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Abstract

Fast object tracking in real time allows convenient tracking of very large numbers of animals

and closed-loop experiments that control stimuli for many animals in parallel. We developed

MARGO, a MATLAB-based, real-time animal tracking suite for custom behavioral experi-

ments. We demonstrated that MARGO can rapidly and accurately track large numbers of

animals in parallel over very long timescales, typically when spatially separated such as in

multiwell plates. We incorporated control of peripheral hardware, and implemented a flexible

software architecture for defining new experimental routines. These features enable closed-

loop delivery of stimuli to many individuals simultaneously. We highlight MARGO’s ability to

coordinate tracking and hardware control with two custom behavioral assays (measuring

phototaxis and optomotor response) and one optogenetic operant conditioning assay.

There are currently several open source animal trackers. MARGO’s strengths are 1) fast

and accurate tracking, 2) high throughput, 3) an accessible interface and data output and 4)

real-time closed-loop hardware control for for sensory and optogenetic stimuli, all of which

are optimized for large-scale experiments.

Introduction

Automated animal tracking methods have become commonplace in the study of behavior.

They enable large sample sizes, high statistical power, and more rapid inference of mechanisms

giving rise to behavior. Existing animal trackers vary in computational complexity and are

often specialized for particular imaging configurations or behavioral measurements. Trackers

can assist in a wide range of experimental tasks such as monitoring activity, measuring

response to stimuli [1, 2], and locating body parts over time [3, 4]. Some trackers are designed

to track and maintain identities of multiple individuals occupying the same arena [5–8] while

others measure the collective activity of groups without maintaining identities or rely on physi-

cal segregation of animals to ensure trajectories never collide [9–12]. But few of these trackers
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are designed as platforms for high throughput, hardware control, and flexible experimental

reconfiguration.

Improvements in machine learning and template matching approaches to object localiza-

tion and classification have made it possible to efficiently train models that accurately track

and classify a variety of animal species and visually distinguish identities of individuals across

time [5, 6, 8, 13]. Tracking individual identity in groups requires resolving identities through

collisions where bodies are overlapping. FlyTracker and idTracker.ai train classifiers to assign

identities to individuals in each frame and also extract postural information such head and

limb position. In optimized experiments, these trackers can maintain distinct identities over

extended periods with minimal human intervention. Other trackers, such as Ctrax ToxTrac,

and Tracktor [7, 14, 15], track animals by segmenting them from the image background

and assign identities by stitching traces together across frames based on changes in position.

Although the classification accuracy can be quite high under optimal conditions, these meth-

ods generally require human intervention to prevent assignment error from propagating over

longer timescales even at low error rates (or they are used for analyses where individual iden-

tity is not needed).

Both approaches to identity tracking can be used to study complex social and individual

behaviors, but the computational cost of collision resolution means that tracking is generally

performed offline on recorded video data [16]. Furthermore, the need to record high-quality,

high-resolution video data can make it challenging to track animals over long experiments.

Some methods of postural segmentation require manual addition of limb markers [17], splines

fit in post-processing [18], or computationally heavy machine vision in post-processing [3, 4,

8]. In all cases, the need to separate tracking and recording can be rate-limiting for experi-

ments. Real-time tracking offers the benefits of allowing closed-loop stimulus delivery and a

small data footprint due to video data not being retained. In general, real-time tracking meth-

ods are less capable of tracking individuals through collisions because they cannot use future

information to help resolve ambiguities [11]. For that reason, real-time multiple animal track-

ers can fall back on spatial segregation of animals to distinguish identities or dispense with

identity tracking altogether [12, 16]. Some existing real-time trackers can track multiple ani-

mals (without maintaining their identity through collisions) in parallel and support a variety

of features such as modular arena design, and closed-loop stimulus delivery [19–22].

The tracking algorithms, software interface, hardware configurations, and experimental

goals of available trackers vary greatly. Some packages such as Tracktor and FlyWorld use a

simple application programming interface (API) and implement tracking through background

segmentation and match identities with Hungarian-like Algorithms that minimize frame-to-

frame changes in position [7, 16, 23]. Ethoscopes are an integrated hardware and software

solution that take advantage of the small size and low cost of microcomputers such as the

Raspberry Pi. They support modular arenas and peripheral hardware for stimulus delivery

[19] and can be networked and operated through a web-based interface to conduct experi-

ments remotely and at scale. Ethoscopes provide a hardware template and API for integrating

peripheral components into behavioral experiments, but the Ethoscope tracker is not currently

designed to operate independent of the hardware module. BioTracker offers a graphical user-

interface (GUI) that allows the user to select from different tracking algorithms with easily cus-

tomized tracking parameters or import and use a custom algorithm [24].

We wanted a platform that integrated many of the positive features of these trackers into a

single software package, while supporting genome-scale screening experiments in a flexible

way that would support the needs of labs that study diverse behaviors. We prioritized 1) fast

and accurate individual tracking that could be scaled to very large numbers of individuals or

experimental groups over very long timescales, 2) flexibility in the user interface that would
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permit a diversity of organisms, tracking modes, experimental paradigms, and behavioral are-

nas, 3) integration of peripheral hardware to enable closed-loop sensory and optogenetic sti-

muli, and 4) a user-friendly interface and data output format.

We developed MARGO, a MATLAB based tracking suite, with these goals in mind.

MARGO can reliably track up to thousands of individuals simultaneously in real-time for days

or longer (with limits only set by logistical challenges such as keeping animals fed). MARGO

has two tracking modes that allow it to distinguish either individuals or groups of individuals

that are spatially segregated. We show that traces acquired in MARGO are comparably accu-

rate to those of other trackers and are robust to noisy images and changing imaging condi-

tions. We also demonstrate that tracking works reliably with nonspecialist equipment (like

smart phone cameras). MARGO provides visual feedback on tracking performance that

streamlines parameter configuration, making it easy to setup new experiments.

Additionally, MARGO can control peripheral hardware, enabling closed-loop individual

stimulus delivery in high-throughput paradigms. Using adult fruit flies, we demonstrate three

closed-loop [25] applications in MARGO for delivering individualized stimuli to multiple ani-

mals in parallel. First we measured individual phototactic bias in Y-shaped arenas. Second we

quantified individual optomotor response in circular arenas. In the third assay, we configured

MARGO to deliver optogenetic stimulation in real-time. Though MARGO was developed and

tested with adult fruit flies, we show that it can be used to track many organisms such as fruit

fly larvae, nematodes, larval zebrafish and bumblebees. We packaged MARGO with an easy-

to-use graphical user interface (GUI) and comprehensive documentation to improve the

accessibility of the software and offer it as a resource to the ethology community. Though it

does not perform visual identity recognition or postural limb tracking, we believe that

MARGO can meet the needs of many large behavioral screens, experiments requiring real-

time stimulus delivery, and users looking to run rapid pilot experiments with little setup.

