Citation statistics by hand (also see Google Scholar Citations)
Cited publications: 51
Citations: 3012
h-index: 33


Brembs B. (2021): The brain as a dynamically active organ. Biochemical and Biophysical Research Communications 564:55-69. doi:10.1016/j.bbrc.2020.12.011
Citations:

  1. Clement L, Schwarz S, Wystrach A. (2023): An intrinsic oscillator underlies visual navigation in ants.Current Biology: CB, 33(3): 411-422. https://doi.org/10.1016/j.cub.2022.11.059

Grossmann A, Brembs B. (2021): Current market rates for scholarly publishing services. F1000Res. doi:10.12688/f1000research.27468.2
Citations:

  1. Yamada Y, Teixeira da Silva JA. (2023):Academia Letters: Examination of an ‘experimental’ Academia.edu publishing model. Journal of Scholarly Publishing, 54(1): 103–120. https://doi.org/10.3138/jsp-2022-0028
  2. Limaye A. (2022): Article Processing Charges may not be sustainable for academic researchers.MIT Science Policy Review, 3. https://doi.org/10.38105/spr.stvcknibc5
  3. Ghasemi A, Mirmiran P, Kashfi K, Bahadoran Z. (2022): Scientific publishing in biomedicine: A brief history of scientific journals.International Journal of Endocrinology and Metabolism, 21(1). https://doi.org/10.5812/ijem-131812
  4. Eguiluz I, Sy A, Brage E, González-Agüero M. (2022): Rapid qualitative health research from the Global South: Reflections and learnings from Argentina, Brazil, Chile, and Mexico during the COVID-19 pandemic.Frontiers in Sociology, 7, 983303. https://doi.org/10.3389/fsoc.2022.983303
  5. Pallares C, Vélez Cuartas G, Uribe-Tirado A, Restrepo D, Ochoa J, Suárez M. (2022): Situación del acceso abierto y los pagos por APC en Colombia. Un modelo de análisis aplicable a Latinoamérica.Revista Espanola La de Documentacion Cientifica, 45(4), e342. https://doi.org/10.3989/redc.2022.4.1931
  6. Racimo F, Galtier N, De Herde V, Bonn NA, Phillips B, Guillemaud T, Bourget D. (2022): Ethical publishing: How do we get there?Philosophy Theory and Practice in Biology, 14(0). https://doi.org/10.3998/ptpbio.3363
  7. Rousi AM, Laakso M. (2022): Overlay journals: A study of the current landscape.Journal of Librarianship and Information Science, 096100062211252. https://doi.org/10.1177/09610006221125208
  8. Göttker S. (2022): Open Access: Koste es, was es wolle?: Eine kritische Würdigung der Empfehlungen des Wissenschaftsrates zur Transformation des wissenschaftlichen Publizierens zu Open Access.Bibliotheksdienst, 56(5): 295–315. https://doi.org/10.1515/bd-2022-0046
  9. Rowe C, Agius M, Convers J, Funning G, et al. (2022): The launch of Seismica: a seismic shift in publishing.Seismica, 1(1). https://doi.org/10.26443/seismica.v1i1.255
  10. Teixeira da Silva JA, Yamada Y. (2022): Accelerated peer review and paper processing models in academic publishing. Publishing Research Quarterly, 38(3):599–611. https://doi.org/10.1007/s12109-022-09891-4
  11. Koley M, Namdeo SK, Suchiradipta B, Afifi NA. (2022): Digital platform for open and equitable sharing of scholarly knowledge in India. Journal of Librarianship and Information Science, 096100062210836. https://doi.org/10.1177/09610006221083678
  12. Koley, M, & Lala, K (2022): Are journal archiving and embargo policies impeding the success of India’s open access policy? Learned Publishing: Journal of the Association of Learned and Professional Society Publishers 35(2):175–186. https://doi.org/10.1002/leap.1441
  13. Triggle CR, MacDonald R, Triggle DJ, Grierson D. (2022): Requiem for impact factors and high publication charges. Accountability in Research 29(3):133-164. doi:10.1080/08989621.2021.1909481
  14. Bergel E, Byström K, Dahrén B, Lindström L, Wiberg N, et al. (2021): Öppet, hållbart och forskarnära: en konsekvensanalys för framtida arbete med avtal och publiceringsstöd vid Uppsala universitetsbibliotek. Uppsala universitet.

Damrau C, Colomb J, Brembs B. (2021): Sensitivity to expression levels underlies differential dominance of a putative null allele of the Drosophila tßh gene in behavioral phenotypes. PLoS Biol. doi:10.1371/journal.pbio.3001228
Citations:

  1. Colomb J, Winter Y. (2021): Creating Detailed Metadata for an R Shiny Analysis of Rodent Behavior Sequence Data Detected Along One Light-Dark Cycle. Frontiers in neuroscience 15:742652. doi:10.3389/fnins.2021.742652

Brembs B, Welpe I. (2019): Wie Pseudo-Wettbewerbe der Wissenschaft schaden. Forschung & Lehre 2019:26. https://www.forschung-und-lehre.de/politik/wie-pseudo-wettbewerbe-der-wissenschaft-schaden-1735/
Citations:

  1. Türp CJ. (2020): The journal impact factor 2019. Dtsch Zahnärztl Z Int 2:206-213.

Tennant J, Beamer JE, Bosman J, Brembs B, Chung NC, Clement G, Crick T, Dugan J, Dunning A, Eccles D, et al. (2019): Foundations for open scholarship strategy development. https://osf.io/preprints/metaarxiv/b4v8p
Citations:

  1. Arbuckle A, Siemens R, Bath J, Crompton C, Estill L, Niemann T, Saklofkse J, Siemens L. (2022):An open social scholarship path for the humanities.The Journal of Electronic Publishing: JEP, 25(2). https://doi.org/10.3998/jep.1973
  2. Biernacka K, Halbherr V, Lange M, Martin L, Mieck C, Reimer N. (2022): Open Access und wissenschaftliches Publizieren: Train-the-Trainer-Konzept. Zenodo. https://doi.org/10.5281/ZENODO.6034407
  3. Arthur PL, Hearn L. (2021): Reshaping how universities can evaluate the research impact of open humanities for societal benefit. The Journal of Electronic Publishing: JEP, 24(1). https://doi.org/10.3998/jep.788
  4. Longley Arthur P, Hearn L. (2021): Toward open research: A narrative review of the challenges and opportunities for open humanities. The Journal of Communication. https://doi.org/10.1093/joc/jqab028
  5. Class B, de Bruyne M, Wuillemin C, Donzé D, Claivaz, J-B (2021): Towards Open Science for the qualitative researcher: From a positivist to an open interpretation. International Journal of Qualitative Methods, 20, 160940692110346. https://doi.org/10.1177/16094069211034641
  6. Méndez E. (2021): Open Science por defecto. La nueva normalidad para la investigación. In Arbor (Vol. 197, Issue 799, p. a587). Editorial CSIC. https://doi.org/10.3989/arbor.2021.799002
  7. Bezuidenhout L, Havemann J. (2021): The varying openness of digital open science tools. F1000Res. doi:10.12688/f1000research.26615.2
  8. Arthur PL, Hearn L, Montgomery L, Craig H, Arbuckle A, Siemens R. (2021): Open scholarship in Australia: A review of needs, barriers, and opportunities. Digital Scholarship in the Humanities 36(4):795-812. doi:10.1093/llc/fqaa063
  9. Mendez D, Graziotin D, Wagner S, Seibold H. (2020): Open Science in Software Engineering. In: Felderer M, Travassos G, (eds.): Contemporary Empirical Methods in Software Engineering. Springer, Cham. doi:10.1007/978-3-030-32489-6_17
  10. Tennant JP, Bielcyk N, Tzovaras BG, Masuzzo P, Steiner T. (2020): Introducing Massively Open Online Paper (MOOPs). KULA. Doi: 10.5334/kula.63
  11. Geange SR, von Oppen J, Strydom T, Boakye M, Gauthier TL J, Gya R, Halbritter AH, Jessup LH, Middleton SL, et al. (2021): Next-generation field courses: Integrating Open Science and online learning. Ecology and Evolution, 11(8):3577–3587. https://doi.org/10.1002/ece3.7009

Brembs B. (2019): Reliable novelty: New should not trump true. PLoS Biol. doi:10.1371/journal.pbio.3000117
Citations:

  1. Frick C, Heller L. (2023): Ausflug in eine ferne nahe Welt: Forschungsalltag 2040.BIBLIOTHEK Forschung Und Praxis, 47(1): 52–57. https://doi.org/10.1515/bfp-2022-0059
  2. Triki Z, Bshary R. (2022): A proposal to enhance data quality and FAIRness.Ethology: Formerly Zeitschrift Für Tierpsychologie, 128(9), 647–651. https://doi.org/10.1111/eth.13320
  3. Knudson D. (2022): What kinesiology research is most visible to the academic world?Quest, 74(3): 285–298. https://doi.org/10.1080/00336297.2022.2092880
  4. Caballero CV, Fajardo E. (2022): Artículo de reflexión | Publicaciones científicas: ¿El conocimiento como un mercado o como un bien común.Global Rheumatology. https://doi.org/10.46856/grp.26.e144
  5. Triggle CR, MacDonald R, Triggle DJ, Grierson D. (2022): Requiem for impact factors and high publication charges. Accountability in Research 29(3):133-164. doi:10.1080/08989621.2021.1909481
  6. Marshall BM. (2021): Make like a glass frog: In support of increased transparency in herpetology. Herpetological Journal 31(1):35-45. British Herpetological Society. doi:10.33256/31.1.3545
  7. Götz M, O’Boyle EH, Gonzalez-Mulé E, Banks GC, Bollmann SS. (2021): The “Goldilocks Zone”: (Too) many confidence intervals in tests of mediation just exclude zero. Psychological Bulletin, 147(1):95–114. https://doi.org/10.1037/bul0000315
  8. Rodrigues E, Shearer K, Ross-Hellauer T, Fecher B, Carvalho J. (2020): Em busca de um sistema de comunicação inovador e sustentável para a ciência aberta. 48(3). http://revista.ibict.br/ciinf/article/view/4974
  9. Stojmenova Duh E, Duh A, Droftina U, Kos T, Duh U, Simonič Korošak T, Korošak D (2019): Publish-and-flourish: Using blockchain platform to enable cooperative scholarly communication. Publications, 7(2):33. https://doi.org/10.3390/publications7020033
  10. Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, Kramer B, Martin R, Masuzzo P et al. (2019): Ten hot topics around scholarly publishing. Publications, 7(2):34. https://doi.org/10.3390/publications7020034
  11. Knudson D, Liu T, Schmidt D, Van Mullem H. (2019): Mentoring Tenure-Track Faculty in Kinesiology. Kinesiology Review. doi:10.1123/kr.2019-0041

