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Two genetically distinct forms of operant learningTwo genetically distinct forms of operant learning
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Operant self-learning Operant world-learning

In self-learning, 
only the fly’s own 
behavior is predic-
tive of the heat 
punishment

World-learning 
occurs when a 
predictive exter-
nal cue is added 
to a self-learning 
experiment

Self-learning was found to be indepen-
dent of cAMP singalling, but dependent 
on Protein Kinase C (PKC) and the tran-
scription factor FoxP. No further genetic 
components have been identified so far. 
In this work, we test polymorphisms in 
the Protein Kinase G (PKG) gene foraging 
(for), the radish mutants, defective in an-
esthesia-resistant memory (ARM) and 
the adenylyl cyclase mutant rutabaga. 
In addition, we probe for long-term 
memory (24h) of operant self-learning.

When a predictive stimulus is added to a 
self-learning experiment, flies preferen-
tially learn about this stimulus’ predic-
tive relationship to the heat punishment, 
rather than about their own behavior 
controling the heat. Consequently, the 
genetic components involved in these 
experiments are the same as in, e.g., Pav-
lovian situations, i.e., the cAMP cascade. 
Neither PKC nor FoxP are involved in this 
form of learning, despite the similarities 
to self-learning.

The operant self-learning 
mechanism appears to be 
evolutionary conserved 
among bilaterians.  The de-
pendence on PKC has been 
reported for the marine 
snail Aplysia, songbirds and 
mice.  FoxP-dependent 
self-learning was found in 
humans, birds and mice. 
PKC manipulations in mice 
suggest that the mecha-
nism may be implemented 
as PKG-dependent cerebel-
lar long-term depression 
(LTD) in these animals. 
Therefore, we tested two 
variants of the Drosophila 
PKG gene foraging, rover 
(forR) and sitter (fors). In 
Drosophila olfactory condi-
tioning, two parallel pro-
cesses encode two di�erent 
forms of memory, the ruta-
baga-dependent cAMP cas-
cade and RAP-like GTPase 
activating protein (rad-
ish)-dependent anesthe-
sia-resistant memory (ARM). 
To test for interactions of 
these genes with operant 
self-learning, we tested 
both rut and rsh mutants in 
a short version of the 
self-learning experiment, in 
which wild-type �ies fail to 
show a learned preference.      

Motivations

Is there LTM after self-learning?Is there LTM after self-learning?
Learning Learning Memory (24h)Memory (24h)
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Is Protein Kinase G involved in operant self-learning?Is Protein Kinase G involved in operant self-learning?
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ARM interacts with self-learningARM interacts with self-learning

N= 24 N= 22

p= 0.00636 p= 0.0123
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s]SummarySummary
We tested various candidate genes for their involvement in operant self-learning as well as for the existence of long-term (24h) 

memory after self-learning. We found tentative evidence for a weak long-term memory 24h after self-learning. We did not find 

conclusive evidence for variants of the PKG gene to show any difference in their long-term self-learning memory. We also could 

not find clear differences between the two PKG variants in immediate recall of self-learning. However, there seemed to be a dif-

ference in avoidance of the punishing heat-beam, which may be explained by different heat-sensitivity between rover and 

sitter. The radish mutant, defective in a RAP-like GTPase activating protein, appears to show self-learning in a short version of 

the self-learning task where wild-type flies fail to show a significant learning score. This result is reminiscent of analogous ex-

periments with rutabaga mutants, where the mutants also showed superior self-learning in the shortened task.