MARGO workflow

The core experimental workflow of a MARGO experiment (Fig 1A) can be briefly summarized

as follows: 1) define spatial regions of interest (ROIs) in which flies will be tracked, 2) construct

a background image used to separate foreground and background, 3) compute statistics on the

distribution of the number of foreground pixels under clean tracking conditions to facilitate

detection and correction of noisy imaging, 4) perform tracking. We found that constraining

the space in which an animal might be located significantly relaxed the computational require-

ments of multi-animal tracking. Because MARGO is designed for high-throughput experi-

ments, it needs to be convenient to define up to thousands of ROIs. MARGO has two modes

for defining ROIs. The first is automated detection that detects and segments regular patterns

of high-contrast regions in the image, such as back-lit arenas. The second prompts the user to

manually place grids of ROIs of arbitrary size. In practice, we find that ROI definition typically

takes a few seconds but can take as long a few minutes.

Following ROI definition, a background image is constructed for each ROI separately. Each

background image is computed as the mean or median (as configured by the user) image from

a rolling stack of background sample images. Tracking is performed by segmenting binary

blobs from a thresholded difference image computed by subtracting each frame from an esti-

mate of the background (Fig 1B). Background subtraction commonly suffers from two issues

with opposing solutions. The first is that subtle changes in the background over time introduce

error in the difference image, requiring continuous averaging or reacquisition of the back-

ground image. The second is that continuous averaging or reacquisition of the background

can make inactive animals appear as part of the background rather than foreground, making
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Fig 1. MARGO workflow, tracking algorithm, and sample behavioral box. A) Diagram of the user workflow to set up a new tracking experiment. Arrow color

indicates whether the setup step is required. Before tracking, users define an input source, define ROIs to track, initialize a background image used to separate

foreground and background, and sample the image statistics on a reference of clean tracking. Tracking parameters can be customized at multiple points (blue

arrows). B) Flowchart depicting the MARGO’s frame-to-frame tracking routine. Each frame consists of image processing (green) to segment foreground from the

background, noise estimation (magenta) to assess the quality of foreground segmentation and determine if the current frame can be tracked, and tracking (cyan) of

MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology
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them undetectable in the thresholded difference image. Constructing the reference for each

ROI separately mitigates these concerns by allowing the reference to be constructed in a piece-

meal fashion by adding a background sample image only when the animals have moved from

the positions they occupied in previous images of the background stack. The time needed to

establish a background image depends on the activity level of the animals and the number of

images in the reference stack. We typically find that 3-30 seconds are needed to initialize the

background image. Once a background image is established, tracking can begin. In each

frame, candidate blobs are identified as the blobs that are both 1) between minimum and max-

imum size threshold and 2) located within the bounds of an ROI. Candidate blobs are subse-

quently assigned to ROIs by spatial location. Within each ROI, candidate blobs are matched to

centroid traces by minimizing the total frame-to-frame changes in position within each ROI.

If the number of candidates exceeds the number of traces in a given ROI, only the candidates

closest to the last centroid positions of the traces are assigned. If the number of traces exceeds

the number of candidates, the candidates are assigned to the closest traces and any remaining

traces are assigned no position (i.e., NaN for that frame).

Degradation of difference image quality over time (due changes in the background, noisy

imaging, and physical perturbation of the imaging setup) constitutes a significant barrier to

long term tracking [15]. To address this problem, MARGO continuously monitors the quality

of the difference image and updates or reacquires the background image when imaging

becomes noisy. We refer to this collective process as noise correction. Prior to tracking,

MARGO samples the distribution of the total number of above-threshold pixels under clean

imaging conditions to serve as a baseline for comparison. During tracking, the software then

continuously calculates that distribution on a rolling basis and reacquires a background image

when the rolling sample substantially deviates from the baseline distribution.

Tracking accuracy and noise robustness

We performed a number of experiments and analyses to assess MARGO’s robustness to

tracking errors and comparability with other trackers. In these experiments, we tracked indi-

vidual flies, each alone in a circular arena, so that individual identity was assured by spatial

segregation.

We assessed the ability of MARGO to handle degradation of the difference image by repeat-

edly shifting the background image by a small amount in a random direction (2px, 2% of the

arena diameter, and 0.16% of the width of the image) to mimic situations where an accidental

nudge or vibration shifts the arena. MARGO was used to simultaneously record a movie of

individual flies walking in circular arenas and track their centroids. These tracks were the

ground truth for this misalignment experiment, and background shifting was implemented

digitally on the recorded movie. MARGO reliably detects the changes in difference image sta-

tistics associated with each of these events and recovers clean tracking by reacquiring the back-

ground, typically within 1 second (Fig 2A and 2B). Forcing reacquisition of the background

image has the disadvantage of resetting the reference with a single image, meaning that a nor-

mal background image built by median-filtering multiple frames spaced in time cannot be

computed immediately (background images made this way have two benefits: lower pixel

foreground binary blobs. MARGO’s tracking algorithm skips noisy frames and re-acquires the background image if many consecutive frames are deemed too

noisy to track. C) Schematic of a typical behavioral box used for tracking. Behavioral arenas are backlit with an LED illuminator and imaged with an overhead

camera. The tracking camera is fitted with an infrared filter to allow light visible to the animals to be controlled independently of the tracking illumination. A

diffuser panel between the LED backlight and the behavioral arenas makes the illumination even. The camera and illuminator are both connected to a computer

for real-time tracking and control via MARGO. D) Representative views of MARGO’s GUI. Blue inset shows the controls for setting tracking parameters, pink

inset the menu options for configuring experiments.

https://doi.org/10.1371/journal.pone.0224243.g001
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noise and fewer tracking dead spots because they do not include moving animals). This typi-

cally caused a reduction in tracking accuracy that is brief (<2s) and had little effect on the

overall correlation of the tracking data to the ground truth (r = 0.9998). Indeed, we found a

small effect on tracking error (mean 3.07± 2.5 pixels, which corresponds to 20% of a fly’s body

length at our typical imaging resolution) even when shifting the background every 2 seconds.

In our experimental set-ups, noise-induced background reacquisition was relatively rare, typi-

cally occurring fewer than 10 times over the duration of a two hour experiment.

