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Abstract

The biogenic amine octopamine (OA) and its precursor tyramine (TA) are involved in con-

trolling a plethora of different physiological and behavioral processes. The tyramine-β-

hydroxylase (tβh) gene encodes the enzyme catalyzing the last synthesis step from TA to

OA. Here, we report differential dominance (from recessive to overdominant) of the putative

null tβhnM18 allele in 2 behavioral measures in Buridan’s paradigm (walking speed and stripe

deviation) and in proboscis extension (sugar sensitivity) in the fruit fly Drosophila melanoga-

ster. The behavioral analysis of transgenic tβh expression experiments in mutant and wild-

type flies as well as of OA and TA receptor mutants revealed a complex interaction of both

aminergic systems. Our analysis suggests that the different neuronal networks responsible

for the 3 phenotypes show differential sensitivity to tβh gene expression levels. The evi-

dence suggests that this sensitivity is brought about by a TA/OA opponent system modulat-

ing the involved neuronal circuits. This conclusion has important implications for standard

transgenic techniques commonly used in functional genetics.

Introduction

Pleiotropy is a central feature in genetics with pervasive implications for evolution [1–5]. Pleio-

tropic genes play an important evolutionary role not only because they create functional and

developmental relationships among traits, but also because they can become relevant for the

maintenance of genetic variability in a population [6,7]. While common, pleiotropy is not a

universal property of all genes [8]. Pleiotropy is also a prerequisite for differential dominance.

Differential dominance occurs when dominance patterns for a single locus vary among traits,

e.g., the same allele may behave recessively in one trait and dominantly in another [4,9]. In

wild populations, differential dominance is often accompanied by overdominance effects,

which are thought to underlie the high level of heterozygosity found in these populations

[4,6,7,9–11]. While heterozygosity tends to decrease in laboratory populations [12–18], the dif-

ferential dominance effects may persist in pleiotropic genes, including overdominance.
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Differential dominance, found to be ubiquitous in quantitative and population genetics

studies [4,9,19], may potentially wreak havoc in functional genetics, where a common strategy

is to introduce transgenic alleles into homozygous null mutant individuals [20–26]. For

instance, if a mutation acts dominantly, rather than recessively, then the transgenic alleles will

not rescue the phenotype even if the gene in question is responsible for it. In the case of over-

dominance, the outcome of such experiments may depend on the mechanism by which over-

dominance is achieved and could potentially range from no rescue to overdominant rescue,

making these results difficult or impossible to interpret. Intermediate inheritance may make

rescue experiments difficult to pin down statistically as successful or unsuccessful.

In the simplest case, the 2 alleles in question are a wild-type and a null mutant allele. In this

arrangement, any differential dominance effects must be due to differential sensitivity of the

phenotypes to gene dosage or gene expression levels or both. Therefore, such a situation is a

good study case for investigating both the practical consequences for functional genetics stud-

ies and the mechanisms underlying the differential dominance phenomenon.

Because of the promiscuous role of biogenic amines in many different behavioral and phys-

iological processes, the genes coding for their synthesis enzymes are prime candidates for plei-

otropy and, hence, differential dominance. The biogenic amine octopamine (OA) is

structurally and functionally related to vertebrate noradrenaline [27–29]. OA is synthesized

from another biogenic amine, tyramine (TA), by tyramine-β-hydroxylase (tβh) [30]. OA plays

an important role in the initiation and maintenance of motor programs in insects in general

[31–35]. In skeletal muscles, OA concomitantly affects not only muscle tension [36] and relax-

ation rate [37], but also muscle metabolism: As a neurohormone released into the hemolymph,

it mobilizes lipids and stimulates glycolysis [38,39]. OA appears to be involved in almost every

behavioral and physiological process [40,41]. In Drosophila, the X-linked tβhnM18 mutant has

been an important tool to understand the role of TA and OA in many behaviors such as egg

laying [42–44], aggression [45,46], flight [47–50], and starvation resistance [51].

Loss-of-function tβhnM18 male mutants, with a complete depletion of OA, display reduced

aggression: Their fight initiation latency is increased, while lunging and holding frequencies

are decreased [46]. Furthermore, an acute silencing of octopaminergic neurons through the

use of temperature-sensitive UAS-Shits phenocopies the tβhnM18 mutants, indicating that the

reduced aggression does not result from developmental defects in the mutants [45,52–54].

Interestingly, it was possible to rescue the aggression deficiency seen in tβhnM18 mutant flies by

expressing tβh in a small subset of octopaminergic neurons [45]. These results suggest that the

standard genetic rescue approach can be successful, at least in this phenotype, even with a

pleiotropic gene. Some of us have shown previously that another phenotype, sugar sensitivity

after starvation, can be analogously rescued [51].

In the present work we studied tβh-associated differential dominance and conducted rescue

experiments using behavioral phenotypes as disparate as sugar sensitivity [55,56] and walking

behavior in Buridan’s paradigm [57,58]. In Buridan’s paradigm, we evaluated walking speed, a

temporal parameter of movement control, as well as stripe fixation, a spatial measure of move-

ment control. Fixation of visual cues is increased at higher contrast conditions [59,60]. Inter-

estingly, the sensitivity of the motion-sensitive neurons in the fly optic lobes was shown to

increase when the fly is walking [61–64] or flying [65]. The gain increase in flight was found to

be OA dependent [66,67]. The 3 phenotypes we investigated (sugar responsiveness, walking

speed, and stripe fixation) exhibit differential dominance, and we use various transgenic rescue

techniques commonly used to elucidate gene function to probe the consequences of differen-

tial dominance in functional genetics studies as well as potential mechanisms mediating the

differential dominance phenomenon. We complement these experiments with OA receptor

manipulations in order to isolate OA-dependent from TA-dependent effects and to explore
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whether such gene-dosage-independent manipulations may be a superior functional genetic

approach to mutant/rescue experiments.