Werkhoven Z, Rohrsen C, Qin C, Brembs B, de Bivort B. (2019): MARGO (Massively Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology. G. F. Gilestro (Ed.), PLOS ONE14(11):e0224243. Public Library of Science (PLoS). doi:10.1371/journal.pone.0224243
Citations:

  1. Huda A, Omelchenko AA, Vaden TJ, Castaneda AN, Ni L. (2022): Responses of different Drosophila species to temperature changes. The Journal of Experimental Biology, 225(11). https://doi.org/10.1242/jeb.243708
  2. Panadeiro V, Rodriguez A, Henry J, et al. (2021): A review of 28 free animal-tracking software applications: current features and limitations. Lab Anim 50:246-254. doi:10.1038/s41684-021-00811-1
  3. Werkhoven Z, Bravin A, Skutt-Kakaria K, Reimers P, Pallares LF, Ayroles J, de Bivort BL. (2021): The structure of behavioral variation within a genotype. eLife. doi:10.7554/elife.64988
  4. Larsen LB, Neerup MM, Hallam J. (2021): Online computational ethology based on modern IT infrastructure. Ecological Informatics 63:101290. doi:10.1016/j.ecoinf.2021.101290
  5. Scheiner R, Frantzmann F, Jäger M, Mitesser O, Helfrich-Förster C, Pauls D. (2020): A Novel Thermal-Visual Place Learning Paradigm for Honeybees (Apis mellifera). Frontiers in Behavioral Neuroscience 14. Frontiers Media SA. doi:10.3389/fnbeh.2020.00056

Brembs B (2018): Prestigious Science Journals Struggle to Reach Even Average Reliability. Frontiers in Human Neuroscience. 12(37). DOI: 10.3389/fnhum.2018.00037
Citations:

  1. Alaedini A, Heinricher MM, Wormser GP. (2023): Bloated claims in biomedical research publications: Implications for science and society.The American Journal of Medicine. https://doi.org/10.1016/j.amjmed.2023.04.010
  2. Dienes Z. (2023): The credibility crisis and democratic governance: how to reform university governance to be compatible with the nature of science.Royal Society Open Science, 10(1). https://doi.org/10.1098/rsos.220808
  3. Sharifi S, Mahmoud NN, Voke E, Landry MP, Mahmoudi M. (2022): Importance of standardizing analytical characterization methodology for improved reliability of the nanomedicine literature.Nano-Micro Letters, 14(1): 172. https://doi.org/10.1007/s40820-022-00922-5
  4. Ghasemi A, Mirmiran P, Kashfi K, Bahadoran Z. (2022): Scientific publishing in biomedicine: A brief history of scientific journals.International Journal of Endocrinology and Metabolism, 21(1). https://doi.org/10.5812/ijem-131812
  5. Dougherty MR, Horne Z. (2022): Citation counts and journal impact factors do not capture some indicators of research quality in the behavioural and brain sciences.Royal Society Open Science, 9(8). https://doi.org/10.1098/rsos.220334
  6. Gordon M, Bishop M, Chen Y, Dreber A, Goldfedder B, Holzmeister F, et al. (2022): Forecasting the publication and citation outcomes of COVID-19 preprints.Royal Society Open Science, 9(9), 220440. https://doi.org/10.1098/rsos.220440
  7. Dunleavy DJ. (2022): Progressive and degenerative journals: on the growth and appraisal of knowledge in scholarly publishing.European Journal for Philosophy of Science, 12(4): 61. https://doi.org/10.1007/s13194-022-00492-8
  8. Delios A, Clemente EG, Wu T, Tan H, Wang Y, Gordon M, et al. (2022): Examining the generalizability of research findings from archival data.Proceedings of the National Academy of Sciences of the United States of America, 119(30). https://doi.org/10.1073/pnas.2120377119
  9. Sharifi S, Mahmoud NN, Voke E, Landry MP, Mahmoudi M. (2022): Importance of standardizing analytical characterization methodology for improved reliability of the nanomedicine literature.Nano-Micro Letters, 14(1): 172. https://doi.org/10.1007/s40820-022-00922-5
  10. Afonso Vieira V, Wolter JS, Falcão Araujo C, Saraiva Frio R. (2022): What makes the corporate social responsibility impact on Customer–Company identification stronger? A meta-analysis.International Journal of Research in Marketing. https://doi.org/10.1016/j.ijresmar.2022.09.002
  11. De Abreu Batista-Jr A. (2022): Predição na Ciência da Ciência: Explicativas de Modelos para Predições de Impacto Futuro de Cientistas Júnior. Unpublished. https://doi.org/10.13140/RG.2.2.15963.85289
  12. Azarpazhooh A, Cardoso E, Sgro A, Elbarbary M, Laghapour Lighvan N, Badewy R, Malkhassian G, et al. (2022): A scoping review of 4 decades of outcomes in nonsurgical root canal treatment, nonsurgical retreatment, and apexification studies-part 1: Process and general results. Journal of Endodontics, 48(1):15–28. https://doi.org/10.1016/j.joen.2021.09.018
  13. Pagliaro M. (2021): Did You Ask for Citations? An Insight into Preprint Citations en route to Open Science. Publications, 9(3):26. https://doi.org/10.3390/publications9030026
  14. Armani AM,  Lee JSH. (2021): Evaluating the impact of ideation and actualization of multidisciplinary research. Communications Physics, 4(1). https://doi.org/10.1038/s42005-021-00714-0
  15. Triggle CR, MacDonald R, Triggle DJ, Grierson D. (2022): Requiem for impact factors and high publication charges. Accountability in Research 29(3):133-164. doi:10.1080/08989621.2021.1909481
  16. Marshall BM, Strine CT. (2021): Make like a glass frog: In support of increased transparency in herpetology. Herpetological Journal 31(1):35-45. British Herpetological Society. doi:10.33256/31.1.3545
  17. Desmond H. (2021): Incentivizing Replication Is Insufficient to Safeguard Default Trust. Philosophy of Science 88(5):906-917. doi:10.1086/715657
  18. Götz M, O‘Boyle EH, Gonzalez-Mulé E, Banks GC, Bollmann SS. (2021): The “Goldilocks Zone”: (Too) many confidence intervals in tests of mediation just exclude zero. Psychological Bulletin 147(1):95-114. American Psychological Association. doi:10.1037/bul0000315
  19. Knöchelmann M. (2021): Systemimmanenz und Transformation: Die Bibliothek der Zukunft als lokale Verwalterin? Bibliothek Forschung und Praxis 45(1):151-162. doi:10.1515/bfp-2020-0101
  20. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. (2021): Scientific Publishing in Biomedicine: How to Choose a Journal? Int J Endocrinol Metab 19(1):e108417.  doi:10.5812/ijem.108417
  21. Orhan MA. (2021): Dynamic interactionism between research fraud and research culture: a commentary to Harvey’a analysis. Quality in Higher Education 27(1):134-146. doi:10.1080/13538322.2021.1857900
  22. Gosselin RD. (2021): Insufficient transparency of statistical reporting in preclinical research: a scoping review. Sci Rep 11:3335. doi:10.1038/s41598-021-83006-5
  23. Knöchelmann M. (2021): The Democratisation Myth: Open Access and the Solidification of Epistemic Injustices. Science & Technology Studies 34(2):65-89. doi:10.23987/sts.94964
  24. Lodi S, Spacek Godoy B, Carlo Goncalves Ortega J, Mauricio Bini L. (2021): Quality of meta-analyses in freshwater ecology: A systematic review. Freshw Biol 66:803-814. doi:10.1111/fwb.13695
  25. Palavalli-Nettimi R. (2021): Toward a Sustainable Model of Scientific Publishing. JSPG. doi:10.38126/jspg180111
  26. Pourret O, Hedding D, Ibarra D, Irawan D, Liu H, Tennant J. (2021): International disparities in open access practices in the Earth Sciences. European Science Editing.
  27. Myers BA, Kahn KL. (2021): Practical publication metrics for academics. Clinical Translational Sci 14(5):1705-1712. doi:10.1111/cts.13067
  28. Rowbottom DP. (2021): Peer review may not be such a bad idea: Response to Heesen and Bright. The British Journal for the Philosophy of Science. doi:10.1086/714787
  29. Ehrhart F, Evelo CT. (2021): Ten simple rules to make your publication look better. PLoS Comput Biol 17(5):e1008938. doi:10.1371/journal.pcbi.1008938
  30. Pavlov YG, Adamian N, Appelhoff S, Arvaneh M, Benwell CSY, Beste C, Bland AR, Bradford DE, Bublatzky F, Busch NA, Clayson PE, Cruse D, Czeszumski A, Dreber A, Dumas G, Ehinger B, Ganis G, He X, Hinojosa JA, Huber-Huber C, Inzlicht M, Jack BN, Johannesson M, Jones R, Kalenkovich E, Kaltwasser L, Karimi-Rouzbahani H, Keil A, König P, Kouara L, Kulke L, Ladouceur CD, Langer N, Liesefeld HR, Luque D, MacNamara A, Mudrik L, Muthuraman M, Neal LB, Nilsonne G, Niso G, Ocklenburg S, Oostenveld R, Pernet CR, Pourtois G, Ruzzoli M, Sass SM, Schaefer A, Senderecka M, Snyder JS, Tamnes CK, Tognoli E, van Vugt MK, Verona E, Vloeberghs R, Welke D, Wessel JR, Zakharov I, Mushtaq F. (2021): #EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex 114:213-229. doi:10.1016/j.cortex.2021.03.013
  31. Lakhotia SC. (2021): Philosophy and Ethics of Research in Science. Kapitel 2. In: Academic Integrity and Research Quality. University Grants Commission.
  32. Spyrison N, Lee B, Besançon L. (2021): “Is IEEE VIS *that* good?” On key factors in the initial assessment of manuscript and venue quality. Center for Open Science. doi:10.31219/osf.io/65wm7
  33. Braganza O. (2020): A simple model suggesting economically rational sample-size choice drives irreproducibility. PLoS ONE. doi:10.1371/journal.pone.0229615
  34. Wyatt TD. (2020): Reproducible research into human chemical communication by cues and pheromones: learning from psychology´s renaissance. Philosophical Transactions of the Royal Society B: Biological Sciences 375(1800):20190262. The Royal Society. doi:10.1098/rstb.2019.0262
  35. Tennant JP, Agrawal R, Bazdaric K, Brassard D, Crick T, Dunleavy DJ, Yarkoni T. (2020): A tale of two ‘opens’: intersections between Free and Open Source Software and Open Scholarship.
  36. Gray RJ. (2020): Sorry, we’re open: Golden Open Access and inequality in the natural sciences. Cold Spring Harbor Laboratory. doi:10.1101/2020.03.12.988493
  37. Aspaas PP, Ekanger A. Open access to publications. University of Tromso.
  38. Tennant J. (2020): How open science is fighting against private, proprietary publishing platforms.
  39. Tennant J, Wien C. (2020): Fixing the crisis state of scientific evaluation. Center for Open Science. doi:10.31235/osf.io/f4zk9
  40. Sjöberg Y, Siewert MB, Rudy ACA, Paquette M, Bouchard F, Malenfant-Lepage J, Fritz M. (2020): Hot trends and impact in permafrost science. Permafrost and Periglacial Processes 31(4):461-471. Wiley. doi:10.1002/ppp.2047
  41. Almeida CC, Gracio MCC. (2020): O Fator de Impacto e as boas práticas de avaliação científica.Ciência Da Informação Em Revista, 7(1):138. https://doi.org/10.28998/cirev.2020v7n1i
  42. Hanel P. (2020):Conducting High Impact Research With Limited Financial Resources (While Working from Home). Meta-Psychology 4. Linnaeus University. doi:10.15626/mp.2020.2560
  43. Bordignon F. (2020): Self-correction of science: a comparative study of negative citations and post-publication peer review. Scientometrics 124:1225-1239. doi:10.1007/s11192-020-03536-z
  44. Correia LC, Barreto Segundo JD. (2020): An immunization program against the COVID-19 infodemic. J. Évid-Based Healthc. 2(1):7-9. doi:10.17267/2675-021Xevidence.v2i1.3124
  45. Büttner F, Toomey E, McClean S, Roe M, Delahunt E. (2020): Are questionable research practices facilitating new discoveries in sport and exercise medicine? The proportion of supported hypotheses is implausibly high. British Journal of Sports Medicine, 54(22):1365–1371. https://doi.org/10.1136/bjsports-2019-101863
  46. Léonard F. (2020): Le taux de fausses découvertes dans la littérature sur la préférence de lieu conditionné induite par la nicotine chez la souris. Unpublished master’s thesis, Université de Liège. https://matheo.uliege.be/handle/2268.2/10528
  47. Almeida CC, Gracio MCC. (2020): ASPECTOS METODOLÓGICOS E DE UTILIZACAO DO FATOR DE IMPACTO. BIBLOS 34(1):127-144. Lepidus Tecnologia. doi:10.14295/biblos.v34i1.9658 
  48. Alperin JP, Schimanski LA, La M, Niles MT, McKiernan EC. (2020): The value of data and other non-traditional scholarly outputs in academic review, promotion, and tenure in Canada and the United States. In: Open Handbook of Linguistic Data Management.
  49. Orhan M. (2020): Pardon my French: On superfluous journal rankings, incentives, and impacts on industrial-organizational psychology publication practices in French business schools. Industrial and Organizational Psychology 13(3):295-306. doi:10.1017/iop.2020.59
  50. Major GH, Avval TG, Moeini B, Pinto G, Shah D, Jain V, Carver V, Skinner W, Gengenbach TR, Easton CD, Herrera-Gomez A, Nunney TS, Baer DR, Linford MR. (2020): Assessment of the frequency and nature of erroneous x-ray photoelectron spectroscopy analyses in the scientific literature. Journal of Vacuum Science & Technology A 38(6). doi:10.1116/6.0000685
  51. Türp CJ. (2020): The journal impact factor 2019. Dtsch Zahnärztl Z Int 2:206-213.
  52. Almeida Cátia Cândida de, Grácio, MCC. (2020): Fator de Impacto e a decisão de publicação de um artigo. Páginas A&b Arquivos & Bibliotecas, 13, 172–183. https://doi.org/10.21747/21836671/pag13a12
  53. Da Costa GG, Alves CL, Luizeti BO. (2020): Os Principios de Hong Kong e sua importancia para o ecossistema cientifico atual. Evidence 2(2):159-166. doi:10.17267/2675-021xevidence.v2i2.3247
  54. Balaji B, Dhanamjaya M. (2019): Preprints in Scholarly Communication: Re-Imagining Metrics and Infrastructures. Publications. doi:10.3390/publications7010006
  55. European Commission. Directorate General for Research and Innovation. (2019): Future of scholarly publishing and scholarly communication: report of the Expert Group to the European Commission. LU: Publications Office. doi:10.2777/836532
  56. Stagge JH, Rosenberg DE, Abdallah AM, Akbar H, Attallah NA, James R. (2019): Assessing data availability and research reproducibility in hydrology and water resources. Sci Data. doi:10.1038/sdata.2019.30
  57. Panda S. (2019): The peer review process: Yesterday, today and tomorrow. Indian J Dermatol Venereol Leprol. doi:10.4103/ijdvl.ijdvl_296_19
  58. Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, Kramer B, Martin R, Masuzzo P, Nobes A, Rice C, Rivera-López B, Ross-Hellauer T, Sattler S, Thacker PD, Vanholsbeeck M. (2019): Ten Hot Topics around Scholarly Publishing. Publications. doi:10.3390/publications7020034
  59. Griffiths AGF, Modinou I, Heslop C, Brand C, Weatherill A, Baker K, Hughes AE, Lewis J, de Mora L, Mynott S, Roberts KE, Griffiths DJ. (2019): AccessLab: Workshops to broaden access to scientific research. PLoS Biol. doi:10.1371/journal.pbio.3000258
  60. Hartgerink C. (2019): Verified, Shared, Modular, and Provenance Based Research Communication with the Dat Protocol. Publications. doi:10.3390/publications7020040
  61. Wass MN, Ray L, Michaelis M. (2019): Understanding of researcher behavior is required to improve data reliability. GigaScience. doi:10.1093/gigascience/giz017
  62. Parker D. (2019): Psychoneural reduction: a perspective from neural circuits. Biol Philos. doi:10.1007/s10539-019-9697-8
  63. McKiernan EC, Schimanski LA, Muñoz Nieves C, Matthias L, Niles MT, Alperin JP. (2019): Use of the Journal Impact Factor in academic review, promotion, and tenure evaluations. eLife.doi:10.7554/elife.47338
  64. Leible S, Schlager S, Schubotz M, Gipp B. (2019): A Review on Blockchain Technology and Blockchain Projects Fostering Open Science. Front Blockchain. doi:10.3389/fbloc.2019.00016
  65. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, Kilicoglu H. (2019): Menagerie: A text-mining tool to support animal-human translation in neurodegeneration research. PLoS ONE.doi:10.1371/journal.pone.0226176
  66. Berkowitz A. (2019): Playing the genome card. Journal of Neurogenetics. doi:10.1080/01677063.2019.1706093 
  67. Teixeira da Silva JA, Tsigaris P. (2018): Academics must list all publications on their CV. KOME 6:94-99. doi:10.17646/kome.2018.16
  68. Gkoutzis K. (2018): The Role of Universities in the Age of AI. https://kgk.gr/2018/07/02/uniai/
  69. Graberg P, Sandberg P. (2018): What qualities do recruiters value in complex service sales? – A study conducted with the personality tool “The Big-Five”. Bachelor Thesis, University of Gävle.
  70. Paulus FM, Cruz N, Krach S. (2018): The Impact Factor Fallacy. Front Psychol. doi:10.3389/fpsyg.2018.01487
  71. Tennant JP. (2018): The state of the art in peer review. FEMS Microbiology Letters. doi:10.1093/femsle/fny204
  72. Schimanski LA, Alperin JP. (2018): The evaluation of scholarship in academic promotion and tenure processes: Past, present, and future. F1000Res. doi:10.12688/f1000research.16493.1
  73. Sauer S, Sülzenbrück S. (2018): Die Arbeitsweise der Forschung zu Zeiten von Digitalisierung und Reproduzierbarkeitskrise: Neue Methoden, alte Probleme. Arbeitswelten der Zukunft. doi:10.1007/978-3-658-23397-6_11
  74. Wass MN, Ray L, Michaelis M (2018): Researcher Conduct Determines Data Reliability. MDPI AG. DOI: 10.20944/preprints201804.0068.v1

Damrau C, Toshima N, Tanimura T, Brembs B, Colomb J. (2018): Octopamine and tyramine contribute separately to the counter-regulatory response to sugar deficit in Drosophila. Frontiers in Systems Neuroscience 11:100. doi:10.3389/fnsys.2017.00100

