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Are the neural circuits controlling the temporal structure of
 spontaneous actions involved several different behaviors?
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4. Summary

Screening for linearity fly turning behavior

Fig 3. Inhibiting synaptic output in c105 and c232 neurons together significantly decreases the 
nonlinearity of spontaneous turning behavior. The control (yellow) consists of flies not expressing 
Tetanus neurotoxin light chain (TNT). In the experimental lines (grey and orange) transmitter release 
was inhibited for the entire life span by expressing TNT in the various brain areas targeted by the 
different driver lines. In the search for the smallest nonlinear signature, c105;;c232 (orange), 
expressing in ellipsoid-body ring neurons shows the strongest effect.
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2. Apparatus

Wing beat analyzerWing beat analyzer

Fig. 2. Schematics of the wing-beat analyzer. A. The wing stroke 
amplitude is measured by tracking the wing shadows produced 
from an infrared LED on top of a suspended fly within the arena. 
Yaw turning is then calculated by subtracting the wing-beat 
amplitudes of the left and right wings. B. Alignment of the wing 
shadow (striped area) over the cutaway mask (grey area). The 
shadow cast by the wings was laterally centered over the 
cutaway mask.

JoystickJoystick

Fig. 1. Joystick apparatus. A tethered fly is placed in a 
way so that it is standing upon a moveable platfom. In 
this way, the fly can move the platform with its legs  and 
push it to right or left. A photoelectric sensor is then 
detecting the position of the platform.

1. Introduction 

Fig 4. The nonlinear signature of the flight turning behavior is most strongly affected when synaptic 
output is blocked in both c105 and c232 neurons at the same time. Inhibiting the release of 
neurotransmitters in ech driver line alone does not have a significant effect on the S-Map curve slope 
(a, b). However, inactivation of both of them together reduces significantly the nonlinear signature (c). 
The images above each graph show the expression pattern of c232 (a), c105 (b), and of both drivers 
together (c).
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The S-map procedure (sequentially locally weighted global linear map) was used for the nonlinear prediction for the wing beat analyzer. It first 
creates a library set of vectors from the first half of the data. Then a single linearity parameter controls if the influence of the library vectors is 
linear or nonlinearly weighted by their respective distance to the vector used for the prediction.

Raw data from the Joystick were detrended by taking the first difference of the series for eliminating the short term correlations. The average 
mutual information (AMI) was used for estimating the embedding lag, thus taking into account nonlinear correlations.

Variability is an adaptive and ubiquitous feature of all our behaviors, which is actively regulated according to task demands. 
Behavioral variability explains why under similar circumstances, individuals will generate different actions. In humans at rest, 
the so-called default mode network (DMN) is activated, presenting characteristic, random-like activity fluctuations. 
Interestingly, remnants of these fluctuations in the suppressed DMN during a task explain much of the observed variability in 
the subject’s behavior. The fruit fly Drosophila can show random-like behavior, the temporal structure of which is 
mathematically related to that of the DMN in humans. This behavioral variability can also be operantly conditioned. 
Therefore, research into the mechanisms of the brain circuits giving rise to behavioral variability and operant learning in 
Drosophila will provide insights that may prove crucial for our understanding the role of DMN in many psychiatric diseases.  
The goal is to identify and characterize the neural generators of this spontaneity in the fly and the effects of spontaneity on 
operant learning and vice versa. For this purpose,  we use both a wing beat analyzer to record the spontaneous turning 
maneuvers of tethered flying Drosophila and a “Drosophila Joystick” to record spontaneous leg movements. This way, we can 
study and compare spontaneous behavioral variability in two completely different paradigms. 
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Neuronal correlates of the temporal structure of spontaneous actions

Fig 6. Representative recurrence plot of 
one of the tested flies. This is done by 
marking with dark points the near 
located neighbours of the reconstructed 
state space. The amount of successive 
dark points in the diagonal show how 
deterministic the series is (>0.9 for all 
the flies). In addition, an irregular 
pattern suggests that the time series is 
nonlinear. The quantitative data 
gathered from this plot did not show any 
clear differences among the groups.
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Fig 7. Nonlinear forecasting for the tested flies and the Lorenz chaotic system. 
Excluding the possibility of randomly generated uncorrelated (white) noise explaining 
the time series, the other possibility that has not been tested is correlated (colored) 
noise. The best way to overcome the problems associated with distinguishing linear 
stochastic processes from nonlinear deterministic ones, is nonlinear forecasting. 
Depending on the nature of the data, the correlation of predicted versus observed 
values show a different course for increasing forecasting intervals. In chaotic processes 
there is a fast decay of this correlation with time (as seen by the Lorenz system 
above). Interestingly, the nonlinear prediction of the the tested flies look rather like 
random uncorrelated noise.
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Fig 5. Fly behavior is not explained by a Gaussian linear process and nonlinearity 
can be assumed.  Since linear stochastic series are symmetric under time 
reversal, this statistic is used for testing if the data was generated from a 
stationary linear stochastic process.  For all of the flies tested (16), it shows a 
significant difference from the null hypothesis (a). However, nonstationarity or 
even random fluctuation of the test could be responsible of false positives. The 
surrogate data is generated by using a phase randomization procedure 
(maintaining mean and autocorrelation function of the original time series) (b). In 
addition the neural network tests of Teraesvirta and White and the Tsay test for 
nonlinearity show clear differences between the series generated by the flies from 
those from shuffling fly data (not shown).
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In the wing beat analyzer, we found a set of neurons that seem to be critical for the temporal structure of spontaneous 
turning behavior. We have started to compare and contrast these results with another, orthogonal behavioral modality. In 
addition, we applied different analysis algorithms as a way to test the generality of the flight findings. We could find 
evidence that nonlinear behavior is present in Drosophila on the ‘joystick’, and not only in turning behavior in the wing 
beat analyzer.  However, the results from the ‘joystick’ experiment do not let us state this conclusion with complete 
confidence. Nuerons in the c105 and c232 drivers seem to work as a nonlinear generator in the wing beat analyzer, butnot 
in the ‘joystick’, indicating that the generators may be specific to the behavioral modality. However, our analysis of the 
behavior on the ‘joystick’ platform is too preliminary to allow for any firm conlusions.

Acknowledgement: to Constantino Antonio García Martínez for the assistance in the analysis of the data obtained from the Joystick.
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