Fig 2. MARGO tracking accuracy and robustness to imaging noise. A) Diagram of the background image shifting scheme used to

simulate the kind of background inaccuracy that can happen in long experiments. B) Trial-triggered median tracking error centered

on reference shifting. C) Median error of tracking performed on the same video at different levels of compression. Below: sample

images. D) Median tracking error versus different levels of added noise. Pixel noise was manually added to the binary threshold

image downstream. Below: sample images with estimated fly position (red circle). E) Sample trace comparison and F) log

distribution of tracking error between traces acquired from the same video in both MARGO and Ctrax. The 95% confidence interval

of the above means are shown but are within the line thickness.

https://doi.org/10.1371/journal.pone.0224243.g002
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We tested MARGO’s sensitivity to video compression by compressing and tracking a video

previously captured during a real-time tracking session. The centroid position error of traces

acquired from compressed videos were calculated by comparing them to the ground-truth

traces acquired on uncompressed images in real time. MARGO showed sub-pixel median

tracking error up to 3000-fold compression (Fig 2C). We further tested the robustness of

MARGO to noisy imaging by digitally injecting pixel noise (by randomly setting each pixel to

True with a fixed probability) into the thresholded difference image of each frame of a video

previously acquired and tracked under clean conditions. Noise was added downstream of

noise correction and upstream of tracking to simulate tracking under conditions where noise

correction is poorly calibrated. We observed sub-pixel median tracking error up to 20%pixel

noise (Fig 2D). In practice, we find it easy to create imaging conditions with noise levels <1%

pixel noise without the use of expensive hardware.

To compare the tracking accuracy of MARGO to a widely used animal tracker, we fed

uncompressed video captured during a live tracking session in MARGO into Ctrax [14] and

measured the discrepancy between the two sets of tracks. Overall we found a high degree of

agreement between traces acquired in MARGO and Ctrax (Fig 2E and 2F). We attribute the

majority of discrepancies to minor variations in blob size and shape arising from differences

in background segmentation. It is worth noting that although Ctrax flagged many frames for

manual inspection and resolution, for comparability we opted not to resolve these frames and

instead restricted our analysis to the automatically acquired traces. (Ctrax primarily uses these

flags to draw user attention to tracking ambiguities through collisions, which did not happen

in our experiment because flies were spatially segregated.) Manual inspection of tracked

frames with error larger than 1 pixel revealed that most major discrepancies occurred in one of

two ways: 1) short periods between the death and birth of two traces on the same animal in

Ctrax, or 2) identity swaps in Ctrax between animals in neighboring arenas. These errors may

be attributable to our inartful use of Ctrax.

High-throughput behavioral screens

We designed MARGO with high-throughput behavioral screens in mind, with hundreds of

experimental groups, each potentially containing hundreds or thousands of animals. Many

features in MARGO’s GUI have been included to reduce the time needed to establish success-

ful tracking, including automated ROI detection and visualizations of object statistics and the

effects of parameters. Configuring tracking for experiments with hundreds of individuals typi-

cally took between 2-5 minutes. Additionally, we added the ability to save and load parameter

and experimental configurations.

The speed of the tracking algorithm permits the tracking of very large numbers of animals

simultaneously in a single field of view (facilitating certain experimental designs, like testing

multiple experimental groups simultaneously). To demonstrate MARGO’s throughput, we

continuously tracked 960 flies at 8Hz for more than 6 days (S1 Video). Flies were singly housed

in bottomless 96-well plates (Fig 3A) placed on top of food and were imaged by a single over-

head camera. The appearance of the arenas changed substantially over 6 days due to evapora-

tion of water from the fly food media, condensation on the well plate lids, and egg laying.

Despite these changes, the quality of centroid traces and acquisition rates appeared stable

throughout the experiment (Fig 3B). The overall activity level of flies decreased over the dura-

tion of the experiment (Fig 3C). The flies’ log-speed distributions generally exhibited two dis-

tinct modes: a low mode consistent with frame-to-frame tracking noise and a higher mode

consistent with movement of the flies (Fig 3D) [26, 27]. Individual flies varied in the relative

abundance of these two modes. We defined a movement threshold as the local minimum

MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology
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Fig 3. MARGO tracking throughput. A) Image of 10 single-fly housing plates from the overhead tracking camera. B) Sample

tracks from the same fly on days 1 and 6. C) Fly speeds at three representative scales: heatmap of individual speed over the

duration of the experiment (top), heatmap of individual speed from a three hour period (middle), raw speed traces from twenty

individuals from a three minute period (bottom). Activity of most flies decreased over the six day duration. D) Individual

kernel density estimates of log speed over the duration of the experiment. Column order was sorted by mean individual bout

MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology
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between these two modes and parsed individual speed trajectories into movement bouts by

identifying periods of continuous movement above the threshold. Sorting flies by the average

length of their movement bouts revealed a trend of increasing mean and magnitude of the

higher “movement” mode (Fig 3D), i.e., flies that walked longer tended to walk faster.

To measure MARGO’s performance as a function of the number of ROIs, we recorded the

mean real-time tracking rate while varying the number of tracked ROIs from a high-resolution

(7.4MP) video composed of the same single-arena video repeated 2400 times in a grid. We

found that the frame-to-frame latency scaled linearly as a function of the number of ROIs

tracked (Fig 3E). On modern computer hardware (intel i7 4.0GHz CPU), we measured track-

ing rates of 160Hz for a single ROI down to 5Hz for 2400 ROIs. MARGO could plausibly track

up to 5000 animals at lower rates (1 Hz), potentially fast enough for experiments monitoring

changes in activity level changes over long timescales, like circadian experiments.

Large behavioral screens can potentially generate hundreds of hours of data on thousands

of animals and massive data files even without recording videos. We found that experiments

tracking many hundreds of animals over multiple days made raw data files too large to hold in

memory on typical computers. We designed a custom data container and an API to easily

work with data stored in large binary files. MARGO’s raw data API includes methods to

batch-process multiple tracking experiments or single datasets too large to hold in memory

(see user documentation).

Customization and versatility

To demonstrate MARGO’s ability to prototype experiments without the need for specialized

hardware, we ran a minimal tracking experiment using only commonly available materials.

Individual fruit flies were placed into the wells of a standard 48 well culture plate. The plate

was put in a cardboard box (to reduce reflections) on a sheet of white paper as a high contrast

background. Movies were recorded on a 1.3MP smartphone camera using natural room light

as illumination and imported into MARGO for tracking (S2 Video). Tracks and movement

bouts acquired under these conditions showed no apparent differences to those acquired

under our normal experimental conditions (custom arenas over diffused LED illuminators in

light-sealed imaging boxes). However, we did find that the lower contrast illumination of this

setup increased imaging noise and narrowed the range of parameters that worked for segmen-

tation, but had no apparent effect on the accuracy of traces once calibrated.

