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Learning to anticipate future events on the basis of past

experience with the consequences of one’s own behavior

(operant conditioning) is a simple form of learning that humans

share with most other animals, including invertebrates. Three

model organisms have recently made significant contributions

towards a mechanistic model of operant conditioning, because

of their special technical advantages. Research using the

fruit fly Drosophila melanogaster implicated the ignorant gene

in operant conditioning in the heat-box, research on the sea

slug Aplysia californica contributed a cellular mechanism of

behavior selection at a convergence point of operant behavior

and reward, and research on the pond snail Lymnaea stagnalis

elucidated the role of a behavior-initiating neuron in operant

conditioning. These insights demonstrate the usefulness of a

variety of invertebrate model systems to complement and

stimulate research in vertebrates.
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Abbreviations
CPG central pattern generator

RPeD1 right pedal dorsal 1

RSK ribosomal S6 kinase

US unconditioned stimuli

Introduction
We all experience pleasurable and painful events on a

daily basis. Predicting the occurrence of either is crucial

for seeking the pleasurable ones and avoiding the painful

ones. Most of the time, past experience with reliable

predictors of these events helps us to do this. We may

smell fresh coffee brewing in the morning, hear the sound

of a dentist’s drill in the waiting room or see dark clouds

before a rainstorm. We also experience that touching a hot

plate is painful and that saying ‘please’ will often give us

the desired treat. The learning by which we associate

external predictors (conditioned stimuli, CSs) with impor-

tant outcomes (unconditioned stimuli, USs) is called

classical or Pavlovian conditioning [1]. Learning from

the consequences of our behavior (an internal predictor)

is called operant or instrumental conditioning [2].

Understanding the neurobiology that underlies classical

conditioning is a lot easier than doing the same for operant

conditioning: one can follow the stimuli from their respec-

tive sensory organs into the brain and find the points of

convergence where the learning takes place. By contrast,

the points where the US (reinforcement or punishment in

the operant nomenclature) converges on operant behavior

have proven much more elusive. The complexity of the

vertebrate brain makes it difficult to discern the circuits

that are responsible for the generation of the behavior,

and stimuli are processed in several hierarchical and

interlocking steps. Fortunately, small brains can also learn

operantly and classically. It seems that these simple forms

of predictive learning are so fundamental that they

appeared early in evolution and have been indispensable

ever since. Out of the many invertebrates that show

operant conditioning, three in particular have recently

helped to further our progress towards a mechanistic

model of operant conditioning: the fruit fly Drosophila
melanogaster, the sea slug Aplysia californica and the pond

snail Lymnaea stagnalis.

Heat-box learning in Drosophila
Research on the genetically renowned fruit fly Drosophila
(Figure 1a) has been revealing a steady flow of genes that

are involved in olfactory classical conditioning for the past

three decades [3–11]. Many of these genes affect the level

of the second-messenger cAMP and are preferentially

expressed in a prominent neuropil in the fly’s brain, the

mushroom bodies (Figure 1b; [12–14]). For some of these

genes, being expressed exclusively in the mushroom

bodies is sufficient for normal learning [15]. Are those

genes also involved in operant conditioning? What role do

the mushroom bodies play in operant conditioning?.

The heat-box (Figure 1c) is the perfect instrument to use

the powerful genetic techniques in Drosophila to study

operant conditioning [16,17,18�]. Every time the fly walks

into the designated half of the tiny dark chamber the

whole space is heated. As soon as the animal leaves

the punished half, the chamber temperature reverts to

normal. After a few minutes, the animals restrict their

movements to one-half of the chamber, even if the heat is

switched off. Several training sessions interspersed by test

phases in which the heat is permanently switched off are

more effective than one long training session [18�]. With a

brief reminder training, this memory is still detectable

even if the fly is taken out of the chamber and then tested

in a different one, up to two hours later [18�]. As it is
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completely dark in the chamber, the animal is most likely

to rely on idiothetic cues for orientation, thus minimizing

the contamination with potential classical predictors. It

can be shown that the operant memory consists of two

components, a spatial component and a ‘stay-where-you-

are’ component [18�].