  1. Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. (2023): Behavioral state-dependent modulation of insulin-producing cells in Drosophila.Current Biology: CB, 33(3): 449-463.e5. https://doi.org/10.1016/j.cub.2022.12.005
  2. Rosikon KD, Bone MC, Lawal HO. (2023): Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans.Frontiers in Physiology, 14, 970405. https://doi.org/10.3389/fphys.2023.970405
  3. Meghashree RN, Nagaraj K. (2021): Characterization of the immune induced antimicrobial peptide in Drosophila melanogaster and Drosophila ananassae. European Journal of Entomology, 118, 355–363. https://doi.org/10.14411/eje.2021.037
  4. Finetti L, Roeder T, Calò G, Bernacchia G. (2021): The Insect Type 1 Tyramine Receptors: From Structure to Behavior. Insects 12:315. doi:10.3390/ insects12040315
  5. White MA, Chen DS, Wolfner MF. (2021): She´s got nerve: roles of octopamine in insect female reproduction. Journal of Neurogenetics 35(3). doi:10.1080/01677063.2020.1868457
  6. Göttler C, Amador G, van de Kamp T, Zuber M, Böhler L, Siegwart R, Sitti M. (2021): Fluid mechanics and rheology of the jumping spider body fluid. Soft Matter 17:5532-5539. doi:10.1039/d1sm00338k
  7. Subahar R, Kamil Putr A, . F, Sahar N, Winita R, Susanto L, . Y, Lubis NS, . M, Eko Firman N. (2021): Toxic Effects of Mentha piperita Extract on Culex quinquefasciatus Larvae (Diptera: Culicidae). J of Entomology 18(1):19-28. doi:10.3923/je.2021.19.28
  8. Thamm M, Wagler K, Brockmann A, Scheiner R. (2021): Tyramine 1 Receptor Distribution in the Brain of Corbiculate Bees Points to a Conserved Function. Brain Behav Evol 96:13-25. doi:10.1159/000517014
  9. RAZA MF, SU S. (2020): DIFFERENTIAL ROLES FOR DOPAMINE D1-LIKE AND D2-LIKE RECEPTORS IN LEARNING AND BEHAVIOR OF HONEYBEE AND OTHER INSECTS. Applied Ecology and Environmental Research 18(1):1317-1327. ALOKI Ltd. doi:10.15666/aeer/1801_13171327
  10. Roeder T. (2020): The control of metabolic traits by octopamine and tyramine in invertebrates. Journal of Experimental Biology 223(7). doi:10.1242/jeb.194282
  11. Lubawy J, Urbanski A, Colinet H, Pflüger H-J, Marciniak P. (2020): Role of the Insect Neuroendocrine System in the Response to Cold Stress. Frontiers in Physiology 11. Frontiers Media SA. doi:10.3389/fphys.2020.00376
  12. Shahraki A, Yu Y, Gul ZM, Liang C, Birgul Iyison N. (2020): Whole genome sequencing of Thaumetopoea pityocampa revealed putative pesticide targets. Genomics 112(6):4203-4207. Elsevier BV. doi:10.1016/j.ygeno.2020.07.017
  13. Blenau W, Wilms JA, Balfanz S, Baumann A. (2020): AmOcta2R: Functional Characterization of a Honeybee Octopamine Receptor Inhibiting Adenylyl Cyclase Activity. IJMS 21(24)9334. doi:10.3390/ijms21249334
  14. Finetti L, Tiedemann L, Zhang X, Civolani S, Bernacchia G, Roeder T. (2020): Monoterpenes alter TAR1-driven physiology in Drosophila species. Journal of Experimental Biology 224(1):jeb232116. doi:10.1242/jeb.232116

Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers E-J, Berk R, Bollen KA, Brembs B, Brown L, Camerer C, et al. (2017): Redefine statistical significance. Nature Human Behaviour. 2:6–10. DOI: 10.1038/s41562-017-0189-z
Citations:

  1. Mas-Machuca M, Akhmedova A, Marimon F. (2023): The social mission works: internalizing the mission to achieve organizational performance in social enterprises.Review of Managerial Science. https://doi.org/10.1007/s11846-023-00627-y
  2. McClure EA, Hamilton L, Schauer GL, Matson TE, Lapham GT. (2023): Cannabis and nicotine co-use among primary care patients in a state with legal cannabis access.Addictive Behaviors, 140(107621), 107621. https://doi.org/10.1016/j.addbeh.2023.107621
  3. Sarstedt M, Adler SJ. (2023): An advanced method to streamline p-hacking.Journal of Business Research, 163(113942), 113942. https://doi.org/10.1016/j.jbusres.2023.113942
  4. Kalwij A, De Jaegher K. (2023): The age-performance relationship for a cognitive-intensive task: Empirical evidence from chess grandmasters.Sports Economics Review, 2(100010), 100010. https://doi.org/10.1016/j.serev.2023.100010
  5. Purohit AK, Bergram K, Barclay L, Bezençon V, Holzer A. (2023): Starving the newsfeed for social media detox: Effects of strict and self-regulated Facebook newsfeed diets.Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
  6. Nauha L, Farrahi V, Jurvelin H, Jämsä T, Niemelä M, Kangas M, Korpelainen R. (2023):Comparison and agreement between device-estimated and self-reported sleep periods in adults.Annals of Medicine, 55(1), 2191001. https://doi.org/10.1080/07853890.2023.2191001
  7. Ventura, R. (2023): Reliability models in cultural phylogenetics.Biology & Philosophy, 38(3). https://doi.org/10.1007/s10539-023-09900-6
  8. Arroyo-Barriguete JL, Bada C, Lazcano L, Márquez J, Ortiz-Lozano JM, Rua-Vieites A. (2023): Is it possible to redress noninstructional biases in student evaluation of teaching surveys? Quantitative analysis in accounting and finance courses.Studies in Educational Evaluation, 77(101263), 101263. https://doi.org/10.1016/j.stueduc.2023.101263
  9. Peng Q, Wang W, Yang X, Wang Y, Chen J. (2023): Research on affective interaction in mini public transport based on IPA-FMEA.Sustainability, 15(9), 7033. https://doi.org/10.3390/su15097033
  10. Wagenmakers EJ, Sarafoglou A, Aczel B. (2023): Facing the unknown unknowns of data analysis.Current Directions in Psychological Science, 096372142311685. https://doi.org/10.1177/09637214231168565
  11. Douglas H. (2023): The importance of values for science.Interdisciplinary Science Reviews: ISR, 1–13. https://doi.org/10.1080/03080188.2023.2191559
  12. Treichel N, Dukes D, Meuleman B, Van Herwegen J, Samson AC. (2023): “Not in the mood”: The fear of being laughed at is better predicted by humor temperament traits than diagnosis in neurodevelopmental conditions.Research in Developmental Disabilities, 137, 104513. https://doi.org/10.1016/j.ridd.2023.104513
  13. Libman A, Popova O. (2023): Children of communism: Former party membership and the demand for redistribution.Eastern European Economics, 61(3): 199–237. https://doi.org/10.1080/00128775.2023.2195833
  14. Sun J, Xie Y. (2023): Reply to Y.-F. Zhao et al.Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, JCO2300332. https://doi.org/10.1200/JCO.23.00332
  15. Klement RJ, Joos FT, Reuss-Borst MA, Kämmerer U. (2023): Measurement of body composition by DXA, BIA, Leg-to-leg BIA and near-infrared spectroscopy in breast cancer patients – comparison of the four methods.Clinical Nutrition ESPEN, 54: 443–452. https://doi.org/10.1016/j.clnesp.2023.02.013
  16. Rodríguez A, Sansó B. (2023): An interview with Luis raúl pericchi.Revue Internationale de Statistique [International Statistical Review], 91(1): 1–17. https://doi.org/10.1111/insr.12537
  17. Zhang S, Hur J, Song R, Wang P, Cao Y, Wu K, Giovannucci E. (2023): Adherence to the World Cancer Research Fund/American Institute for Cancer Research cancer prevention recommendations throughout the life course and risk of colorectal cancer precursors.British Journal of Cancer. https://doi.org/10.1038/s41416-023-02255-5
  18. Lin L, Li C, Chen SH, Boucher NS, Chung CH. (2023): Transverse growth of the mandibular body in untreated children: a longitudinal CBCT study.Clinical Oral Investigations. https://doi.org/10.1007/s00784-023-05019-w
  19. Smith C, Spence R, Bailey R, Reichard M. (2023): Male position in a sexual network reflects mating role and body size.Journal of Vertebrate Biology, 72(22069). https://doi.org/10.25225/jvb.22069
  20. Vélez Ramos D, Pericchi Guerra LR, Pérez Hernández ME. (2023): From p-values to posterior probabilities of null hypotheses.Entropy (Basel, Switzerland), 25(4): 618. https://doi.org/10.3390/e25040618
  21. DelosReyes JMV, Padilla MA. (2023): Bootstrap correlation confidence interval estimation: The positive impact of a symmetric distribution.Journal of Experimental Education, 1–21. https://doi.org/10.1080/00220973.2023.2196659
  22. Miller KB, Weiss CM. (2023): Disentangling population level differences in juvenile migration phenology for three species of salmon on the Yukon River.Journal of Marine Science and Engineering, 11(3): 589. https://doi.org/10.3390/jmse11030589
  23. Rants’o TA, Koekemoer LL, van Zyl RL. (2023): The insecticidal activity of essential oil constituents against pyrethroid-resistant Anopheles funestus (Diptera: Culicidae).Parasitology International, 95(102749), 102749. https://doi.org/10.1016/j.parint.2023.102749
  24. van Hugten J, Coreynen W, Vanderstraeten J, van Witteloostuijn A. (2023): The Dunning-Kruger effect and entrepreneurial self-efficacy: How tenure and search distance jointly direct entrepreneurial self-efficacy.Journal of Business Research, 161(113810), 113810. https://doi.org/10.1016/j.jbusres.2023.113810
  25. Li J, Huang T, Zhang M, Tong X, Chen J, Zhang Z, Huang F, Ai H, Huang L. (2023): Metagenomic sequencing reveals swine lung microbial communities and metagenome-assembled genomes associated with lung lesions-a pilot study.International Microbiology: The Official Journal of the Spanish Society for Microbiology. https://doi.org/10.1007/s10123-023-00345-1
  26. de Pinho RC, Pequeno PACL, Alfaia SS, Barbosa RI, Lincoln NK. (2023): Soil fertility in indigenous swidden fields and fallows in northern Amazonia, Brazil.Soil Use and Management.https://doi.org/10.1111/sum.12886
  27. Gunnarsdottir FB, Bendahl PO, Johansson A, Benfeitas R, Rydén L, Bergenfelz C, Larsson AM. (2023): Serum immuno-oncology markers carry independent prognostic information in patients with newly diagnosed metastatic breast cancer, from a prospective observational study.Breast Cancer Research: BCR, 25(1): 29. https://doi.org/10.1186/s13058-023-01631-6
  28. Rostgaard K. (2023): Simple nested Bayesian hypothesis testing for meta-analysis, Cox, Poisson and logistic regression models.Scientific Reports, 13(1): 4731. https://doi.org/10.1038/s41598-023-31838-8
  29. Dufner M, Wieg F, Kraft L, Grapsas S, Hagemeyer B. (2023): Motive-specific affective contingencies and their relevance for personality and motivated behavior.European Journal of Personality, 089020702311568. https://doi.org/10.1177/08902070231156842
  30. Lammers D, McClellan J. (2023): Modern statistical methods for the surgeon scientist: The clash of frequentist versus Bayesian paradigms.The Surgical Clinics of North America, 103(2): 259–269. https://doi.org/10.1016/j.suc.2022.12.001
  31. Liu Z, Al Amer FM, Xiao M, Xu C, Furuya-Kanamori L, Hong H, Siegel L, Lin L. (2023): The normality assumption on between-study random effects was questionable in a considerable number of Cochrane meta-analyses.BMC Medicine, 21(1): 112. https://doi.org/10.1186/s12916-023-02823-9
  32. Elomaa H, Ahtiainen M, Väyrynen SA, Ogino S, Nowak JA, Lau MC, Helminen, et al. (2023):Spatially resolved multimarker evaluation of CD274 (PD-L1)/PDCD1 (PD-1) immune checkpoint expression and macrophage polarisation in colorectal cancer.British Journal of Cancer. https://doi.org/10.1038/s41416-023-02238-6
  33. Corrigan A, Leigh RJ, Walsh F, Murphy R (2023): Microbial community diversity and structure in the cecum of laying hens with and without mannan-rich fraction supplementation.The Journal of Applied Poultry Research, 32(2): 100342. https://doi.org/10.1016/j.japr.2023.100342
  34. Sarma VVSS, Krishna MS, Srinivas TNR. (2023): Long-term changes in nutrient concentration and fluxes from the Godavari estuary: Role of river discharge and fertilizer inputs.Estuaries and Coasts: Journal of the Estuarine Research Federation, 46(4): 959–973. https://doi.org/10.1007/s12237-023-01179-w
  35. Tabone W, Happee R, García J, Lee YM, Lupetti ML, Merat N, de Winter J. (2023): Augmented reality interfaces for pedestrian-vehicle interactions: An online study.Transportation Research. Part F, Traffic Psychology and Behaviour, 94: 170–189. https://doi.org/10.1016/j.trf.2023.02.005
  36. Huertas Herrera A, Toro-Manríquez MDR, Lorenzo C, Lencinas MV, Martínez Pastur G. (2023):Perspectives on socio-ecological studies in the Northern and Southern Hemispheres.Humanities & Social Sciences Communications, 10(1): 66. https://doi.org/10.1057/s41599-023-01545-w
  37. Yang MG, Wang LJ, Xu LY, Ke M, Sun LX. (2023): Health behaviours among travellers regarding risk compensation following COVID-19 vaccination in Taizhou, China.Journal Canadien Des Maladies Infectieuses et de La Microbiologie Medicale [The Canadian Journal of Infectious Diseases & Medical Microbiology], 2023, 1329291. https://doi.org/10.1155/2023/1329291
  38. Lammers D, Richman J, Holcomb JB, Jansen JO. (2023): Use of Bayesian statistics to reanalyze data from the Pragmatic Randomized Optimal Platelet and Plasma Ratios trial.JAMA Network Open, 6(2): e230421. https://doi.org/10.1001/jamanetworkopen.2023.0421
  39. Montero O, Hedeland M, Balgoma D. (2023): Trials and tribulations of statistical significance in biochemistry and omics.Trends in Biochemical Sciences. https://doi.org/10.1016/j.tibs.2023.01.009
  40. Gupta A, Bosco, F. (2023): Tempest in a teacup: An analysis of p-Hacking in organizational research.PloS One, 18(2). https://doi.org/10.1371/journal.pone.0281938
  41. Courtney M, Karakus M, Sharplin E, Hernández-Torrano D, Helmer J, Jumakulov Z. (2023): The role of teacher selection criteria and preparation on teacher self-efficacy, satisfaction, and commitment: an analysis of Kazakhstani TALIS data.Teacher Development, 1–21. https://doi.org/10.1080/13664530.2023.2176354