Materials and methods

Fly strains

tβhnM18 (Monastirioti et al., 1996; FBal0061578), oamb ([68]; OctαR, oamb286 FBti0038368,

oamb584 FBti0038361), honoka (Kutsukake et al., 2000; Oct-TyrR, FBal0104701), hsp-tβh
(Schwaerzel et al., 2003; FBal0152162), Octβ2RΔ3.22 and Octβ2RΔ4.3 (Damrau et al., 2014;

CG6989, FBgn0038063), and w+;;UAS-tβh (Monastirioti, 2003; FBti0038601) were obtained

from Henrike Scholz, Cologne, Germany; Hiromu Tanimoto, Martinsried, Germany; Andreas

Thum, Konstanz, Germany; Martin Schwärzel, Berlin, Germany; and Amita Seghal, Chevy

Chase, Maryland, US. TyrRf05682 (CG7431f05682, FBal0184987), TyrRIIΔ29 (CG16766,

FBgn0038541), and TyrRII-TyrRΔ124 were kindly provided prior to publication by Edward Blu-

menthal, Milwaukee, Wisconsin, US (Table 1). Receptor mutants and their respective control

lines were outcrossed for at least 6 generations into Canton-S background.

The tβhnM18 mutation is thought to be a null allele and abolishes OA synthesis. Conse-

quently, the precursor of OA, TA, accumulates to approximately 8-fold over control levels

[42]. Mutants for Octβ2R were created using recombination of FRT-containing P-elements

(Parks et al., 2004), as described elsewhere [71]. In order to obtain hetero- and hemizygote

mutants, we crossed the tβhnM18 mutant line with its original control line, which was also

obtained from Henrike Scholz.

Fly care

Flies were kept on standard cornmeal/molasses food in a 12/12 h light/dark cycle at 60% rela-

tive humidity and 25˚C except for hsp-tβh and elaV-GAL4;tub-GAL80 crosses, which were

kept at 18˚C without humidity control.

After hatching, experimental flies were collected into new food vials for 2 days. The day

before testing, flies were CO2-anesthetized and sorted by sex (females except for UAS-tβh
experiments), and their wings were clipped at two-thirds of their length. If not stated other-

wise, animals recovered in the food vials overnight. Individuals were captured using a fly aspi-

rator and transferred into the experimental setup on the following day.

Table 1. Fly strains used in this work.

Designation Identifier Associated target Source or reference Additional information

tβhnM18 FBal0061578 tβh [42] Gift from Henrike Scholz; not recently outcrossed

tβhnM18,UAS-tβh FBti0038601 [69]

UAS-tβh Gift from Henrike Scholz

hsp-tβh FBal0152162 [70] Gift from Martin Schwärzel

tβhnM18;;hsp-tβh [70] Gift from Martin Schwärzel

oamb286 FBti0038368 oamb [68] Gift from Amita Seghal

oamb584 FBti0038361 oamb [68] Gift from Amita Seghal

Octβ2RΔ3.22 CG6989 Octβ2R [71] Gift from Martin Schwärzel before publication

Octβ2RΔ4.3 FBgn0038063 Octβ2R [71] Gift from Martin Schwärzel before publication

honoka FBal0104701 TyrR [72] Gift from Andreas Thum

TyrRf05682 CG7431f05682, FBal0184987 TyrR [73] Gift from Edward Blumenthal

TyrRIIΔ29 CG16766, FBgn0038541 TyrR [73] Gift from Edward Blumenthal

TyrRII-TyrRΔ124 FBab0048326 TyrR [73] Gift from Edward Blumenthal

https://doi.org/10.1371/journal.pbio.3001228.t001
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Heat-shock

hsp-tβh flies were heat shocked for 30–45 min at 37˚C with 3–4 h of recovery time at 25˚C

before testing. elaV-GAL4;tub-GAL80;UAS-Tdc2 flies were heated at 33˚C overnight, with 30

min of recovery time at room temperature before testing.

Buridan’s paradigm

We used the Buridan’s setup to test fly locomotion; details are described in [57] (RRID:

SCR_006331). Briefly, 2 black stripes (30 mm in width and 320 mm in height) were positioned

opposite of each other 146.5 mm from the center of a platform (117 mm in diameter) sur-

rounded by water and illuminated with bright white light from behind. The centroid position

of the fly was recorded by custom tracking software (BuriTrack, http://buridan.sourceforge.

net). If a fly jumped off the platform, it was returned by a brush, and the tracker was restarted.

All data were obtained from 5 min of uninterrupted walk or the first 5 min of a 15-min walk.

See doi: 10.17504/protocols.io.c7vzn5 for fly preparation.

Data were analyzed using CeTrAn v.4 (https://github.com/jcolomb/CeTrAn/releases/tag/v.

4) as previously described in [57]. Briefly, walking speed was measured in traveled distance

over time. A median was calculated for the progression of 1 experiment; the mean of all medi-

ans is reported in the graphs. Speeds exceeding 50 mm/s were considered to be jumps and

were not included in the median speed calculation [57]. Stripe deviation acted as a metric for

fixation behavior. It corresponds to the angle between the velocity vector and a vector pointing

from the fly position towards the center of the frontal stripe (for details see [57]). Therefore,

the larger the stripe deviation, the less accurately the fly fixated the stripe and vice versa. The

platform inside the arena was cleaned with 70% ethanol after each experiment to minimize

odor cues.

Buridan’s paradigm appears to be particularly sensitive to differences in genetic background

[74]. Therefore, special emphasis was placed on always measuring all relevant genetic control

lines simultaneously with the manipulated flies.

Sugar sensitivity test

Sugar response was measured as described elsewhere [51]. Briefly, flies were starved for 20 h

with Evian water. Flies were immobilized by cold anesthesia using a cold station (Fryka-Kälte-

teschnik, Esslingen am Neckar, Germany), and a triangle-shaped copper hook was glued to the

head and thorax. Three hours later, the hook was attached to a rack so that free movement of

flies’ tarsi and proboscis was enabled. A filter paper soaked with sucrose solution was presented

to all the tarsi. The proboscis extension response to a serial dilution of sucrose (0%, 0.1%,

0.3%, 0.6%, 1%, 3%, and 30%) was recorded. The total number of the fly’s responses to all

sucrose stimulations of increasing concentration was calculated [75]. Finally, the proboscis

was stimulated by 30% sucrose solution. Flies not responding to proboscis stimulation or

responding to the first stimulation (water only) were discarded from the analysis.