Figure 1

Operant conditioning in Drosophila. (a) The fruit fly Drosophila melanogaster on a British penny coin (kindly provided by J Dow). (b) 3D reconstruction

of the Drosophila brain. The paired green structure is a surface rendering of the mushroom bodies (kindly provided by M Heisenberg).

(c) Cartoon of the heat-box learning paradigm. Fifteen to thirty of the depicted boxes can be run simultaneously and in parallel. The flies walk around

in small closed rectangular chambers in complete darkness. The upper and lower surfaces consist of two Peltier-elements for rapid heating and

cooling. A position scanner (bar code reader) reports the position of the fly to the computer while a control circuit and a thermosensor keep the

chamber at a defined temperature. Whenever the fly enters the pre-defined punished side, the whole chamber is heated to 408C, and as soon as

the fly leaves that side again the chamber is cooled down to 208. Within minutes flies learn to avoid the punished side during training, and maintain

this side preference in the following learning test when heat is permanently switched off. Adapted from [18��]. (d) A hypothetical model of the

postsynaptic cAMP/MAPK cascades with selected examples of Drosophila genes highlighted. A receptor coupled cGMP-binding protein (G-Protein)

and Ca2þ influx activate the rutabaga adenylyl cyclase to produce cAMP. The Ca2þ and cAMP signals possibly converge on Raf, modulated by

the leonardo 14-3-3 protein. After another phosphorylation step, mitogen activated protein kinase (MAPK) activates the Ca2þ/cAMP response element

binding protein (CREB) through the ignorant P90 ribosomal S6 kinase (RSK). The dunce phosphodiesterase downregulates cAMP concentrations.
The cascade leads to the modification of several downstream targets such as cell adhesion molecules (CAM) or ion channels such as the

ether-a-go-go voltage gated Kþ channel. Adapted from [59].
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Flies with mutations in the genes involved in classical

conditioning (those affecting cAMP) show marked def-

icits in the heat-box [16]. However, the question remains

of whether learning classical (external) predictors is

really the same as learning operant (internal) predictors

on the genetic scale or are there operant learning genes

that are not involved in classical conditioning? Taking

advantage of the size of the fruit fly, there are usually a

barrage of chambers connected in one setup, making a

genetic mutant screen possible in an operant learning

paradigm for a single fly. Apparently supplementing the

previous mutant data, one of the mutants found using

the heat box approach affects an enzyme that is thought

to be downstream of the cAMP pathway: the ignorant
gene codes for the p90 ribosomal S6 kinase (RSK,

Figure 1d; [19��]).

However, if the different alleles generated by the screen

are scrutinized a little closer, it appears that ignorant has

very different effects on operant and classical condition-

ing. The original mutant (ignP1), with a Drosophila trans-

posable element in the first exon of the gene, shows a

sexual dimorphism in the heat-box, where males are

impaired but females appear normal [19��]. Both males

and females of that line are statistically indistinguishable

from the wild type controls in olfactory classical condi-

tioning [20]. The null mutant (ign58/1), in which the entire

RSK sequence is missing, shows decreased learning and

memory in the classical case [20], but is normal in the

heat-box [19��]. Finally, several partial deletions of the

ignorant gene make flies deficient in the heat-box task

[19��], but these lines have not yet been tested for

classical conditioning. Apparently, different mutations

of the ignorant gene have different effects on operant

and classical conditioning, which indicates a differen-

tiated role of RSKs in the two forms of learning.

Paralleling the differential results on the molecular scale,

there are several operant learning situations, including

the heat-box, that do not require the mushroom bodies

[21], whereas olfactory classical conditioning is abolished

without mushroom bodies [22]. It seems unlikely, how-

ever, that the mushroom bodies are generally required for

classical conditioning, as flies without them do very well

in classical conditioning with visual CSs [21]. The picture

that emerges suggests that the mushroom bodies are

needed for chemosensory learning and higher-order inte-

grative tasks [23�]. Although the cAMP cascade and its

downstream targets are both necessary and sufficient in

the mushroom bodies for these tasks [15,22], in operant

conditioning they are involved in neurons outside the

mushroom bodies and in a different way than in classical

conditioning [19��].