  42. Laccourreye O, Lisan Q, Vincent C, Righini C, Leboulanger N, Franco-Vidal V, et al. (2023): Les clefs d’une publication réussie dans les Eur Ann Otorhinolaryngol Head Neck Dis : analyse STROBE de la relecture des articles scientifiques soumis en 2020–2021.Annales françaises d Oto-rhino-laryngologie et de Pathologie Cervico-faciale, 140(1): 21–26. https://doi.org/10.1016/j.aforl.2022.04.002
  43. Nadal M, Skov M. (2023): No sound evidence supports the notion that we can “read” art: Comment on “Can we really ‘read’ art to see the changing brain? A review and empirical assessment of clinical case reports and published artworks for systematic evidence of quality and style changes linked to damage or neurodegenerative disease” by Pelowski et al. (2022).Physics of Life Reviews, 44, 110–112. https://doi.org/10.1016/j.plrev.2022.12.017
  44. LeJeune J. (2023): A Multiple-Choice Study: The Impact of Transparent Question Design on Student Performance. Perspectives In Learning, 20 (1).
  45. Biswas RK, Arusha AR, Ananna N, Kabir E, Bhowmik J. (2023):Carer involvement with children and child-friendly book ownership in Bangladesh. Children & Society, 37(2): 326–342. https://doi.org/10.1111/chso.12594
  46. Anderson RM, Peña A, Johnson BS, Nowlin R, Hudson T, Vassar M. (2023): What’s in a P-value? A fragility analysis of RCTs in the AUA guidelines for benign prostatic hyperplasia.Urology. https://doi.org/10.1016/j.urology.2022.12.063
  47. Giguère G, Bourassa C, Brouillette-Alarie S. (2023): Effect of the differential item functioning (DIF) of LS/CMI items with convicted men and women.Journal of Experimental Criminology. https://doi.org/10.1007/s11292-023-09559-9
  48. Philibotte SJ, Spivack S, Spilka NH, Passman I, Wallisch P. (2023): The Whole is Not Different From its Parts. Music Perception, 40(3): 220–236. https://doi.org/10.1525/mp.2023.40.3.220
  49. Stefan AM, Schönbrodt FD. (2023): Big little lies: a compendium and simulation of p-hacking strategies.Royal Society Open Science, 10(2). https://doi.org/10.1098/rsos.220346
  50. Białek M, Misiak M, Dziekan M. (2023): The vicious cycle that stalls statistical revolution.Nature Human Behaviour, 7(2): 161–163. https://doi.org/10.1038/s41562-022-01515-3
  51. Mammola S, Viel N, Amiar D, Mani A, Hervé C, Heard SB, Fontaneto D, Pétillon J. (2023):Taxonomic practice, creativity and fashion: what’s in a spider name?Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac097
  52. Johnson VE, Pramanik S, Shudde R. (2023): Bayes factor functions for reporting outcomes of hypothesis tests.Proceedings of the National Academy of Sciences of the United States of America, 120(8). https://doi.org/10.1073/pnas.2217331120
  53. Fu J, Hsiao CA. (2023): The data mechanisms of diagnosis and intelligence.Symmetry, 15(2): 278. https://doi.org/10.3390/sym15020278
  54. Mortazavi M, Lucini FA, Joffe D, Oakley DS. (2023): Electrophysiological trajectories of concussion recovery: From acute to prolonged stages in late teenagers.Journal of Pediatric Rehabilitation Medicine, 1–13. https://doi.org/10.3233/PRM-210114
  55. Bright LK, Heesen R. (2023): To be Scientific is to be Communist.Social Epistemology, 1–10. https://doi.org/10.1080/02691728.2022.2156308
  56. Ugai T, Haruki K, Harrison TA, Cao Y, Qu C, Chan AT, Campbell PT, et al. (2023): Molecular characteristics of early-onset colorectal cancer according to detailed anatomical locations: Comparison with later-onset cases.The American Journal of Gastroenterology, 118(4): 712–726. https://doi.org/10.14309/ajg.0000000000002171
  57. Kekecs Z, Palfi B, Szaszi B, Szecsi P, Zrubka M, Kovacs M, Bakos BE, et al. (2023): Raising the value of research studies in psychological science by increasing the credibility of research reports: the transparent Psi project.Royal Society Open Science, 10(2): 191375. https://doi.org/10.1098/rsos.191375
  58. Haslam A, Olivier T, Prasad V. (2023): Design, power, and alpha levels in randomized phase II oncology trials.ESMO Open, 8(1): 100779. https://doi.org/10.1016/j.esmoop.2022.100779
  59. Van den Bergh D, Vandermeulen N, Lesterhuis M, De Maeyer S, Van Steendam E, Rijlaarsdam G, Van den Bergh H. (2023): How Prior Information from National Assessments can be used when Designing Experimental Studies without a Control Group.Journal of Writing Research, 14(143): 447–469. https://doi.org/10.17239/jowr-2023.14.03.05
  60. Alhamdan AA, Murphy MJ, Pickering HE, Crewther SG. (2023): The contribution of visual and auditory working memory and non-verbal IQ to motor multisensory processing in elementary school children.Brain Sciences, 13(2). https://doi.org/10.3390/brainsci13020270
  61. Di Poi G, Dukes D, Meuleman B, Banta Lavenex P, Lavenex P, Papon A, Tran M, Stallmann L, Treichel N, Samson AC. (2023): Anxiety in families of individuals with neurodevelopmental conditions in the early months of the COVID-19 pandemic in Switzerland.Frontiers in Education. https://doi.org/10.3389/feduc.2023.951970
  62. Wilkinson-Stokes M, Betson J, Sawyer S. (2023): Adverse events from nitrate administration during right ventricular myocardial infarction: a systematic review and meta-analysis.Emergency Medicine Journal: EMJ, 40(2): 108–113. https://doi.org/10.1136/emermed-2021-212294
  63. Nweze T, Ezenwa M, Ajaelu C, Okoye C. (2023): Childhood mental health difficulties mediate the long-term association between early-life adversity at age 3 and poorer cognitive functioning at ages 11 and 14.Journal of Child Psychology and Psychiatry, and Allied Disciplines. https://doi.org/10.1111/jcpp.13757
  64. Zhao L, Jin L, Petrick JL, Zeng H, Wang F, Tang L, Smith-Warner SA, Eliassen AH, et al. (2023):Specific botanical groups of fruit and vegetable consumption and liver cancer and chronic liver disease mortality: a prospective cohort study.The American Journal of Clinical Nutrition, 117(2): 278–285. https://doi.org/10.1016/j.ajcnut.2022.12.004
  65. Waziry R, Ryan CP, Corcoran DL, Huffman KM, Kobor MS, Kothari M, et al. (2023): Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial.Nature Aging, 3(3): 248–257. https://doi.org/10.1038/s43587-022-00357-y
  66. Rice KM, Krakauer CA. (2023): Three-decision methods: A sensible formulation of significance tests—and much else.Annual Review of Statistics and Its Application, 10(1): 525–546. https://doi.org/10.1146/annurev-statistics-033021-111159
  67. Kosumi K, Baba Y, Yamamura K, Nomoto D, Okadome K, Yagi T, Toihata T, et al. (2023):Intratumour Fusobacterium nucleatum and immune response to oesophageal cancer.British Journal of Cancer, 128(6): 1155–1165. https://doi.org/10.1038/s41416-022-02112-x
  68. Wang L, Saeedi BJ, Mahdi Z, Krasinskas A, Robinson B. (2023): Analysis of KRAS mutations in gastrointestinal tract adenocarcinomas reveals site-specific mutational signatures.Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 36(2). https://doi.org/10.1016/j.modpat.2022.100014
  69. Closas AH, Arriola EA, Amarilla MR, Jovanovich EC. (2023): Relaciones causales entre aspectos de educación virtual y percepción del aprendizaje ad-quirido en contexto de pandemia.Cuaderno de Pedagogía Universitaria, 20(39): 97–110. https://doi.org/10.29197/cpu.v20i39.486
  70. Li X, Joh HK, Hur J, Song M, Zhang X, Cao Y, Wu K, Giovannucci EL. (2023): Fructose consumption from different food sources and cardiometabolic biomarkers: cross-sectional associations in US men and women.The American Journal of Clinical Nutrition, 117(3): 490–498. https://doi.org/10.1016/j.ajcnut.2023.01.006
  71. Quiroga Gutierrez AC, Lindegger DJ, Taji Heravi A, Stojanov T, Sykora M, Elayan S, Mooney SJ, Naslund JA, Fadda M, Gruebner O. (2023): Reproducibility and scientific integrity of big data research in urban public health and digital epidemiology: A call to action.International Journal of Environmental Research and Public Health, 20(2). https://doi.org/10.3390/ijerph20021473
  72. Chicco D, Shiradkar R. (2023): Ten quick tips for computational analysis of medical images.PLoS Computational Biology, 19(1). https://doi.org/10.1371/journal.pcbi.1010778
  73. Sinsuebchuea J, Paenkaew P, Wutthiin M, Nantanaranon T, Laeman K, Kittichotirat W, et al. (2023): Characterization of the gut Microbiota in urban Thai individuals reveals enterotype-specific signature.Microorganisms, 11(1): 136. https://doi.org/10.3390/microorganisms11010136
  74. Chuang Z, Martin J, Shapiro J, Nguyen D, Neocleous P, Jones PM. (2023): Minimum false-positive risk of primary outcomes and impact of reducing nominal P-value threshold from 0.05 to 0.005 in anaesthesiology randomised clinical trials: a cross-sectional study.British Journal of Anaesthesia, 130(4): 412–420. https://doi.org/10.1016/j.bja.2022.11.001
  75. Xing A, Lin L. (2023): Empirical assessment of fragility index based on a large database of clinical studies in the Cochrane Library.Journal of Evaluation in Clinical Practice, 29(2): 359–370. https://doi.org/10.1111/jep.13787
  76. Lehnert W, Günther-Pusch J, Klement RJ. (2023): Effects of Viktor philippi’s bioenergetic meditation on anxiety, burnout, and depression: An analysis of four feasibility studies.Complementary Medicine Research, 30(2): 130–140. https://doi.org/10.1159/000528687
  77. Kent MG, Schiavon S. (2023): Predicting window view preferences using the environmental information criteria.LEUKOS The Journal of the Illuminating Engineering Society of North America, 19(2): 190–209. https://doi.org/10.1080/15502724.2022.2077753
  78. Berro I, Varela J, Gutiérrez L. (2023): An image‐based methodology to evaluate oat panicle architecture.Crop Science, 63(2): 648–661. https://doi.org/10.1002/csc2.20884
  79. Seewald A, Rief W. (2023): How to change negative outcome expectations in psychotherapy? The role of the therapist’s warmth and competence.Clinical Psychological Science, 11(1): 149–163. https://doi.org/10.1177/21677026221094331
  80. Pabst A, Bollen Z, Masson N, Billaux P, de Timary P, Maurage P. (2023): An eye-tracking study of biased attentional processing of emotional faces in severe alcohol use disorder.Journal of Affective Disorders, 323, 778–787. https://doi.org/10.1016/j.jad.2022.12.027
  81. Genc S, Raven EP, Drakesmith M, Blakemore SJ, Jones DK. (2023): Novel insights into axon diameter and myelin content in late childhood and adolescence.Cerebral Cortex (New York, N.Y.: 1991). https://doi.org/10.1093/cercor/bhac515
  82. Klement RJ, Walach H. (2022): Is the network of world economic forum Young Global Leaders associated with COVID-19 non-pharmaceutical intervention severity?Cureus, 14(10).https://doi.org/10.7759/cureus.29990