Statistics

The mean walking speed was calculated out of medians (see “Buridan’s paradigm” above) and

plotted with the standard error of the mean. Sucrose response and stripe deviation are shown

as boxplots representing the median (bar), the 25%–75% quantiles (box), and data within

(whiskers) and outside (outliers as black dots) 1.5 times interquartile range. Statistical analyses

were performed in R (RRID:SCR_001905). Walking speed data followed normal distribution

whereas stripe deviation did not (Shapiro–Wilk test of normality, p< 0.05), so we used the
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parametric 2-way ANOVA followed by Tukey HSD post hoc test and Welch 2-sample t test,

respectively, or non-parametric paired Wilcoxon rank sum test with Bonferroni correction

and Wilcoxon rank sum test, respectively. The p-value was additionally corrected for 2

repeated measurements of data from Buridan’s paradigm. The sample size of each group is

indicated within the graphs. Default alpha value was set to 0.005 [76].

Results

Differential dominance of tβh mutation for different behavioral

parameters

We examined the effects of the tβhnM18 mutation in 2 different experiments, assessing 3 differ-

ent behavioral variables. We analyzed walking behavior in Buridan’s paradigm [57,58], report-

ing both the median speed (a temporal measure of behavior) and stripe deviation (as a spatial

measure assessing object fixation). The second experiment quantified sugar responsiveness

after 20 h of starvation using proboscis extensions [51].

Homozygous mutants behaved significantly differently from their genetic-background-

matched control flies in all 3 measures: homozygous female mutants showed reduced walking

speed (Fig 1A), fixated the stripes more closely (Fig 1B), and were less likely to extend their

proboscis to a sugar solution after starvation (Fig 1C) compared to control flies with 2 intact

tβh alleles. Flies heterozygous for the tβhnM18 mutation did not behave similarly homo-

geneously across the 3 observed variables. In walking speed, heterozygous flies with only 1

intact tβh allele exceeded wild-type animals by about 20% (Fig 1A), indicating overdominant

inheritance. In stripe deviation, heterozygous flies behaved more similarly to the mutant flies

than to the wild-type control flies, indicating dominant inheritance (Fig 1B). In the proboscis
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extension experiment, starved heterozygous mutant flies extended their proboscis a median 2

times, compared to a median 1 time for homozygous mutants and a median 3 times for the

wild-type females (Fig 1C). Despite being halfway between the 2 homozygous groups, indicat-

ing intermediate inheritance, the heterozygote data are not statistically different from the wild-

type controls, indicating a recessive phenotype.

As some aspects of Buridan’s paradigm have been shown to be highly sensitive to genetic

background [74] and the stripe deviation for the w+ control strain appeared unusually large,

we repeated the locomotion experiment using flies with a different genetic background. We

examined tβh hemizygous mutants and control males resulting from a cross to another wild-

type background. We found the same walking speed and stripe deviation phenotypes for tβh
mutants in the w+/Canton-S background (p< 0.05, n = 34, Welch 2-sample t test for speed,

Wilcoxon rank sum test for stripe deviation; data at doi: 10.6084/m9.figshare.1162439).

Taken together, we find that flies heterozygous for the tβhnM18 mutation provide evidence

for 3 different modes of inheritance, depending on the phenotype analyzed, conforming to the

definition of differential dominance.

Driving tβh expression via GAL4-UAS

What consequences can differential dominance have on standard genetic techniques com-

monly leveraged to understand gene function? To tackle this question, we started with a tried-

and-tested method of transgenically expressing a wild-type version of the mutated gene in var-

ious tissues using the GAL4/UAS system [20–26,45]. As gene expression on the X chromo-

some is doubled in hemizygous males, which behave indistinguishably from female flies (Fig

1), the phenotypes of the heterozygous mutants (Fig 1) may be due to the reduced expression

of the single intact tβh gene. In other words, the failure of the heterozygous flies to behave like

wild-type flies may be due to the reduced gene dosage. To avoid such reduced gene expression

in trans-heterozygous animals and to, instead, mimic the hemizygous wild-type males, we

started our rescue experiments by driving an X-linked UAS-tβh transgene. We drove expres-

sion of the rescue construct in different tissues in tβh mutant males: in all cells (Actin-GAL4),

in all neurons (nSyb-GAL4), in non-neuronal tyraminergic cells (Tdc1-GAL4), in tyraminer-

gic neurons (Tdc2-GAL4), and in octopaminergic neurons (NP7088-GAL4). All of those lines

drive expression throughout development and in adulthood (Fig 1). The X-linked transgene

not only ensures doubled transcription from the single gene copy as in wild-type males, it is

also more practical as it is situated on the same chromosome as the mutation that is to be res-

cued. In fact, this chromosome was engineered precisely to make such rescue experiments

more convenient than with the rescue transgene on an autosome, which is not unusual in

functional genetics. Because we have already successfully used this technique on sugar respon-

siveness [51], we focus on the walking measures from now on. Neither the temporal nor the

spatial walking measure showed any rescue for any of the targeted tissues (Fig 2). In fact, for

stripe deviation, some drivers yield even stronger stripe fixation than the mutant control

strains (Fig 2B). In both measures, some of the lines carrying the rescue construct alone

already fail to show the mutant phenotype. Superimposed on the general pattern of little effect

on walking speed (Fig 2A) and a reduction of stripe deviation (Fig 2B), one can observe addi-

tional variability between the different groups. Presumably, this is due to the portions of differ-

ing genetic backgrounds the different GAL4 lines brought into the genotypes [74].

We had speculated that the heterozygous results (Fig 1) may be due to low tβh transcription

from the single gene dose. The rescue results (Fig 2), on the other hand, may indicate that

expression of too much tβh may also disrupt the walking behavior. To test this hypothesis, we

performed the exact same experiments again, but this time with the UAS-tβh transgene on the

PLOS BIOLOGY Sensitivity to gene expression levels underlies differential dominance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001228 May 10, 2021 6 / 21

https://doi.org/10.6084/m9.figshare.1162439
https://doi.org/10.1371/journal.pbio.3001228


0

4

8

12

16

20

24

28
W

al
ki

ng
 S

pe
ed

 [m
m

/s
]

10

20

30

40

50

S
tri

pe
 D

ev
ia

tio
n 

[°
]