MARGO was developed for high-throughput ethology in fruit flies, but many small organ-

isms used for high-throughput behavior are more translucent than adult flies. To assess MAR-

GO’s tracking robustness on such organisms, we used MARGO to track videos of larval Danio
rerio, Caenorhabditis elegans, larval Drosophila (S3–S5 Videos), and also bumblebees (Bombus
impatiens) (S6 Video). As expected, the translucency of these organisms narrowed the func-

tional range of some tracking parameters, but MARGO’s real-time tracking feedback made it

easy to dial in these parameters. Sample traces acquired from other organisms were qualita-

tively similar to those acquired with adult flies, suggesting that MARGO works with a variety

of organisms.

We gave MARGO a graphical user interface (GUI) to make it accessible to users unfamiliar

with MATLAB or programming in general (Fig 1D). We generally find that new users easily

learn to use both the core work-flow and parameter customization. The typical setup time of a

tracking experiment for trained users ranged between a few seconds (with saved parameter

length in ascending order. E) Acquisition frame rate as a function of number of ROIs tracked in a simulated experiment. The

acquisition rate decreased exponentially, consistent with a linear increase in inter-frame interval as a function of ROI number.

https://doi.org/10.1371/journal.pone.0224243.g003
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profiles) to a few minutes (under novel imaging conditions). The utility of the GUI extends to

customization of analysis, visualization, and input/output sources such as videos, cameras, dis-

plays, and COM devices. Descriptions and instructions for these use cases, including defining

custom experiments via the API, are available in MARGO’s documentation.

Integrating hardware for closed-loop experiments

Real-time tracking allows the delivery of closed-loop stimuli that depend on the behavior of

animals. MARGO offers native support for the hardware needed for closed-loop experiments

including: cameras for real-time image acquisition, projectors/displays for visual stimuli, and

serial COM devices for digital control of other peripheral electronics. COM devices include

programmable microcontrollers (like Arduinos) that make it relatively simple to control a

wide variety of devices. MARGO was designed to detect and communicate with such COM

devices devices to integrate real-time feedback from sensors and coordinate closed-loop con-

trol of peripheral hardware.

We ran experiments with a custom circuit board to measure individual phototactic prefer-

ence (the “LED Y-maze”). In this assay, individual flies explored symmetrical Y-shaped arenas

with LEDs at the end of each arm (Fig 4A and 4B, S7 Video). For all arenas in parallel, real-

time tracking detected which arm the fly was in at each frame. At the start of each trial, an

LED was randomly turned on in one of the unoccupied arms. Once the fly walked into one of

these two new arms, MARGO turned off all the LEDs in that arena. Immediately after these

choice events, a new trial was initiated by randomly turning on an LED in one of the now

unoccupied arms. This process repeated for each fly independently over two hours, and

MARGO recorded which turns were toward a lit LED (positive phototaxis) and which were

away (negative phototaxis) (Fig 4C). Tiling many such mazes on a single board yielded the

experimental throughput for which MARGO is well-suited. Overall, we recorded choices from

over 3,600 individuals, representing more than 830,000 choices in total.

To assess MARGO’s capacity to reveal behavioral differences between genotypes, we tested

a variety of wild type strains in the LED Y-maze. All strains exhibited a significant average pos-

itive phototactic bias (mean phototactic indices ranging from 0.55 to 0.80, p-values<<10−6 by

t-test). In contrast, blind flies (Norp-A mutants) and flies under identical circumstances

but with unpowered LEDs, showed mean “preferences” indistinguishable from 0.5, consistent

with random choices (Fig 4D). The wild type lines tested showed significant variation in popu-

lation mean (one-way ANOVA; F(6,1943) = 118.2, p<<10−6) and population variability (one-

way ANOVA on Levene-transformed data; F(6,1943) = 19.29, p<<10−6).

We collected LED Y-maze data from a single cohort of wild-type (Berlin-K, n = 144) flies

over the first 8 days post-eclosion to profile phototaxis throughout development (Fig 4E).

Flies displayed a significant average negative light bias (0.417, p<<10−6) on the day of eclo-

sion but transitioned to a positive light bias of 0.663 (p<<10−6) by 7 days post-eclosion. This

assay has structural similarities to an assay we previously used to measure locomotor hand-

edness [28], the tendency of individuals to turn left or right when going through the center

of the arena. In the LED Y-maze assay, locomotor left-right decisions were made in superpo-

sition with light-dark choices. Flies typically make hundreds of choices over the course of an

experiment, giving us enough data to examine the turn bias of individuals in all four left-

right/light-dark combinations. We divided trials into two groups based on whether the lit

LED appeared to the right or left of the choice point. We found that the mean turn bias but

not the mean phototactic bias differed between these two conditions (Fig 4F) [29]. Categoriz-

ing trials this way revealed that the rank order of both turn bias and phototactic bias are anti-
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Fig 4. High-throughput phototactic assay in Y-shaped arenas. A) Schematic of the behavior box with an LED Y-maze array in

place. B) Diagram of a single LED Y-maze and trial structure. New trials initiate by turning on (yellow) an LED in one of the two

unoccupied maze arms. The trial ends when then animal turns into a new arm and the lit LED is turned off (gray). Each turn is

scored for both handedness and phototactic preference. C) Raw turn data for two sample flies. Each individual trial consists of both

a phototactic and handedness choice. Individual mean turn biases range from 0 (all left turns) to 1 (all right turns). Light biases

range from 0 (all photopositive turns) to 1 (all photonegative turns). D) Comparison of individual average phototactic bias

distributions for different wild-type fly lines. Blind flies (NorpA) and flies tested with all LEDs turned off (DGRP-105 dark) are

included as negative controls. Horizontal dashed line indicates random bias at p = 0.5. E) Distribution of individual average

phototactic biases for the same cohort of flies over the first 8 days post-eclosion. F) Individual mean phototactic and right turn

biases calculated on all trials sub-divided by into trials where the lit arm of the maze was to the right or left of the choice point. Data

points are colored by either the individual mean right turn bias (left panel) over all trials or the individual mean phototactic bias

(right panel) over all trials. The rank orders of both turn bias and phototactic bias are anti-correlated (r = -0.38 and -0.63

respectively) between trials where right or left arm was lit.

https://doi.org/10.1371/journal.pone.0224243.g004
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correlated (r = -0.38 and r = -0.63 respectively) between the two conditions, suggesting that

both individual phototactic bias and locomotor handedness bias affect each choice.