  83. Neyse L, Fossen FM, Johanneson M, Dreber A. (2022): Cognitive reflection and 2D:4D: Evidence from a large population sample.SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4063697
  84. Sidebotham D. (2022): Fooled by significance testing: An analysis of the LOVIT vitamin C trial.The Journal of Extra-Corporeal Technology, 54(4): 324–329. https://doi.org/10.1182/ject-2200030
  85. Dudek T, Brenoe AA, Feld J, Rohrer JM. (2022): No evidence that siblings’ gender affects personality across nine countries.SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4055210
  86. Garofalo S, Giovagnoli S, Orsoni M, Starita F, Benassi M. (2022): Interaction effect: Are you doing the right thing?PloS One, 17(7). https://doi.org/10.1371/journal.pone.0271668
  87. Khan S, Rasheed DR, Muhammad G. (2022): A SEM-based approach towards the Utilization of Technology and its Relationship to the performance of private business education institutions.Propel Journal of Academic Research, 2(2): 1–22. https://doi.org/10.55464/pjar.v2i2.37
  88. Bartoš F, Maier M. (2022): Power or alpha? The better way of decreasing the false discovery rate.Meta-Psychology. https://doi.org/10.15626/mp.2020.2460
  89. Koster EHW, Marchetti I, Grahek I. (2022): Focusing inward: A timely yet daunting challenge for clinical psychological science.Psychological Inquiry, 33(4): 273–275. https://doi.org/10.1080/1047840x.2022.2149183
  90. Gupta A, Ortiz-Babilonia C, Xu AL, Rogers D, Vulcano E, Aiyer AA. (2022): The statistical fragility of platelet-rich plasma as treatment for plantar fasciitis: A systematic review and simulated fragility analysis.Foot & Ankle Orthopaedics, 7(4). https://doi.org/10.1177/24730114221144049
  91. Xu T, Li X, Wang D, Zhang Y, Zhang Q, Yan J, Jiang J, Liu W, Chen J. (2022): Hand grip strength should be normalized by weight not height for eliminating the influence of individual differences: Findings from a cross-sectional study of 1,511 healthy undergraduates.Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1063939
  92. Daboul A, Krüger M, Ivanonvka T, Obst A, Ewert R, Stubbe B, Fietze I, Penzel T, Hosten N, Biffar R, Cardini A. (2022): Do brachycephaly and nose size predict the severity of obstructive sleep apnea (OSA)? A sample-based geometric morphometric analysis of craniofacial variation in relation to OSA syndrome and the role of confounding factors.Journal of Sleep Research.https://doi.org/10.1111/jsr.13801
  93. Franck CT, Madigan ML, Lazar NA. (2022): How to write about alternatives to classical hypothesis testing outside of the statistical literature: Approximate Bayesian model selection applied to a biomechanics study.Stat (International Statistical Institute), 11(1). https://doi.org/10.1002/sta4.508
  94. Gómez Jiménez FR, Skorska MN, Zahran A, Vasey PL, VanderLaan DP. (2022): Facial symmetry of the sisters of Thai and Istmo Zapotec androphilic males.Evolutionary Behavioral Sciences. https://doi.org/10.1037/ebs0000317
  95. Wersényi G. (2022): Health issues using 5G frequencies from an engineering perspective: Current review.Open Engineering, 12(1): 1060–1077. https://doi.org/10.1515/eng-2022-0387
  96. Nossaman LE, Nossaman BD. (2022): Hawthorne effect: More than just telephones.The Ochsner Journal, 22(4): 286–289. https://doi.org/10.31486/toj.22.5031
  97. Fay MP, Proschan MA, Brittain EH, Tiwari R. (2022): Interpreting p-values and confidence intervals using well-calibrated null preference priors.Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 37(4). https://doi.org/10.1214/21-sts833
  98. Spathis D, Perez-Pozuelo I, Gonzales TI, Wu Y, Brage S, Wareham N, Mascolo C. (2022):Longitudinal cardio-respiratory fitness prediction through wearables in free-living environments.Npj Digital Medicine, 5(1): 176. https://doi.org/10.1038/s41746-022-00719-1
  99. Josefino HVB, Veber AP, Bordin D, Barboza FM. (2022): Avaliação da taxa de filtração glomerular em pacientes idosos hospitalizados em uso de antimicrobiano.Research, Society and Development, 11(16). https://doi.org/10.33448/rsd-v11i16.38125
  100. Chicco D, Agapito G. (2022): Nine quick tips for pathway enrichment analysis.PLoS Computational Biology, 18(8). https://doi.org/10.1371/journal.pcbi.1010348
  101. Bagrow J, Ahn YY. (2022): Network cards: concise, readable summaries of network data.Applied Network Science, 7(1). https://doi.org/10.1007/s41109-022-00514-7
  102. Kirchner-Häusler A, Schönbrodt FD, Uskul AK, Vignoles VL, Rodríguez-Bailón R, et al. (2022): Proximal and distal honor fit and subjective well-being in the Mediterranean region.Journal of Personality. https://doi.org/10.1111/jopy.12803
  103. Ji Y, Temprano-Sagrera G, Holle LA, Bebo A, Brody J, Le NQ, Brown MR, et al. (2022):Antithrombin, protein C and protein S: Genome and transcriptome wide association studies identify 7 novel loci regulating plasma levels. InbioRxiv. https://doi.org/10.1101/2022.11.01.22281689
  104. Drude NI, Martinez-Gamboa L, Danziger M, Collazo A, Kniffert S, Wiebach J, et al. (2022):Planning preclinical confirmatory multicenter trials to strengthen translation from basic to clinical research – a multi-stakeholder workshop report.Translational Medicine Communications, 7(1). https://doi.org/10.1186/s41231-022-00130-8
  105. Ugai T, Liu L, Tabung FK, Hamada T, Langworthy BW, Akimoto N, Haruki, K. (2022):Prognostic role of inflammatory diets in colorectal cancer overall and in strata of tumor-infiltrating lymphocyte levels.Clinical and Translational Medicine, 12(11). https://doi.org/10.1002/ctm2.1114
  106. Kelter R. (2022): bayesanova: An R package for Bayesian Inference in the Analysis of Variance via Markov Chain Monte Carlo in Gaussian Mixture Models.The R Journal, 14(1): 54–78. https://doi.org/10.32614/rj-2022-009
  107. Ladelsky LK, Lee TW. (2022): Effect of risky decision-making and job satisfaction on turnover intention and turnover behavior among information technology employees.International Journal of Organizational Analysis. https://doi.org/10.1108/ijoa-10-2022-3465
  108. Ugai T, Liu L, Tabung FK, Hamada T, Langworthy BW, Akimoto N, Haruki K, et al. (2022):Prognostic role of inflammatory diets in colorectal cancer overall and in strata of tumor-infiltrating lymphocyte levels.Clinical and Translational Medicine, 12(11). https://doi.org/10.1002/ctm2.1114
  109. Sarmiento JA, Ocampo CI. (2022): Enfoques Frecuentista y Bayesiano en el Estudio del Plagio Académico. Una Propuesta Innovadora en Investigación Educativa.REICE Revista Iberoamericana Sobre Calidad Eficacia y Cambio En Educación, 21(1): 139–158. https://doi.org/10.15366/reice2023.21.1.007
  110. Bower R, Hager J, Cherniakov C, Gupta S, Cipolli W. (2022): A case for nonparametrics.The American Statistician, 1–8. https://doi.org/10.1080/00031305.2022.2141858
  111. Jusup M, Holme P, Kanazawa K, Takayasu M, Romic I, Wang Z, Gecek S, Lipic T, Podobnik B, et al. (2022):Social physics.Physics Reports, 948:1–148. https://doi.org/10.1016/j.physrep.2021.10.005
  112. Taylor PA, Reynolds RC, Calhoun V, Gonzalez-Castillo J, Handwerker DA, Bandettini PA, Mejia AF, Chen G. (2022): Highlight Results, Don’t Hide Them: Enhance interpretation, reduce biases and improve reproducibility. InbioRxiv. https://doi.org/10.1101/2022.10.26.513929
  113. Hardwicke TE, Salholz-Hillel M, Malički M, Szűcs D, Bendixen T, Ioannidis JPA. (2022):Statistical guidance to authors at top-ranked journals across scientific disciplines.The American Statistician, 1–14. https://doi.org/10.1080/00031305.2022.2143897
  114. Morkunas M. (2022): Measuring the cohesion of informal economy in agriculture in new European union member states.Economies, 10(11): 285. https://doi.org/10.3390/economies10110285
  115. Clements AJ, Kinman G. (2022): Job demands, organizational justice, and emotional exhaustion in prison officer. InPromoting Wellness and Resiliency in Correctional Officers. Routledge.
  116. Klement RJ, Walach H. (2022): Is the network of world economic forum Young Global Leaders associated with COVID-19 non-pharmaceutical intervention severity?Cureus, 14(10). https://doi.org/10.7759/cureus.29990
  117. Fagogeni I, Metlerska J, Falgowski T, Górski M, Lipski M, Nowicka A. (2022): Effectiveness of teeth whitening after regenerative endodontics procedures: An in vitro study.Journal of Clinical Medicine, 11(23): 7016. https://doi.org/10.3390/jcm11237016
  118. Vail EA, Avidan MS. (2022): Trials with “non-significant” results are not insignificant trials: a common significance threshold distorts reporting and interpretation of trial results.British Journal of Anaesthesia, 129(5): 643–646. https://doi.org/10.1016/j.bja.2022.06.023
  119. Pandeva T, Bakker T, Naesseth CA, Forré P. (2022):E-valuating classifier two-sample tests. https://doi.org/10.48550/ARXIV.2210.13027
  120. Mertens G, Krypotos AM. (2022): Preregistration of studies with existing data. InPsyArXiv. https://doi.org/10.31234/osf.io/65z3b
  121. Rivadeneira F, Loder RT, McGuire AC, Chitwood JR, Duffy K, Civitelli R, Kacena MA, Westendorf JJ. (2022): Gender and geographic origin as determinants of manuscript publication outcomes: JBMR® bibliometric analysis from 2017 to 2019.Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 37(12): 2420–2434. https://doi.org/10.1002/jbmr.4696
  122. Gómez-Ramírez J, Fernández-Blázquez MA, González-Rosa JJ. (2022): A causal analysis of the effect of age and sex differences on brain atrophy in the elderly brain.Life (Basel, Switzerland), 12(10): 1586. https://doi.org/10.3390/life12101586
  123. Furlan M, Mariano EB. (2022): Measuring the effects of climate techs and social inequality on climate performance using a SEM-DEA approach.Journal of Environmental Planning and Management, 1–30. https://doi.org/10.1080/09640568.2022.2130037
  124. Wallace GT, Barrett KC, Henry KL, Prince MA, Conner BT. (2022): Examining underlying structures of cognitive emotion regulation strategies using exploratory structural equation modeling.Quality & Quantity. https://doi.org/10.1007/s11135-022-01531-5
  125. Granados Samayoa JA, Moore CA, Ruisch BC, Boggs ST, Ladanyi JT, Fazio RH. (2022): A gateway conspiracy? Belief in COVID-19 conspiracy theories prospectively predicts greater conspiracist ideation.PloS One, 17(10). https://doi.org/10.1371/journal.pone.0275502