Actin-GAL4 nSyb-GAL4 Tdc1-GAL4 Tdc2-GAL4 NP7088-GAL4

tβhnM18

GAL4
UAS-tβh + +- -

- + +

+ +++++++++++++++ +++++

Wild type background Mutant background Experimental group

60

A

B

40

50

23 232323 20 202020 36 403740 19 211320 21 212121

23 232323 20 202020 36 403740 19 211320 21 212121

b b b

a

b b

a,b
b

b
a

c

a
a

b c b,c b b b

a
a,b

a,b

a

a a

+ +

+

-

+ +- -

- + +

++ +

+

-

+ +- -

- + +

++ +

+

-

+ +- -

- + +

++ +

+

-

+ +- -

- + +

++ +

+

-

a,b
b b,c

ba,c c

a,c

b

c

b,c

c

a,c

b

a,b

a

Fig 2. X-linked UAS-tβh expression cannot rescue the mutant Buridan phenotypes. (A) Median walking speed cannot be rescued by heterozygous

GAL4-UAS-dependent tβh expression in mutants. All groups are different from the wild-type control, except for the UAS-tβh control in the nSyb experiment

(2-way ANOVA with Tukey HSD post hoc test and correction for multiple measurements, p< 0.005). (B) Stripe deviation performance is already increased by

PLOS BIOLOGY Sensitivity to gene expression levels underlies differential dominance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001228 May 10, 2021 7 / 21

https://doi.org/10.1371/journal.pbio.3001228


third chromosome (Fig 3), mimicking the situation in the heterozygous animals with halved

gene expression, compared to the X-linked construct.

While again the mutant control strains with the rescue construct alone already showed

some rescue effects, driving the rescue construct from the third chromosome yielded dramati-

cally different results (Fig 3) compared to the X-linked rescue attempts (Fig 2). Octopaminergic

(via NP7088-GAL4), but not tyraminergic (via Tdc-GAL4), expression led to a full rescue of

both walking phenotypes, characterized by the rescue strain differing significantly from both

mutant control strains but not from the wild-type control. Expression in all cells (via Actin-

GAL4) rescued walking speed completely, but the stripe fixation phenotype was rescued only

partially. The overdominance in walking speed observed in heterozygous mutants was phe-

nocopied in the pan-neuronal driver (nSyb-GAL4) as well as in the neuronal tyraminergic driver

(Tdc2-GAL4). In both lines, the presence of the GAL4 constructs appears to already lower walk-

ing speed compared to the other wild-type controls, making it indistinguishable from the

mutant controls. Surprisingly, despite the expression pattern of Tdc2-GAL4 resembling that of

NP7088-GAL4, there was no rescue of the stripe deviation phenotype, suggesting that stripe

deviation is not influenced by different levels of TA in neurons. However, there was a partial res-

cue with the non-neuronal tyraminergic driver (Tdc1-GAL4), suggesting that non-neuronal tyr-

aminergic cells (which do not express OA in wild-type animals) influence stripe fixation.

These results suggest that the differential dominance of the tβh gene seems to be related to

gene dosage. However, any deviation from wild-type expression levels, whether a decrease or

an increase, can lead to significant differences from wild-type behavior, rendering such stan-

dard experiments more of a lottery for pleiotropic genes that show differential dominance.

Acute tβh expression differentially affects walking speed and stripe fixation

Another commonly used rescue technique is to ubiquitously express a wild-type variant of the

gene in the mutant background after development in the adult fly, i.e., right before the experi-

ment. In our case, we expressed the tβh gene in homozygous tβhnM18 mutant females under

the control of the heat shock promoter hsp-tβh, situated on the third chromosome [69]. A heat

shock was induced for 45 min at 37˚C, and flies were allowed to recover for 3 h. After this

treatment, rescue flies walked faster than controls (Fig 4A), phenocopying the overdominance

results of the heterozygote flies (Fig 1A). These results did not quite reach our stringent 0.005

alpha threshold, but passed the 0.05 threshold for suggestive effects. Given the behavior of the

heterozygous flies, it is straightforward to assume an analogous overdominance effect in this

case. In contrast, expressing the tβh gene in this way left stripe fixation unaffected (Fig 4B),

similar to how heterozygous flies’ stripe deviation was indistinguishable from that of homozy-

gous mutant flies (Fig 1B). As published previously [51], sugar response after heat shock rescue

was significantly improved (Fig 3C from [51]) without reaching wild-type performance, simi-

lar to how heterozygous flies show an intermediate number of proboscis extensions when

compared with the 2 homozygous groups (Fig 1C).

Taken together, the results from heat-shock-induced expression of tβh in the mutant back-

ground (Fig 4) phenocopied those of the heterozygous flies (Fig 1) throughout. Possibly, using

a hsp-tβh construct on the X chromosome may lead to a more successful rescue (i.e., opposite

the presence of the GAL4 or UAS construct. Ubiquitous Actin-GAL4 or pan-neuronal nSyb-GAL4 expression worsens the phenotype compared to the control

lines (paired Wilcoxon rank sum test with Bonferroni correction, p< 0.005). In (A), bars and error bars indicate mean and standard error of the mean. In (B), the

Tukey boxplots represent the median (bar), 25%–75% quartiles (box), and total data range (whiskers) excluding outliers outside of 1.5× interquartile range (dots).

Numbers below graphs indicate sample size. Bars and boxes labeled with different letters are statistically significantly different. Raw data and evaluation code

available at doi: 10.5281/zenodo.4568550.

https://doi.org/10.1371/journal.pbio.3001228.g002
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to the UAS rescue experiments). However, we are not aware of a tβhnM18,hsp-tβh X

chromosome.

Overexpressing Tdc2 and tβh differentially affects walking speed and stripe

fixation

All experiments so far seem to suggest a very high sensitivity of the 3 chosen phenotypes to tβh
gene dosage, where only a narrow range of gene expression supports wild-type behavior. To

test this hypothesis, we increased the acute expression of the tβh and Tdc (tyrosine decarboxyl-

ase; synthesizes TA from tyrosine) enzymes in wild-type animals (Fig 5). While tβh overex-

pression is assumed to lead to OA production from TA and hence a decrease in TA titers, the

Tdc overexpression should lead to increased TA production and hence a subsequent increase

in OA concentration as well.