Neither the neurotransmitter mediating the reinforce-

ment nor the brain region controlling the relevant beha-

viors are yet known. The antennal lobes, the median

bundle, and the ventral ganglion in the thorax are good

candidate regions, because a functional cAMP cascade in

these regions alone is sufficient for learning in the heat-

box [24]. Finding the transmitter and scrutinizing the

expression patterns of the wild type and mutated ignorant
gene should help to identify the location of the potential

regions in which behavior and reinforcement converge.

Once those convergence points are found, they can be

targeted and specific parts of the molecular machinery can

be manipulated to not only evaluate necessity and suffi-

ciency of each point but also to help construct a mechan-

istic model of operant conditioning on the cellular and

molecular level.

Operant reward-learning of feeding
behavior in Aplysia
Similar to Drosophila, the sea slug Aplysia (Figure 2a) is

also better known for its prominent role in classical

conditioning [25–29]. Unlike the situation in Drosophila,

its strengths lie in the analysis of the cellular and network

level, which provides a possibility to find the convergence

points of operant behavior and reinforcement. By virtue

of its large neurons (Figure 2b) it is possible to trace the

neural networks in the ganglia and follow the flows of

activity generated by sensory stimulation or during beha-

vior. Aplysia’s feeding behavior (Figure 2c) has proven

very valuable for the study of operant conditioning

[30��,31–34]. The key neurons in the central pattern

generator (CPG) are known [35,36]. They are located

in the buccal ganglion and, in part, control the ingestion

and rejection movements of the radula (a tongue-like

organ) in the buccal mass (Figure 2d). Conveniently, the

behavior can be both classically and operantly condi-

tioned [30��,31,37,38].

Early on, the esophageal nerve appeared to be crucial for

the effectiveness of these conditioning experiments

[31,38,39]. Recording extracellularly from the esophageal

nerve in the intact animal during a biting movement that

fails to grasp food reveals little activity. However, when

the animal grasps and swallows seaweed, there are bursts

of activity in the esophageal nerve during and outlasting

the swallowing movements [30��]. Presumably, the eso-

phageal nerve transmits information about the presence

of food to the buccal ganglia.

In an effort to mimic the food signal as reward in an

operant conditioning experiment, the esophageal nerve

was stimulated in vivo (in a pattern resembling the

recorded activity) whenever the animals produced a bite

(no food present). No other stimuli were contingent with

the bites, minimizing the contamination with classical

components. Just as if this ‘virtual’ food rewarded the

animals, they produced more bites in a subsequent test

session without stimulation than a control group that had

received the same stimulation sequences, but indepen-

dently of their behavior (yoked control) [30��].
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Apparently, the reward signal from the esophageal nerve

converges on the behavior that is generated by activity in

the buccal ganglia. However, the question that remains is

in which neurons does this happen? One neuron thought

to determine whether a radula movement becomes an

ingestion or a rejection, is B51 [32,40]. Interestingly, not

only is there evidence that B51 is active during the

rewarded behavior but it also receives a dopaminergic

input from the esophageal nerve [34], that is, the possi-

bility exists that B51 constitutes a convergence point of

operant behavior and dopamine-mediated reward. In line

with this hypothesis are findings that B51 shows altered

biophysical membrane properties after operant condition-

ing, making it more excitable [30��,32]. Additional evi-

dence comes from a single cell analogue of operant

conditioning. If cultured B51 cells receive an iontophore-

tic puff of dopamine right after (as opposed to between)

depolarization-induced activity that mimics the presumed

Figure 2

Operant conditioning in Aplysia. (a) Photograph of the head and mouth of Aplysia during a bite. (b) Photograph of the caudal surface of a desheathed

buccal ganglion. The orange pigmented objects are neurons. (c) Schematic representation of the coordination of movements during feeding

behavior. Coordination of two sets of movements, protraction-retraction versus opening-closing, of the radula determines the type of behavior

displayed. During ingestion, the two radula halves are protracted out of the animal to close around food and then pull the food into the buccal

cavity during retraction. Alternatively, the radula can close on an inedible item in the buccal cavity and eject it by protracting the radula and thereby

pulling the item out of the buccal cavity (i.e. rejection). Thus, in both ingestion and rejection, radula protraction and retraction alternate, whereas

radula closure shifts its phase relative to protraction-retraction. In rejection, the radula closes during protraction; in ingestion, the radula closes during

retraction. (d) Circuit diagram of a computer model of the key buccal neurons involved in coordinating the two sets of radula movements (kindly

provided by D Baxter).
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Figure 3