We adapted an optomotor paradigm [30] to a high-throughput configuration to test MAR-

GO’s ability to deliver a precise closed-loop stimulus with low latency. In this paradigm, an

optomotor stimulus consisting of a high-contrast, rotating pinwheel, centered on a fly, is pro-

jected on the floor of the arena in which it is walking freely. On average, such optomotor sti-

muli evoke a turn in the direction of the rotation to stabilize the visual motion [31]. The center

of the pinwheel follows the position of the fly as it moves around the arena so that the only

apparent motion of the stimulus is around the fly. Thus, this stimulus is closed-loop with

respect to each animal’s position and open-loop with respect to its rotation velocity.

To implement this paradigm, we constructed a behavioral platform with a camera and an

overhead mounted projector targeting an array of flat circular arenas (Fig 5A). To target a

stimulus to a fly based on its coordinates in the tracking camera, MARGO had to learn the

mapping of camera coordinates to projector coordinates. We added a feature to locate small

dots displayed by the projector with the camera. From the position of these dots in camera

coordinates, we constructed a registration mapping from the camera FOV to the projector

display field. Using this mapping, we programmed MARGO to use the real-time positions of

flies to project pinwheel stimuli independently to 48 freely moving individuals simultaneously

(Fig 5B, S8 Video). To ensure faithful coordination between the tracking and stimulus, the

tracking rate was matched to the refresh rate of the display at 60Hz (which is below the flies’

flicker-fusion rate, meaning this stimulus produces beta movement apparent motion [32]; see

Discussion).

While optimizing this assay, we observed that optomotor responses could be reliably elic-

ited, provided individuals were already moving when the pinwheel was initiated. This is con-

sistent with previous observations of optomotor responses depending on arousal state [33, 34].

We therefore configured MARGO to stimulate with the pinwheel each fly when: 1) it was mov-

ing 2), a minimum inter-trial interval had passed, and 3) it was a minimum distance away

from the edge of the arena. The inter-trial interval helped prevent behavioral responses from

adapting, and provided a baseline measurement period where no stimulus was present. Mini-

mum distance to the edge ensured that the stimulus occupied a significant portion of the ani-

mal’s field of view.

We characterized the optomotor behavior of wild type flies in a two hour experiment with

two second pinwheel stimuli and a minimum inter-trial interval of 2s (Fig 5C). In total, over

300,000 trials were recorded from more than 1,800 flies, assayed in groups of up to 48 flies

simultaneously. For each fly, we calculated an optomotor index [35] as the fraction (normal-

ized to [-1,1]) of body angle change that occurred in the same direction as the stimulus

rotation over the duration of the stimulus. On average, flies displayed reliable optomotor

responses (mean index = 0.358, p<<10−6) when stimulated with high-contrast pinwheels (Fig

5D). We observed significant individual variation in optomotor index (Fig 5E) as well as the

number of trials each fly experienced, reflecting individual variation in the fraction of time

walking.

To characterize the psychometric properties of this behavior, we randomly varied pinwheel

contrast, angular velocity, and spatial frequency simultaneously on a trial-by-trial basis. Mean

optomotor indices increased with pinwheel contrast, plateauing over much of the dynamic

range of the projector, starting around 25% contrast (Fig 5F). Similarly, optomotor indices

increased with both stimulus spatial frequency and angular speed, peaking at 0.18 cycles/

degree and 360 degrees/s respectively (Fig 5G). The population mean optomotor index

reversed at high combined values of spatial frequency and angular speed due to the apparent

reversal of the stimulus at frequencies higher than the refresh rate of the projector.
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Fig 5. High-throughput optomotor assay implementation in MARGO. A) Schematic of the optomotor arenas and behavioral

box. B) Diagram of a single arena and optomotor stimulus. Trials begin with a pinwheel stimulus, centered on the fly. For each trial,

the rotational direction (red arrow) of the stimulus is randomized. As the animal moves, the pinwheel position is updated to stay

centered on the fly. Trials end when the stimulus is removed after 2s. C) Four sample raw individual angular velocity time series.

Flies typically respond to optomotor stimuli by turning in the direction of the rotation of the stimulus. Shaded rectangles indicate
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High-throughput optogenetic experiments

To test the versatility of MARGO, we used its API to implement high-throughput closed-

loop optogenetic experiments using a digital projector to target individual flies expressing

CsChrimson [36, 37] with flashing red light contingent on their behavior (Fig 6). We used a

commericial Optoma S310e DLP projector which, when displaying red light ([255 0 0] RGB

code), had a spectral range of 570 nm to 720 nm with a peak at 595 nm. Light stimulation fre-

quency was set to the projector refresh rate (60Hz) and its intensity to the maximum, if not

otherwise specified.

As a first experiment, we tracked the flies in a Y-Maze shaped like that in Fig 4A, but

with no LEDs. Whenever a fly entered a designated arm, MARGO projected red light on it.

Flies expressed CsChrimson in bitter-taste receptor neurons using the driver Gr66a-GAL4.

MARGO recorded the fractional time spent in the lit arm (occupancy) and the number of

entries into the lit arm (entries). We observed a modest increase in the aversive effects of opto-

genetic stimulation (reduced occupancy and entries) with light intensity (Fig 6A.1), whereas

increasing stimulation frequency did not elicit any obvious change in aversion (Fig 6A.2). To

test the robustness of the experiment to changes in the fictive conditioning stimulus, and to

exclude the effects of visual cues, we expressed CsChrimson in heat sensitive neurons targeted

by Gr28bd+TrpA1-GAL4 in norpAP24 blind flies. This experiment is conceptually analogous to

spatial learning in the heat-box, where flies are trained to avoid one side of a dark, heatable

chamber [38–45]. While blindness only marginally affected the time spent in the lit arm (the

blind flies with Chrimson driven in heat-sensitive neurons still avoided occupying the lit arm

at similar rates to seeing flies with Chrimson in bitter-sensitive neurons), the reduction in

entries into the lit arm, observed in the seeing flies, was abolished (Fig 6A.3). These results sug-

gest that vision is a key sensory modality informing the decision to enter an arm, but not for

the decision of how much time to spend in an arm, once entered.

Analogous to a different heat-box experiment [46], optogenetic stimulation was made con-

tingent on locomotor speed rather than position. In the same circular arenas as the optomotor

experiments above (Fig 5A), the red light was switched on under two distinct conditions

enforced in separate experimental blocks: 1) whenever the walking speed of the flies exceeded

a threshold of 6.8 mm/s and 2) whenever the walking speed fell below that same threshold.