Overexpressing tβh, presumably decreasing TA levels and increasing OA levels, had no

effect on walking speed (Fig 5A), but decreased stripe deviation (Fig 5B). Tdc2 overexpression,

type control or one of the mutant controls (paired Wilcoxon rank sum test with Bonferroni correction, p< 0.005). In (A), bars and error bars indicate mean

and standard error of the mean. In (B), the Tukey boxplots represent the median (bar), 25%–75% quartiles (box), and total data range (whiskers) excluding

outliers outside of 1.5× interquartile range (dots). Numbers below graphs indicate sample size. Bars and boxes labeled with different letters are statistically

significantly different. Raw data and evaluation code available at doi: 10.5281/zenodo.4568550.

https://doi.org/10.1371/journal.pbio.3001228.g003
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presumably elevating both TA and OA above wild-type levels, reduced walking speed (Fig 5B),

but yielded a stripe deviation phenotype in the middle of the (large) range of variation found

in driver and effector lines.

These results hence suggest that overexpressing tβh selectively affected the spatial measure

stripe deviation, while overexpressing Tdc seemed to mainly affect the temporal measure walk-

ing speed. These results support the hypothesis that the Buridan phenotypes are exquisitely

sensitive to tβh gene dosage. They also raise the possibility that the mechanism by which this

sensitivity is achieved involves the relative levels of TA and OA, mediated by tβh expression.

In order to investigate this possibility in a way that is both tβh gene dosage independent and

can separately manipulate TA and OA signaling, we tested a number of TA and OA receptor

mutants.

Differential involvement of OA and TA receptors in walking speed and

stripe fixation

To specifically affect the signaling of only 1 of the amines independently of the tβh locus, we

manipulated the OA/TA system on the receptor level and examined several OA and TA recep-

tor mutants, all outcrossed to the same genetic background (see “Materials and methods”).

We tested 2 alleles for each of 2 OA receptors oamb and Octβ2R, as well as 1 allele each for

the 3 TA receptors honoka, TyrR, and TyrRII, and a double receptor mutant for TyrR and Tyr-
RII. While walking speed was affected in 7 mutants (Fig 6A; only the TyrRIIΔ29 mutation had
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no effect), the stripe deviation was affected in only the 2 TA receptor mutants TyrRf05682 and

honoka, in opposite directions (Fig 6B). Interestingly, the double mutant TyrRII-TyrRΔ124

showed no mutant phenotype in stripe fixation.

In principle, one would need to rescue each of the receptor mutants as well, to exclude

effects from genetic variations outside of the targeted locus. With regard to the results of the

rescue experiments shown here, we have abstained from such experiments and rely, instead,

on the extensive outcrossing of the lines to homogenize the genetic background between

mutants and controls, to decrease the chances of off-target differences.

The results of the receptor experiments suggest that OA is more specifically involved in

walking speed, while TA signaling seems involved in both walking speed and stripe fixation.

This latter hypothesis would be consistent with Tdc overexpression leading to reduced walking

speed (Fig 5B) and Tdc1-GAL4-driven partial rescue of stripe fixation (in cells that do not

express OA; Fig 3B), but only if these phenotypes are also sensitive to deviation from wild-type

TA titers in both directions, increases and decreases.

Discussion

Differential dominance of the tβhnM18 mutation

A likely null mutation [42] for the X-linked synthesis enzyme of the biogenic amine OA,

tβhnM18, showed differential dominance in 3 different behavioral traits (Fig 1). Pleiotropic

alleles often show differential dominance [4,9], accompanied by overdominance in some of

the traits [10,19]. However, it is not immediately obvious that the effects we observed are

indeed attributable to differential dominance. Other phenomena that could lead to different

outcomes for our different genotypes are dosage compensation in sex-linked genes (such as

tβh) and other epigenetic effects, e.g., via differential maternal or paternal transfer of the gene

in question (such as in our rescue experiments; Figs 2–4).

Differential dominance is mediated by differential sensitivity to tβh gene

expression levels

The tβh gene is located on the X chromosome (X:7,995,697..8,027,394). The homozygous

females and hemizygous males show identical phenotypes in all parameters tested, both in the

mutant and the wild-type genotypes (Fig 1). Thus, in these 3 cases, the presence of 1 or 2 X

chromosomes appears to be irrelevant to the phenotype. Importantly, in males, the presence of

1 tβh allele is sufficient to provide the males with a wild-type phenotype for the parameters we

studied. In the experiments where we test heterozygous females (i.e., with only 1 intact allele of

tβh) and find phenotypes indicating differential dominance, no dosage compensation takes

place as this process occurs in males in Drosophila and not in females [77–82]. Presumably, the

levels of tβh gene expression may be lower in heterozygous animals than in either wild-type

males or wild-type females. Importantly, this lower level of gene expression does not have the

same effect in all phenotypes, leading to varying inheritance. Finally, the mutant allele in the

heterozygous females always came from the mutant father, while a wild-type mother (w+, with

Fig 6. Differential roles of tyramine and octopamine signaling in Buridan’s paradigm. (A) oamb286, oamb584, Octβ2RΔ3.22, Octβ2RΔ4.3, honoka, and TyrRf05682

mutants and the double mutant TyrRII-TyrRΔ124 walk more slowly than their respective controls, while the walking speed of the TyrRIIΔ29 mutant is indistinguishable

from that of wild type (Welch 2-sample t test with correction for multiple measurements, p< 0.005). (B) Stripe deviation is not affected in octopamine receptor mutants.

In TyrRf05682 and honoka mutants, stripe deviation is significantly increased. Significant differences between control and the respective receptor mutant are calculated by

Wilcoxon rank sum test with correction for multiple measurements (p< 0.005). In (A), bars and error bars indicate mean and standard error of the mean. In (B), the

Tukey boxplots represent the median (bar), 25%–75% quartiles (box), and total data range (whiskers) excluding outliers outside of 1.5× interquartile range (dots).

Numbers below graphs indicate sample size. Bars and boxes labeled with different letters are statistically significantly different. Raw data and evaluation code available at

doi: 10.5281/zenodo.4568550.

https://doi.org/10.1371/journal.pbio.3001228.g006
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matched genetic background) provided the other X chromosome, such that any heterogeneity

in the inheritance cannot come from heterogeneity in parent-of-origin imprinting effects,

either. Thus, the only remaining explanation from the design of these experiments is that the

pleiotropic tβh locus indeed confers differential dominance to the alleles we used here (Fig 1),

likely mediated by differential sensitivity of the 3 behaviors to tβh gene expression.