Operant conditioning in Lymnaea. (a) Under hypoxic conditions, the bimodal breather Lymnaea supplements cutaneous respiration with aerial

respiration through its pneumostome (image kindly provided by G Spencer). (b) Photograph of the central ring ganglia of Lymnaea (kindly

provided by G Spencer). (c) Cartoon of the training apparatus used to operantly condition aerial respiratory behavior in Lymnaea. To create

hypoxic conditions, N2 is bubbled through a beaker with pond water for 20 minutes, snails are then added, and training begins after a 10-min

acclimatization period. N2 is continuously bubbled throughout the training period. Each time a snail attempts to open its pneumostome it receives

a tactile stimulus applied by a sharpened wooden applicator, which causes the pneumostome to close. In the course of the training, the animals learn

to suppress the punished respiratory behavior (adapted from [41]). (d) A diagram of the neural circuit (CPG) controlling aerial respiration in Lymnaea.

The CPG consists of three identified interneurons. Activity in RPeD1 initiates rhythmogenesis. Activity in interneuron IP3 results in pneumostome

opening through monosynaptic excitatory synaptic connections to visceral J (VJ) motor neurons. The monosynaptic excitatory connections to

VK motor neurons from interneuron visceral dorsal 4 (VD4) lead to pneumostome closure upon activation of VD4. CPG activity and hence

pneumostome muscle activity can be modified by intrinsic (RPeD1 dendrite) and extrinsic (sensory neurons) input to the circuit. Tactile stimulation

of the pneumostome area results in the activation of identified mechano-sensory neurons that monosynaptically excite the ‘whole-body

withdrawal interneuron’, RPeD11 (adapted from [42]).
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B51 activity during a bite, they show the same biophysical

changes as those seen after operant conditioning [30��].
These results are consistent with the view that during

this form of operant conditioning, a dopamine-mediated

food-reward is contingent on activity in B51 during the

rewarded behavior. Activity-dependent plasticity in B51

leads to a modification of the biophysical properties of

the neuron that make it more likely to be active. These

biophysical changes in B51, in turn, contribute to the

increased production of bites seen after operant training.

Although the described biophysical changes are sufficient

for some aspects of the operant learning [33], it is not

known if the changes in B51 are necessary for learning to

occur. It is also not yet known how many more neurons

are involved and what their relative contributions are. For

example, although B51 is crucial for determining what

kind of pattern the buccal CPG produces, it is active

rather late during the pattern and not involved in initiat-

ing the behavior [32]. To construct a mechanistic model

of operant conditioning it will be vital to understand the

role of initiating activity and if/how spontaneously active

neurons are modified as the learning takes place.

Operant conditioning of aerial respiratory
behavior in Lymnaea
The pond snail, Lymnaea (Figure 3a) may provide the data

to elucidate the role of activity initiating neurons in

operant conditioning. Lymnaea is a bimodal breather.

Under normoxic conditions, it obtains oxygen cuta-

neously, whereas under hypoxic conditions, it moves to

the surface to supplement cutaneous oxygen uptake by

aerial respiration using its pneumostome (respiratory ori-

fice; Figure 3a). Similar to Aplysia, Lymnaea has a rela-

tively simple nervous system and a central ring ganglion

contains the CPG for generating the aerial respiratory

behavior (Figure 2b; [41,42]). Experimentally, hypoxic

conditions are induced by bubbling N2 in the training

beaker (Figure 3c; [43]). A sharpened wooden applicator

is used to lightly touch the pneumostome as it opens. This

punishment only causes the animal to close the pneu-

mostome and does not elicit the defensive withdrawal of

the whole animal. With repeated stimulation, the animals

cease to open their pneumostome. Control groups showed

that this effect is neither due to a general decrement

caused by the induced hypoxia nor due to non-associative

effects of the stimulation [43].