The overall 64 minute experimental protocol consisted of 8 periods of 8 minutes each. The

periods alternated between a baseline period, where the light was permanently switched off,

and the two reinforcement periods where the light was contingent on either fast walking or

slow walking/resting, respectively (Fig 6B.1 and 6B.2). As in the heat-box experiments, flies

increased their walking speed when punished for walking too slowly. However, punishing fast

walking failed to significantly decrease walking speed. Reminiscent of the induction of ‘learned

helplessness’ in yoked control animals in the heat-box [46], flies trained with these conflicting

schedules of punishment, significantly reduced their walking speed in the baseline periods

without optogenetic stimulation, in comparison to control animals which did not express any

CsChrimson (Fig 6B.3).

the direction of pinwheel rotation, line color angular acceleration. D) Trial-triggered average optomotor response across all

individuals. Change in body angle (left) is relative to body angle at stimulus onset. Sign indicates turns with (positive) or against

(negative) the direction of stimulus rotation. E) Comparison of the observed distribution of individual average optomotor indices

(n = 1,860) to the distribution expected under a null model in which all flies turn with identical statistics, generated by bootstrap

resampling. F) Population average optomotor index as a function of stimulus contrast (0-1). Pinwheel contrast was randomly

varied on a trial-by-trial basis. G) Average optomotor index as a function of stimulus spatial frequency and stimulus angular

velocity.

https://doi.org/10.1371/journal.pone.0224243.g005
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Fig 6. Optogenetic closed-loop experiments with MARGO. A.1) Top: Fraction of time spent in the arm of a Y-maze which was triggered to optogenetically

stimulate flies expressing CsChrimson in bitter taste receptor neurons. Bottom: Portion of arm entries into the reinforced arm. Light green boxes are control

flies not fed ATR; dark green experimental flies are fed ATR. Red line indicates chance rates. Individual points are flies. Even at the lowest intensity (50%), flies

show a robust avoidance of the reinforced arm in a Y-Maze. Increasing light intensity (x-axis) further decreases (slightly) the lit arm occupancy time and the lit

arm entries even further. Here and elsewhere �:p<0.05, ��:p<0.01, ���:p<0.001. A.2) As in A.1, but varying the frequency of the optogenetic stimulation.

Frequency had little effect on the occupancy or rate of entry into the reinforced arm. A.3) Blind norpAP24;Gr28bd+TrpA1>Chrimson flies, expressing

Chrimson in heat-sensitive neurons, also show decreased occupancy in the lit arm, whereas the fraction of entries into the lit arm appears unchanged

compared to control flies not fed ATR. B.1) Example walking speed traces of an individual fly in circular arenas stimulated upon when above or below

(depending on trial period) a speed threshold 4 px/s. Line color indicates which reinforcement paradigm was used in each period. Initial (t1) and final (t4)
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Discussion

We developed MARGO as a platform for a wide variety of behavioral paradigms and organ-

isms, all at high throughput for large-scale experiments (like genetic screens, measuring indi-

viduality and characterizing psychometric response curves). MARGO’s tracking algorithm,

interface, and data footprint are lightweight, making it perform well in applications like real-

time centroid tracking. Conversely, it is not made for harder computational tasks like main-

taining the identity of multiple animals in the same compartment. But the ability to rapidly

define ROIs, and track individuals in them, enables MARGO to easily coordinate low-latency,

closed-loop stimulation for psychometric and optogenetic experiments. Furthermore, by pack-

aging MARGO in a GUI and thoroughly documenting its usage and API, we hope to make it

accessible both to new users with little programming experience and advanced users develop-

ing custom experimental paradigms.

When ROI boundaries are drawn along physical barriers, individual identities can be main-

tained indefinitely through ROI identity, thus removing the requirement for human supervi-

sion and intervention. We found that insisting on spatial segregation ultimately relaxes the

computational requirements enough that thousands of individuals can be tracked in real time.

In the future, real-time tracking that maintains individual identity without physical barriers

may be possible, perhaps as an extension of current methodologies that exploit neural net-

works to track individuals offline [8, 13]. MARGO’s interface assists in the automated defini-

tion of up to thousands of ROIs. An ROI-based architecture can also be used to distinguish

groups rather than individual identities by separating groups into distinct arenas. This

configuration therefore allows multiple groups, as well as individuals, to be tested in parallel.

Long-term automated behavioral measurement has great potential in the fields of sleep,

circadian rhythms, pharmacology, and aging, among others. MARGO offers many features

useful for activity measurement over long timescales, including rapid experimental setup,

small data footprint, and built-in utilities for handling large data sets. For example, over a

week we tracked the behavior of 960 flies simultaneously as they walked in the wells of custom

96-well plates (Fig 3). Such throughput can be applied to comparisons among individuals,

genotypes, or treatment groups.

With built-in hardware support for cameras, displays, and peripheral electronics, MARGO

enables open- and closed-loop stimulus-evoked ethology on a large scale. Built-in features sup-

porting projector displays, like camera-projector registration, facilitate a wide variety of visual

and optogenetic experiments (Figs 5 and 6). Native detection and communication with serial

COM devices further extends these capabilities by providing a generic interface for a wide vari-

ety of peripheral devices, such as the LED controllers we used for the LED Y-maze (Fig 4).

Taken together, MARGO is a multi-purpose platform for coordinating hardware inputs and

outputs for high-throughput ethology.

Between our two closed-loop visual stimulation experiments (LED Y-maze and optomotor

assay), we screened nearly 5,000 animals over hundreds of thousands of trials, allowing the

precise characterization of both individual- and population-level behavior. With the experi-

ments themselves representing less than a week of testing, these platforms could be used

for large behavioral screens of hundreds of strains. In the LED Y-maze, we showed that

baseline periods are highlighted (see B.3). Green line indicates the speed threshold. B.2) Walking speeds for all periods and all flies. norpAP24;Gr28bd+Trp
A1>Chrimson flies increase their walking speed specifically during periods when stimulation is contingent on slow walking or resting (lit when stop),

compared to lit when running periods and controls without the optogenetic effector norpAP24;UAS-Chrimson. B.3) Walking speed during the initial baseline

period did not differ between experimental and control flies (t1). In contrast, after three reinforcement periods, walking speed in experimental flies was

significantly lower than in control flies (t4). All flies in B were fed with all-trans-retinal.

https://doi.org/10.1371/journal.pone.0224243.g006
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individuals displayed idiosyncratic biases in both phototactic preference and locomotor hand-

edness simultaneously, as observed previously in separate assays [28, 47]. The wild-type fly

lines we screened displayed population level differences in both mean preference and variabil-

ity in phototactic bias [29]. Furthermore, the mean of one strain (Berlin-K) shifted from nega-

tive to positive over the first week post-eclosion, as was reported previously [48]. Interestingly,

we observed that flies with a high right-turn probability were more likely to turn toward the

light when it was to the right of the choice point and that the opposite was true of flies with a

high left-turn probability. We observed a similar but stronger effect of phototactic bias on

locomotor handedness (e.g. flies with a high phototactic bias were more likely to turn toward

the right when the light was on the right). Together these results demonstrate measurable

effects of phototactic bias and handedness in a task that probes both simultaneously. Thus, we

found that both individual light and handedness biases influence light/turn behavior on a

choice-by-choice basis. As responses to light are ethologically relevant [49], the interplay of

individual behavioral biases may have fitness consequences for wild flies.