Differential sensitivity to tβh gene expression levels is mediated by a TA/

OA opponent system

Several studies have suggested that OA and TA may operate as an opponent system [47,83–

86]. If this is the case, the raised levels of TA with the tβhnM18 allele, rather than the lower OA

levels, may be partly responsible for some of the phenotypes observed. To our knowledge, it is

still unknown if tβh is indeed the rate-limiting enzyme for OA synthesis or what effects manip-

ulations of tβh expression levels may have on actual OA/TA titers. However, given that the OA

precursor TA is also involved in locomotor control, it is straightforward to speculate that the

acute sensitivity to tβh gene expression levels we have observed here may be reflecting a sensi-

tivity to actual OA/TA titers in the neuronal networks involved. Thus, one potential mechanis-

tic explanation for the differential dominance of the tβh locus is that the neuronal networks

controlling the non-recessive behavioral parameters are modulated by a TA/OA opponent sys-

tem that confers a high sensitivity to the relative amine titers (and hence gene expression lev-

els) to network function.

Both the spatial rescue (Figs 2 and 3) and the overexpression results (Fig 5) appear to sup-

port this hypothesis: We observed a partial rescue of stripe fixation in non-neuronal tyrami-

nergic cells that do normally not release OA (Fig 3B), and overexpressing the TA-synthesizing

enzyme Tdc affected walking speed.

To further explore this possibility, we manipulated TA and OA signaling individually, via

OA receptor knock-out in the non-recessive walking parameter experiments (Fig 6). In these

experiments, stripe fixation measures a spatial property of walking behavior, as the flies orient

themselves towards the stripes in space. Walking speed, in contrast, is taken as one of several

measures of the temporal control of walking behavior in Buridan’s paradigm. These 2 parame-

ters commonly separate not only in principal components analyses, but also in biological

manipulations.

Stripe fixation. All our X-linked GAL4/UAS manipulations of the tβh gene increased fix-

ation behavior of the flies, even beyond wild-type levels. Perhaps most strikingly, median stripe

deviation was the lowest value for every single driver line we tested (Fig 2B). This effect was

also observed when driving gene expression with a heat shock construct from the third chro-

mosome (Fig 4B). Only presumably lowering the levels of gene expression using a UAS con-

struct on the third chromosome provided some successful rescue results. As part of such

fixation behavior can be interpreted as an outcome of a fly’s light/dark preference [87], this

dependence on gene expression levels may be understood by looking at photopreference

results. Gorostiza et al. [87] discovered a correlation between dark preference in a T-maze and

tighter fixation behavior in Buridan’s paradigm. With inhibited octopaminergic neurons,

transgenic flies showed a lower dark preference, while activated octopaminergic neurons

increased dark preference. It is conceivable that both the doubled tβh gene expression from

the dosage-compensated X chromosomes (Fig 2B) and the hsp-driven rescue (Fig 4B)

increased the dark preference in these flies analogously to the activation of tyraminergic/octo-

paminergic neurons in [87].

Indeed, in our array of receptor mutants tested, OA receptor mutant flies do not fixate the

stripes any different from control flies, while flies mutant for the TA receptor TyrRf05682 fixate
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the stripes less strongly than wild-type controls (Fig 6B). In other words, decreased TA signal-

ing can lead to decreased stripe fixation (Fig 6B), while the increased TA levels in tβh mutants

[42] can explain some of the increased fixation behavior in these flies (Fig 1B). Although we

have not tested all known OA receptors [88], considering the TA receptor and other data on

stripe deviation, this suggests that TA may act independently of OA on this behavioral trait,

with an increased TA activity leading to stronger stripe fixation. We thus conclude that our

manipulations of the OA synthesis enzyme tβh affected stripe fixation, at least in part, via an

involvement of the OA precursor TA. This conclusion suggests that in tβhnM18 mutants, the

increased stripe fixation may be due to the elevated levels of TA, while in our rescue and over-

expression experiments, it may be due to high levels of OA, corroborating the hypothesis that

TA/OA opponent organization may be the mechanism underlying the observed differential

dominance effects.

Walking speed. The contrast to stripe fixation (a spatial measure of walking behavior)

could not be starker in walking speed (a temporal measure of walking behavior). While it

proved exceedingly difficult to decrease stripe fixation to control levels (observed in only 1 out

of 13 manipulations), adding or removing tβh genes both increased and decreased walking

speed. For instance, removing 1 copy (i.e., in the heterozygous state) increased walking speed,

while removing both (homozygous mutants) decreased walking speed (Fig 1A). Confirming

the general observation that these 2 behavioral parameters are separable, also in these experi-

ments walking speed and stripe fixation are decoupled.

Some lines driving transgenic expression of autosomal tβh rescue constructs (Fig 2A), as

well as acute tβh rescue before the experiment (Fig 4A), yielded a phenocopy of the heterozy-

gous flies: walking speed increased beyond that of wild-type controls. At the same time, all X-

linked rescue experiments failed to increase walking speed beyond mutant levels, suggesting

that lower than normal tβh expression increases walking speed, and higher than normal levels

decrease it. This hypothesis is supported by our overexpression results: Tdc2 overexpression

throughout development reduces walking speed (Fig 4A). The overexpression results in walk-

ing speed are mirror-symmetric with those in stripe fixation, supporting the potential oppo-

nent role OA and TA may be playing in both parameters and hence their role in establishing

differential dominance in the tβh locus.

Due to these opposite results between spatial and temporal control of walking behavior and

the highly varying nature of the walking speed results, one may speculate whether walking

speed is controlled by OA alone or by OA in conjunction with TA. As we find that both OA

and TA receptor mutants are affected in walking speed (Fig 6A), we conclude that both OA

and TA signaling are involved in the control of walking speed.

Gene dosage in opponent systems

Manipulating tβh expression modifies the balance of OA and TA in opposite directions [42].