The three-cell CPG (Figure 3d) that controls aerial

respiratory behavior is well characterized and can be

reconstituted in cell culture [44,45]. In the most exten-

sively characterized invertebrate operant conditioning

preparation, various training regimes have been reported

to induce a context dependent multi-phasic memory,

which includes aspects of short-, intermediate-, and

long-term memory, that lasts for up to one month

[46��,47,48,49�,50–54]. The accounts of the underlying

neurobiology include the differential requirements of

local translation and transcription for intermediate- and

long-term memory, respectively, as well as neural corre-

lates in neurons in the CPG [46��,49�,55,56��]. Impor-

tantly, the CPG activity initiating neuron RPeD1 (right

pedal dorsal 1; see Figure 3d) shows a lower spontaneous

firing frequency in semi-intact preparations from trained

animals after a brief reminder training [56��]. In isolated

ganglia of operantly trained animals, RPeD1 is quiescent

more often than in preparations from yoked control

animals, and the efficacy of the excitatory connection

from RPeD1 to IP3 (input 3 interneuron; see Figure 3d) is

reduced [55].

The most parsimonious explanation of the published data

is that RPeD1 is active at the beginning of the behavior

and contingent stimulation of the pneumostome changes

several of its biophysical and synaptic properties. These

changes can last up to several hours solely relying on local

translation. Transcription is required in order for the

changes to become more permanent. It would be very

interesting to see if these changes could be brought about

in a single cell analog with the isolated RPeD1 in cell

culture. For such an experiment, it remains to be deter-

mined of what biophysical or molecular nature the

changes found in RPeD1 are, and whether the punish-

ment is mediated through the whole-body withdrawal

neuron (Figure 3d) or affects RPeD1 directly.

Conclusions
Using the particular advantages of each model system,

research in Drosophila generated new insights into the

molecular processes involved in operant conditioning,

research in Aplysia yielded a convergence point of oper-

ant behavior and reinforcement and suggested a possible

cellular mechanism of operant conditioning, and research

in Lymnaea shed some light on the possible role of

activity-initiating neurons in a CPG in operant condi-

tioning. It is noteworthy that each animal provided a

piece of data that was not obtainable in the other model

systems. If one were to attempt an integrated mechan-

istic model of operant conditioning at this early stage, one

could say that contingent reinforcement/punishment

acts on behavior-initiating and -switching neurons alter-

ing both their biophysical membrane properties and their

synaptic connections through the cAMP cascade and its

downstream targets.

Paralleling evidence from vertebrates [57,58], it was

found that different brain circuits and molecular mechan-

isms are involved when external (i.e. stimuli) or internal

(i.e. behaviors) predictors are used to anticipate important

events. Not unexpectedly, the data presented here are

consistent with the idea that the modifications induced by

learning reside in the circuits involved in processing the

predictors, that is, the sensory pathways in classical con-

ditioning and the behavior generators (CPGs) in operant

Operant conditioning in invertebrates Brembs 715

www.current-opinion.com Current Opinion in Neurobiology 2003, 13:710–717



conditioning. On a more general level, one can conceive

that any important event (US) generates a distributed

signal acting on coincidentally active neurons through

activity-dependent plasticity. The location of the circuits,

the points of convergence between the neurons proces-

sing the events that precede the signal (the predictors)

and the signal itself will depend not only on the type of

predictor (operant or classical) but also on the type of US

(reward or punishment).

Research in vertebrates is not so fortunate to be able to

deduce the involvement of the relevant brain regions by

virtue of their location with respect to the studied learn-

ing paradigm. Most progress towards a mechanistic

model of operant conditioning can be made by studying

several model organisms, so questions can be tackled on

many levels of complexity with the ideal method in the

ideal system for the particular question. Thus, the largest

leaps in understanding operant conditioning can be

expected from integrative approaches using the common

task of learning from the consequences of behavioral

actions to constrain the design of experiments, so that

they become comparable across phyla. Using the com-

mon and disparate data, one can then construct a general

mechanistic model of operant conditioning, with wide

ramifications ranging from the basic sciences of neuro-

biology and evolution to substance abuse, mental illness

and even philosophy.
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