In the optomotor experiment, we demonstrated that, using closed-loop stimuli delivered

from a projector, MARGO can quantify individual optomotor responses of dozens of flies

simultaneously. Consistent with previous findings [33, 34], we saw that stationary flies did not

exhibit strong optomotor responses, consistent with the idea that this reflexive behavior may

be state-dependent [50–54]. While all animals tested exhibited the optomotor response to

some degree, we observed a broad distribution of individual optomotor indices, suggesting

that individuals respond idiosyncratically to the same stimulus, as has been found previously

in other spontaneous and stimulus-evoked behaviors [17, 28, 47, 49, 55]. We suspect that the

success of this assay may be partially due to tightly centering the pinwheel centered on the ani-

mal as it moves, which is possible because of MARGO’s low latency.

Our optogenetic experiments provide a proof of principle that high-throughput closed-loop

manipulation of neural activity is feasible (Fig 6). Using different driver lines to activate neu-

rons under both spatial (Fig 6A) and locomotor (Fig 6B) contingencies, optogenetic stimula-

tion reliably altered fly behavior in the expected directions. These experiments also revealed

that flies use visual elements of the projector rig to orient when the stimulus was nominally off,

and that optogenetic punishment can induce learning effects outlasting the stimulation itself.

These results also remind us about a general limitation of studying freely moving animals: the

large number of degrees of freedom that such behavior enables can make it difficult to causally

relate biological manipulations to specific mechanisms. For instance, without prior knowledge

of the function of the optogenetically targeted neurons, it would not have been immediately

clear if our manipulation affected reinforcing neurons or neurons involved in motor control,

which could also lead to altered occupancy of the lit arm in the Y-Maze. Likewise, a screen for

neurons that are required for non-random entry into optogenetically-reinforced arms of the

Y-maze would yield blind flies, as the flies in our assay apparently use visual cues to identify

which arms are reinforced before entering them.

Behavioral experiments are frequently more complex than tracking objects in a dish. Such

experiments could require complex arena geometries, data streams from external sensors, con-

trol of peripheral hardware, and access to measurements of behavior in real time. Bonsai is an

open-source, visual programming framework for combining input and output streams of mul-

tiple devices such as cameras, microcontrollers, and other peripheral devices and defining

experimental architecture from beginning to end. MARGO can manage these same features,

making both programs well suited to implementing new behavioral paradigms. As a point of

contrast, MARGO makes assumptions about the core workflow of the experiment and there-

fore only offers customization at a particular node in the workflow (between tracking and data

output on each frame). We designed MARGO around a workflow what we think is likely to be
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useful to many users, and can be tweaked to meet specific experimental needs, hoping that this

structure will simplify implementation of custom experiments. Specifically, MARGO can auto-

matically generate templates for new experiments with custom inputs and outputs within the

GUI. We have also included a tutorial for defining custom experiments in MARGO’s docu-

mentation. In practice, we find that new experiments can typically be defined in one or two

custom functions, given familiarity with the API.

Animal tracking platforms are evolving to meet the diverse needs of the ethology, neurosci-

ence and behavioral genetics communities. See Table 1 for a comparison of features of several

contemporary tracking programs. Trackers can be broadly described as falling into one of two

categories: 1) real-time trackers [1, 12, 19, 20, 22, 24] with potential for high throughput and

hardware control and 2) offline trackers [5–8, 14, 15] with the potential to maintain individual

identities (without using spatial segregation) and/or track body parts. Hardware integration is

a natural extension of real-time trackers since many stimulus paradigms are contingent on

behavior. While trackers in the second category are currently unsuitable for real-time applica-

tions, they offer the notable benefits of being able to study fine-scale postural and social behav-

iors. The ability to record video in parallel with tracking and peripheral hardware control

means MARGO can be used upstream of offline trackers, making it possible to analyze social

dynamics or postural features in response to closed-loop stimuli. Among this array of options,

MARGO is optimized for the throughput characteristic of Drosophila and other genetic model

organisms like C. elegans. MARGO has the flexibility to accommodate the experimental diver-

sity of techniques in neuroethology. Thus, we envision MARGO’s niche as a versatile platform

Table 1. Comparison of open-source animal tracking packages. Trackers as falling into two rough categories: 1) real-time trackers capable of very high throughput and

potential hardware integration, and 2) offline trackers capable of tracking body parts and/or maintaining individual identities without spatial segregation.

MARGO Ethoscopes BioTracker Bonsai ToxTrac flyTracker Ctrax idTracker Tracktor

Real-time real-time or

offline

real-time real-time or

offline

real-time or

offline

offline offline offline offline offline

Peripheral

hardware

integration

yes yes camera only Yes no no no no no

Supports

experimental

models

yes yes no depends no no no no no

Custom

hardware

required

none ethoscope none none none none none none none

Track multiple

animals per

ROI

yes yes yes depends yes yes yes yes yes

Resolves

identity

through

collisions

no no no depends yes yes yes yes no

Limb, head,

midline, wing

tracking

no no no depends no yes yes yes no

GUI yes yes yes depends yes yes yes yes no

ROI definition automatic or

grid

grid or manual depends automatic or

manual

automatic grid or

manual

single ROI manual

drawing

manual

definition

Notes fast tracking

with

hardware

control

low-cost,

easily-scalable

hardware

module

allows user

defined

tracking

algorithms

visual

programming to

combine many

data streams

simple setup

and UI (MS

Windows

only)

uses feature

detectors to

track body

parts

widely used,

has behavioral

analysis

toolbox

maintains

many

individual

IDs

well-suited to

non-static

background

https://doi.org/10.1371/journal.pone.0224243.t001
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for experiments operating at high throughput to measure individual behavior and deliver

closed-loop sensory and optogenetic stimuli.

Methods

Repositories

MARGO’s code is available in the MARGO repository on github. All behavioral data is avail-

able on Zenodo. Instrument schematics are available on github at: de Bivort Lab schematics

repository.