Therefore, the acute tβh gene expression dependence manifesting itself in differential domi-

nance may be explained by the alteration of a fine balance between relative TA and OA con-

centrations. In Drosophila larvae, it was suggested that the relative increase in OA levels, but

not the absolute endogenous amount, is important for regulation of starvation-induced loco-

motion [86]. However, the interaction between the 2 neuromodulators seems to be more com-

plex than a simple balance [47,48,70,83–85,89–91]. We thus find that the data presented here

are consistent with the hypothesis that one potential mechanism behind differential domi-

nance in some traits is an opponent system of gene products that confers a high sensitivity to

gene expression levels to these traits. These results support the hypothesis that the tβh gene

exhibits type II pleiotropy [8].

PLOS BIOLOGY Sensitivity to gene expression levels underlies differential dominance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001228 May 10, 2021 15 / 21

https://doi.org/10.1371/journal.pbio.3001228


Differential dominance affects the outcomes of standard genetic techniques

As we have shown, this high sensitivity poses some formidable challenges for standard func-

tional genetics techniques. A staple in the genetic toolbox is rescue experiments, which serve

to establish the spatiotemporal expression requirements of the gene in question for the pheno-

types under scrutiny (e.g., [23,24,45]). Such experiments are commonly carried out in order to

arrive at necessity and sufficiency statements from which further mechanical understanding of

gene function can follow (but see also [92,93]). However, the implicit and all too often untested

assumptions for these experiments are that the (commonly) null mutations to be rescued fol-

low recessive inheritance and that wild-type-level gene function can be restored with a single

wild-type allele. The GAL4/UAS system does not provide for sufficient control of gene expres-

sion levels to accommodate more unconventional modes of inheritance. In fact, in some cases,

the basal promoter used in the creation of the GAL4 line may decide about the success or fail-

ure of an experiment [94].

In this work, we not only introduced the wild-type allele of the tβh gene in its genomic

locus in heterozygous animals (and hence with certainly wild-type spatiotemporal expression

levels; Fig 1), but we also deployed commonly used spatial (Figs 2 and 3) and temporal (Fig 4)

transgenic rescue techniques, as well as transgenic overexpression in a wild-type background

(Fig 5). While failed rescue experiments typically indicate that the mutated gene is not involved

in the observed phenotype, the aggregate of all our experiments suggests that indeed the tβh
gene is involved in all the phenotypes we studied, despite multiple failed rescue experiments in

the walking phenotypes. Specifically, the autosomal or gonosomal location of the rescue con-

struct affected rescue results via male dosage compensation (Figs 2 and 3), but the choice of

technique driving the rescue construct, inasmuch as it affects expression levels, was also

important irrespective of its autosomal location (Fig 4). These data suggest that differential

dominance can affect the outcome of some of these standard experiments to such an extent

that nearly any arbitrary result may be obtained simply by the choice of rescue strategy—and

the differential reporting of such results (file drawer effect) may distort the literature.

While pleiotropy was not found to be universal [8], it is not known how many genes in Dro-
sophila are pleiotropic, nor how many of them display differential dominance. However, we

have recently observed differential dominance in at least 1 other gene, the transcription factor

FoxP [94].
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Sayani Banerjee for technical assistance; and to the workshop of Freie Universität Berlin for

building the hardware.

Author Contributions

Conceptualization: Christine Damrau, Julien Colomb, Björn Brembs.

Data curation: Julien Colomb, Björn Brembs.

Formal analysis: Christine Damrau, Julien Colomb.

Funding acquisition: Julien Colomb, Björn Brembs.

Investigation: Julien Colomb.

PLOS BIOLOGY Sensitivity to gene expression levels underlies differential dominance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001228 May 10, 2021 16 / 21

https://doi.org/10.1371/journal.pbio.3001228


Methodology: Christine Damrau, Julien Colomb, Björn Brembs.

Resources: Christine Damrau, Julien Colomb.

Software: Christine Damrau, Julien Colomb.

Supervision: Julien Colomb, Björn Brembs.

Validation: Julien Colomb.

Visualization: Christine Damrau, Julien Colomb.

Writing – original draft: Christine Damrau, Björn Brembs.

Writing – review & editing: Julien Colomb, Björn Brembs.

References
1. Fisher RA. The genetical theory of natural selection. Oxford: Oxford University Press; 1930.

2. Orr HA. Adaptation and the cost of complexity. Evolution. 2000; 54:13–20. https://doi.org/10.1111/j.

0014-3820.2000.tb00002.x PMID: 10937178

3. Waxman D, Peck JR. Pleiotropy and the preservation of perfection. Science. 1998; 279:1210–3.

4. Kenney-Hunt JP, Cheverud JM. Differential dominance of pleiotropic loci for mouse skeletal traits. Evo-

lution. 2009; 63:1845–51. https://doi.org/10.1111/j.1558-5646.2009.00681.x PMID: 19566580

5. Otto SP. Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proc Biol Sci.

2004; 271:705–14. https://doi.org/10.1098/rspb.2003.2635 PMID: 15209104

6. Turelli M, Barton NH. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent

allelic effects and G x E interactions. Genetics. 2004; 166:1053–79. https://doi.org/10.1534/genetics.

166.2.1053 PMID: 15020487

7. Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate develop-

ment in the zebrafish. Dev Cell. 2011; 21:48–64. https://doi.org/10.1016/j.devcel.2011.06.007 PMID:

21763608

8. Hill WG, Zhang X-S. On the pleiotropic structure of the genotype-phenotype map and the evolvability of

complex organisms. Genetics. 2012; 190:1131–7. https://doi.org/10.1534/genetics.111.135681 PMID:

22214609

9. Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS, Cheverud JM. Pleiotropic effects on man-

dibular morphology I. Developmental morphological integration and differential dominance. J Exp Zool

B Mol Dev Evol. 2003; 296:58–79. https://doi.org/10.1002/jez.b.9 PMID: 12658711

10. Klingenberg CP, Leamy LJ, Routman EJ, Cheverud JM. Genetic architecture of mandible shape in

mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics. 2001; 157:785–

802. PMID: 11156997

11. Allison AC. Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J. 1954;

1:290–4. https://doi.org/10.1136/bmj.1.4857.290 PMID: 13115700

12. Motro U, Thomson G. On heterozygosity and the effective size of populations subject to size changes.

Evolution. 1982; 36:1059–66. https://doi.org/10.1111/j.1558-5646.1982.tb05474.x PMID: 28567820

13. Karlin S. Rates of approach to homozygosity for finite stochastic models with variable population size.

Am Nat. 1968; 102:443–55.

