consecutive choices were the animal can either stay or walk towards the light (positive phototaxis). At the end of a round the original group is split into 6 subgroups according to their
sequence of choices.
we discovered that while the test/re-test distributions were similar, there was a tendency of the
extremely phototactic animals (positive and negative) to skew their distributions towards their extremely photota
respective end.

The amount of fies partillyly afects the isistribution of fies in in Berzers paradiom

(5) Distribution of flies over time (Benzer)

Summary
In a Light/Dark T-Maze choice, wild type flies show a 75-25 Light-Dark distribution. The resuling subgroups display similar distributions if they are re-tested separately corroborating early observations in flies (Tully and Quinn 1985, Brown, W. \& Haglund, K., 1994) and in contrast to analogous experiments in honeybees (Pamir et al 2011). Increasing the number of light/dark choices from one to six revealed skewed distributions in the resulting subgroups: animals with strong phototactic personality (Kain et al. 2012) show a tendency for the persistence of their preference. However, this persistence is comparatively weak and highly probabilistic, as evinced by even
both most extreme subgroups showed the full spectrum of photopreference upon re-test. Moreover, superimposed on phototactic personality we discovered locomotor variations. These results underscore the fundamental uncertainty of individual choices: it may never become possible to make accurate predictions about single behavioral acts. Only averaging over a multitude of choices will allow for statistical forecasting.

References

Kaw, W., a Hagluna, K., 1994. J N. Res, 6, $66-73$. Kain, J.S., Stokes, C. \& de Bivort, B.L., 2012. PNAS, 109.(48), pp. 1 .
Pamir, E. et al., 2011. Learning \& memory, 18(11), pp.733-741. Tully, T. \& Quinn, w.G., 1985. Journal of comparative physiology. A, Sens