Software

The MARGO GUI, tracking algorithm, and all analysis software were written in MATLAB

(The Mathworks, Inc, Natick, MA). Detailed descriptions of the functions and use of the

MARGO GUI, ROI detection, background referencing, tracking implementation, noise cor-

rection, and data output are available in MARGO’s documentation. Optomotor stimuli were

crafted and displayed using the Psychtoolbox-3 for MATLAB. Software for control of all cus-

tom electronic hardware was written in C using Arduino libraries.

Organism genotypes and rearing

Unless otherwise specified, the genotype of all fruit flies tested was a strain of Berlin-K that we

inbred for 13 generations prior to these experiments. Gr66a-G4 (from the G. Turner lab), nor-
pAP24 (from the M. Heisenberg lab), TrpA1-G4 (FlyBase ID: 27593), Gr28bd-G4 (FlyBase ID:

57620), UAS-20xCsChrimson (FlyBase ID: 55135) were the lines used in the optogenetic

experiments. Tracking experiments were performed with mixed sex flies 3-5 days post-eclo-

sion unless otherwise noted. Flies were raised on standard conrmeal/dextrose formula media

(Harvard Fly Core Facility) under 12 h/12 h light and dark cycle in an incubator at 25˚C and

40% humidity. Animals were imaged and singly-housed on food in modified 96 well plates

(Fly Plates, FlySorter LLC) for all multi-day tracking experiments. C. Elegans were housed in a

custom platform on agarose media and were composed of multiple strains as described in the

WorMotel publication [56]. Drosophila larvae CantonS on 2% agarose media mixed with fruc-

tose in a gradient (0-300mM) along one axis. Larval zebrafish were HC:GCaMP6s.

Behavioral acquisition

All real-time tracking images were captured with USB or GigE cameras from Point Grey (Fire-

fly MV 13SC2 and BFLY-PGE-12A2M-CS). Images for the minimal hardware setup were

acquired with an iPhone 5s 1.3MP camera. Cameras used in real-time experiments were fitted

with a long-pass 87 Kodak Wratten infrared filter with a cutoff frequency of 750nm and illumi-

nated with infrared LEDs centered at 940nm (Knema LLC, Shreveport, LA). Acquisition rates

varied by experiment between 5.0 fps for LED Y-maze and 60.0 fps for optomotor response.

Flies were imaged at spatial resolutions ranging between 1-4 pixels per mm and we generally

found tracking to be stable at 10 pixels per animal and above. Offline video tracking was per-

formed on 1000x compressed AVI video files unless otherwise specified. Tracking and imaging

was conducted in Windows 10 on computers with CPUs ranging from intel i3 3.1GHz to intel

i7 4.0GHz.

Behavioral instruments

Unless otherwise specified, all tracking was conducted in custom imaging boxes constructed

with laser-cut acrylic and aluminum rails. Schematics of custom behavioral arenas and
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behavioral boxes were designed in AutoCAD. Arena parts were laser-cut from black and clear

acrylic and joined with Plastruct plastic weld. Schematics for behavioral boxes can be found on

the de Bivort Lab schematics repository. Illumination was provided by dual-channel white and

infrared LED array panels mounted at the base (Part# BK3301, Knema LLC, Shreveport, LA).

Adjacent pairs of white and infrared LEDs were arrayed in a 14x14 grid spaced 2.2cm apart.

White and infrared LEDs were wired for independent control by MOSFET transistors and a

Teensy 3.2 microcontroller. Two sand-blasted clear acrylic diffusers were placed in between

the illuminator and the behavioral arena for smooth backlighting. Additional tracking was

performed in standard 48 multi-well culture plates and individual fly storage units (FlyPlates)

from FlySorter LLC. Additional details on the behavioral platforms used here are available in

the MARGO documentation.

Experimental procedures

Tracking experiments were conducted between 10AM and 6PM. We saw no time-of-day

significant effects on individual behavioral measures from the optomotor and LED Y-maze

assays. Flies were anesthetized either on ice or CO2 and manually loaded into behavioral are-

nas with an aspirator. Behavioral modules were loaded into tracking boxes and allowed a

minimum post-anesthesia recovery period of 20 minutes before tracking. Unless otherwise

specified, animals were tracked for 2 hours in an environmental room at 23 C and 40% humid-

ity. Following tracking, flies were returned to individual storage plates where they were housed

for further experiments as needed. For the optogenetic experiments, flies were tested for 20

min in the Y-mazes or 64 min in the circular arenas.

Data and statistics

Unless noted, all reported error bars are 95% confidence intervals computed by bootstrap

resampling. Data processing and calculation of behavioral metrics was conducted automati-

cally by MARGO either in real time, or after experiments. 1000 bootstrap replicates were aver-

aged to estimate null distributions and confidence intervals. Reported p-values for phototaxis,

optogenetic closed-loop experiments and optomotor behavior were unadjusted for multiple

comparisons and were calculated via two-tailed t-tests. Critical values were adjusted for multi-

ple comparisons via Bonferroni correction.

Supporting information

S1 Video. https://youtu.be/fyG31BAYHE0. Video from 960 fly experiment with MARGO

traces overlaid. Inactive flies are unmarked.

(MP4)

S2 Video. https://youtu.be/0aFny65wCnM. MARGO tracking of flies in a simple imaging

configuration made from a cardboard box and a sheet of paper. Video was captured with a

1.3MP iPhone camera and tracked offline.

(MP4)

S3 Video. https://youtu.be/M8imxRP92k4. MARGO tracking of 48 larval zebrafish in a multi-

well culture plate (2x speed).

(MP4)

S4 Video. https://youtu.be/kuTM71lHALc. MARGO tracking of C. Elegans in WorMotel, a

custom 2400 well platform for studying aging.

(MP4)
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S5 Video. https://youtu.be/sxQMXHJoG24. MARGO tracking of 38 fruit fly larvae in a single

ROI in response to a fructose gradient. Individual identities are not maintained through colli-

sions.

(MP4)

S6 Video. https://youtu.be/FVIXQSdiWx0. MARGO tracking of a time-lapsed video of a

Bumblebee colony in an artificial nestbox. Due to the low temporal resolution, individual iden-

tities are not maintained at all.

(MP4)

S7 Video. https://youtu.be/PqPJA6hsabE. Summary video of the image processing, object

tracking, and closed-loop control in the LED Y-Maze assay.

(M4V)

S8 Video. https://youtu.be/uxgswI8jEWY. Summary video of the image processing, object

tracking, and closed-loop control in the Optomotor assay.

(MP4)
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