14. Nowak C, Vogt C, Diogo JB, Schwenk K. Genetic impoverishment in laboratory cultures of the test

organism Chironomus riparius. Environ Toxicol Chem. 2007; 26:1018–22. https://doi.org/10.1897/06-

349r.1 PMID: 17521150

15. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I. Inbreeding and extinction in a

butterfly metapopulation. Nature. 1998; 392:491.

16. Madsen T, Shine R, Olsson M, Wittzell H. Restoration of an inbred adder population. Nature. 1999;

402:34.

17. Frankham R. Inbreeding and extinction: a threshold effect. Conserv Biol. 1995; 9:792–9.

18. Dennis B. Allee effects in stochastic populations. Oikos. 2002; 96:389–401.

19. Cheverud JM, Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS. Pleiotropic effects on man-

dibular morphology II: differential epistasis and genetic variation in morphological integration. J Exp

Zool B Mol Dev Evol. 2004; 302:424–35. https://doi.org/10.1002/jez.b.21008 PMID: 15384169

PLOS BIOLOGY Sensitivity to gene expression levels underlies differential dominance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001228 May 10, 2021 17 / 21

https://doi.org/10.1111/j.0014-3820.2000.tb00002.x
https://doi.org/10.1111/j.0014-3820.2000.tb00002.x
http://www.ncbi.nlm.nih.gov/pubmed/10937178
https://doi.org/10.1111/j.1558-5646.2009.00681.x
http://www.ncbi.nlm.nih.gov/pubmed/19566580
https://doi.org/10.1098/rspb.2003.2635
http://www.ncbi.nlm.nih.gov/pubmed/15209104
https://doi.org/10.1534/genetics.166.2.1053
https://doi.org/10.1534/genetics.166.2.1053
http://www.ncbi.nlm.nih.gov/pubmed/15020487
https://doi.org/10.1016/j.devcel.2011.06.007
http://www.ncbi.nlm.nih.gov/pubmed/21763608
https://doi.org/10.1534/genetics.111.135681
http://www.ncbi.nlm.nih.gov/pubmed/22214609
https://doi.org/10.1002/jez.b.9
http://www.ncbi.nlm.nih.gov/pubmed/12658711
http://www.ncbi.nlm.nih.gov/pubmed/11156997
https://doi.org/10.1136/bmj.1.4857.290
http://www.ncbi.nlm.nih.gov/pubmed/13115700
https://doi.org/10.1111/j.1558-5646.1982.tb05474.x
http://www.ncbi.nlm.nih.gov/pubmed/28567820
https://doi.org/10.1897/06-349r.1
https://doi.org/10.1897/06-349r.1
http://www.ncbi.nlm.nih.gov/pubmed/17521150
https://doi.org/10.1002/jez.b.21008
http://www.ncbi.nlm.nih.gov/pubmed/15384169
https://doi.org/10.1371/journal.pbio.3001228


20. Yokokura T, Dresnek D, Huseinovic N, Lisi S, Abdelwahid E, Bangs P, et al. Dissection of DIAP1 func-

tional domains via a mutant replacement strategy. J Biol Chem. 2004; 279:52603–12. https://doi.org/

10.1074/jbc.M409691200 PMID: 15371434

21. Chun Y-HP, Lu Y, Hu Y, Krebsbach PH, Yamada Y, Hu JC-C, et al. Transgenic rescue of enamel phe-

notype in Ambn null mice. J Dent Res. 2010; 89:1414–20. https://doi.org/10.1177/0022034510379223

PMID: 20940352

22. Kirshenbaum GS, Dachtler J, Roder JC, Clapcote SJ. Transgenic rescue of phenotypic deficits in a

mouse model of alternating hemiplegia of childhood. Neurogenetics. 2016; 17:57–63. https://doi.org/10.

1007/s10048-015-0461-1 PMID: 26463346

23. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dom-

inant phenotypes. Development. 1993; 118:401–15. PMID: 8223268

24. Zars T, Fischer M, Schulz R, Heisenberg M. Localization of a short-term memory in Drosophila. Sci-

ence. 2000; 288:672–5. https://doi.org/10.1126/science.288.5466.672 PMID: 10784450

25. Saga Y. Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement.

Mech Dev. 1998; 75:53–66. https://doi.org/10.1016/s0925-4773(98)00077-x PMID: 9739106

26. Park CJ, Zhao Z, Glidewell-Kenney C, Lazic M, Chambon P, Krust A, et al. Genetic rescue of nonclassi-

cal ERα signaling normalizes energy balance in obese Erα-null mutant mice. J Clin Invest. 2011;

121:604–12. https://doi.org/10.1172/JCI41702 PMID: 21245576

27. Evans PD. Biogenic amines in the insect nervous system. In: Berridge MJ, Treherne JE, Wigglesworth

VB, editors. Advances in insect physiology. London: Academic Press; 1980. pp. 317–473.

28. David J-C, Coulon J-F. Octopamine in invertebrates and vertebrates. A review. Prog Neurobiol. 1985;

24:141–85. https://doi.org/10.1016/0301-0082(85)90009-7 PMID: 2863854

29. Roeder T. Octopamine in invertebrates. Prog Neurobiol. 1999; 59:533–61. https://doi.org/10.1016/

s0301-0082(99)00016-7 PMID: 10515667

30. Wallace BG. The biosynthesis of octopamine-characterization of lobster tyramine β-hydroxylase. J

Neurochem. 1976; 26:761–70. https://doi.org/10.1111/j.1471-4159.1976.tb04449.x PMID: 9474

31. Sombati S, Hoyle G. Central nervous sensitization and dishabituation of reflex action in an insect by the

neuromodulator octopamine. J Neurobiol. 1984; 15:455–80. https://doi.org/10.1002/neu.480150606

PMID: 6097644

32. Ridgel AL, Ritzmann RE. Insights into age-related locomotor declines from studies of insects. Ageing

Res Rev. 2005; 4:23–39. https://doi.org/10.1016/j.arr.2004.08.002 PMID: 15619468

33. Baudoux S, Duch C, Morris OT. Coupling of efferent neuromodulatory neurons to rhythmical leg motor

activity in the locust. J Neurophysiol. 1998; 79:361–70. https://doi.org/10.1152/jn.1998.79.1.361 PMID:

9425205
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