  126. Heggedal TR, Helland L, Våge Knutsen M. (2022): The power of outside options in the presence of obstinate types.Games and Economic Behavior, 136: 454–468. https://doi.org/10.1016/j.geb.2022.10.011
  127. Uthso NA, Akter NJ. (2022): Determinants of life satisfaction among women of reproductive age (15-49 years) in Bangladesh: A cross-sectional analysis.PloS One, 17(10).https://doi.org/10.1371/journal.pone.0276563
  128. Dzadey D, Biswas RK, Bhowmik J. (2022): Investigating factors affecting HIV/AIDS knowledge among women in low and middle-income countries in Asia.Journal of Health Psychology, 13591053221127532. https://doi.org/10.1177/13591053221127531
  129. Lee C, Ahsan H, Chae H, Esnard DM, Broussard D, Hart S, Allain A, Bond B, et al. (2022):Perioperative efficiency of sugammadex following laparoscopic cholecystectomy in clinical practice.The Ochsner Journal, 22(4): 292–298. https://doi.org/10.31486/toj.22.0064
  130. Vilgis TA. (2022):Biophysik der Ernährung: Eine Einführung für Studierende, Fachkräfte und Quereinsteiger. Springer Berlin Heidelberg.
  131. Ventura R. (2022): Publish without bias or perish without replications.Studies in History and Philosophy of Science, 96: 10–17. https://doi.org/10.1016/j.shpsa.2022.08.010
  132. Panzera F, Bergamo P, Perron V, Fäh D. (2022): On the correlation between earthquake coda horizontal-to-vertical spectral ratios and amplification functions at the KiK-net network.Frontiers in Earth Science. https://doi.org/10.3389/feart.2022.993078
  133. Turna J, Balodis I, Van Ameringen M, Busse JW, MacKillop J. (2022): Attitudes and beliefs toward cannabis before recreational legalization: A cross-sectional study of community adults in Ontario.Cannabis and Cannabinoid Research, 7(4): 526–536. https://doi.org/10.1089/can.2019.0088
  134. Chicco D, Alameer A, Rahmati S, Jurman G. (2022): Towards a potential pan-cancer prognostic signature for gene expression based on probesets and ensemble machine learning.BioData Mining, 15(1): 28. https://doi.org/10.1186/s13040-022-00312-y
  135. Medic S, Anastassopoulou C, Lozanov-Crvenkovic Z, Vukovic V, Dragnic N, et al. (2022):Risk and severity of SARS-CoV-2 reinfections during 2020-2022 in Vojvodina, Serbia: A population-level observational study.The Lancet Regional Health. Europe, 20, 100453. https://doi.org/10.1016/j.lanepe.2022.100453
  136. Holm Hansen R, Talbot J, Højsgaard Chow H, Bredahl Hansen M, Buhelt S, Herich S, et al. (2022): Increased intrathecal activity of follicular helper T cells in patients with relapsing-remitting multiple sclerosis.Neurology(R) Neuroimmunology & Neuroinflammation, 9(5). https://doi.org/10.1212/NXI.0000000000200009
  137. Gordon M, Bishop M, Chen Y, Dreber A, Goldfedder B, Holzmeister F, Johannesson M, Liu Y, Tran L, Twardy C, Wang J, Pfeiffer T. (2022): Forecasting the publication and citation outcomes of COVID-19 preprints.Royal Society Open Science, 9(9). https://doi.org/10.1098/rsos.220440
  138. Fatori D, Suen P, Bacchi P, Afonso L, Klein I, Cavendish BA, Lee YH, Liu Z, et al. (2022):Trajectories of common mental disorders symptoms before and during the COVID-19 pandemic: findings from the ELSA-Brasil COVID-19 Mental Health Cohort.Social Psychiatry and Psychiatric Epidemiology, 57(12): 2445–2455. https://doi.org/10.1007/s00127-022-02365-0
  139. Chicco D, Jurman G. (2022): The ABC recommendations for validation of supervised machine learning results in biomedical sciences.Frontiers in Big Data. https://doi.org/10.3389/fdata.2022.979465
  140. Carey J, Nyhan B, Phillips JB, Reifler J. (2022): Partisanship unmasked? The role of politics and social norms in COVID-19 mask-wearing behavior.Journal of Experimental Political Science, 1–14. https://doi.org/10.1017/xps.2022.20
  141. Stähli BE, Foster Witassek F, Roffi M, Eberli FR, Rickli H, Erne P, Maggiorini M, Pedrazzini G, Radovanovic D, AMIS Plus Investigators. (2022): Trends in treatment and outcomes of patients with diabetes and acute myocardial infarction: Insights from the nationwide AMIS plus registry.International Journal of Cardiology, 368: 10–16. https://doi.org/10.1016/j.ijcard.2022.08.032
  142. Zavalis EA, Ioannidis JPA. (2022): A meta-epidemiological assessment of transparency indicators of infectious disease models.PloS One, 17(10). https://doi.org/10.1371/journal.pone.0275380
  143. Coenen L, Smits T. (2022): Strong-form frequentist testing in communication science: Principles, opportunities, and challenges.Communication Methods and Measures, 16(4): 237–265. https://doi.org/10.1080/19312458.2022.2086690
  144. Di Pierro R, Amelio S, Macca M, Madeddu F, Di Sarno M. (2022): What if I feel rejected? Borderline personality, pathological narcissism, and social rejection in daily life.Journal of Personality Disorders, 36(5): 559–582. https://doi.org/10.1521/pedi.2022.36.5.559
  145. Walach H, Ofner M, Ruof V, Herbig M, Klement RJ. (2022): Why do people consent to receiving SARS-CoV-2 vaccinations? A representative survey in Germany.BMJ Open, 12(8). https://doi.org/10.1136/bmjopen-2021-060555
  146. Szreder M. (2022): Opportunities and illusions of using large samples in statistical inference.Wiadomosci Statystyczne (Warsaw, Poland: 1956), 67(8): 1–16. https://doi.org/10.5604/01.3001.0015.9704
  147. Gamage S, Biswas RK, Bhowmik J. (2022): Health awareness and skilled birth attendance: An assessment of sustainable development goal 3.1 in south and south-east Asia.Midwifery. https://doi.org/10.1016/j.midw.2022.103480
  148. Wang F, Ugai T, Haruki K, Wan Y, Akimoto N, Arima K, Zhong R, Twombly TS, et al. (2022):Healthy and unhealthy plant-based diets in relation to the incidence of colorectal cancer overall and by molecular subtypes.Clinical and Translational Medicine, 12(8). https://doi.org/10.1002/ctm2.893
  149. Cowgill KD, Erosheva EA, Elder A, Miljacic L, Buskin S, Duchin JS. (2022): Anti-SARS-CoV-2 seroprevalence in King County, WA-Cross-sectional survey, August 2020.PloS One, 17(8). https://doi.org/10.1371/journal.pone.0272783
  150. Finley B, Kalwij A, Kapteyn A. (2022): Born to be wild: Second-to-fourth digit length ratio and risk preferences.Economics and Human Biology. https://doi.org/10.1016/j.ehb.2022.101178
  151. Langenberg B, Janczyk M, Koob V, Kliegl R, Mayer A. (2022): A tutorial on using the paired t test for power calculations in repeated measures ANOVA with interactions.Behavior Research Methods. https://doi.org/10.3758/s13428-022-01902-8
  152. Krämer MD, van Scheppingen MA, Chopik WJ, Richter D. (2022): The transition to grandparenthood: No consistent evidence for change in the Big Five personality traits and life satisfaction.European Journal of Personality. https://doi.org/10.1177/08902070221118443
  153. Gupta A, Mo K, Movsik J, Al Farii H. (2022): Statistical fragility of ketamine infusion during scoliosis surgery to reduce opioid tolerance and postoperative pain.World Neurosurgery, 164: 135–142. https://doi.org/10.1016/j.wneu.2022.04.121
  154. Arza E, Ceberio J, Irurozki E, Pérez A. (2022): Comparing two samples through stochastic dominance: A graphical approach.Journal of Computational and Graphical Statistics: A Joint Publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, 1–16. https://doi.org/10.1080/10618600.2022.2084405
  155. Boone J, Davids AH, Joffe D, Arese Lucini F, Oakley DS, Oakley MJ, Peterson M. (2022): In-clinic measurements of vascular risk and brain activity.Journal of Ageing and Longevity, 2(3): 240–251. https://doi.org/10.3390/jal2030020
  156. Xu AL, Ortiz-Babilonia C, Gupta A, Rogers D, Aiyer AA, Vulcano E. (2022): The statistical fragility of platelet-rich plasma as treatment for chronic noninsertional Achilles tendinopathy: A systematic review and meta-analysis.Foot & Ankle Orthopaedics, 7(3). https://doi.org/10.1177/24730114221119758
  157. Fackler NP, Karasavvidis T, Ehlers CB, Callan KT, Lai WC, Parisien RL, Wang D. (2022): The statistical fragility of operative vs nonoperative management for Achilles tendon rupture: A systematic review of comparative studies.Foot & Ankle International, 43(10): 1331–1339. https://doi.org/10.1177/10711007221108078
  158. Ortega FB, Mora-Gonzalez J, Cadenas-Sanchez C, Esteban-Cornejo I, Migueles JH, et al. (2022): Effects of an exercise program on brain health outcomes for children with overweight or obesity: The ActiveBrains randomized clinical trial: The ActiveBrains randomized clinical trial.JAMA Network Open, 5(8). https://doi.org/10.1001/jamanetworkopen.2022.27893
  159. Melman T, Tapus A, Jublot M, Mouton X, Abbink D, de Winter J. (2022): Do sport modes cause behavioral adaptation?Transportation Research. Part F, Traffic Psychology and Behaviour, 90: 58–69. https://doi.org/10.1016/j.trf.2022.07.017
  160. Stricker J, Barthels F, Müller R, Pietrowsky R. (2022): An exploratory study of associations between the ICD-11 personality disorder model and eating pathology.Journal of Eating Disorders, 10(1): 130. https://doi.org/10.1186/s40337-022-00658-y
  161. Park J, Woolley J, Mendes WB. (2022): The effects of intranasal oxytocin on black participants’ responses to outgroup acceptance and rejection.Frontiers in Psychology, 13, 916305. https://doi.org/10.3389/fpsyg.2022.916305
  162. Best practice and research in education. (2022): InEducation Reform and the Learning Crisis in Developing Countries. Cambridge University Press.
  163. Angarit Cáceres R. (2022): Diferencias de género en estudios experimentales de distribución de recursos con participación de niños. El Ágora USB, 22(1): 486-508.
  164. Klement RJ. (2022): Bioelectrical phase angle is no adequate biomarker of inflammatory status.International Journal of Obesity 46(11). https://doi.org/10.1038/s41366-022-01181-5
  165. Fackler NP, Karasavvidis T, Ehlers CB. (2022): The Statistical Fragility of Operative vs Nonoperative Management for Achilles Tendon Rupture: A Systematic Review of Comparative Studies. Foot and Ankle International 43(10): 1331-1339.
  166. Oliveira, TR. (2022): Aggressive policing and undermined legitimacy: assessing the impact of police stops at gunpoint on perceptions of police in São Paulo, Brazil.Journal of Experimental Criminology. https://doi.org/10.1007/s11292-022-09527-9
  167. Zhang J, Tao S. (2022): Vocal characteristics influence women’s perceptions of infidelity and relationship investment in China.Evolutionary Psychology: An International Journal of Evolutionary Approaches to Psychology and Behavior, 20(3). https://doi.org/10.1177/14747049221108883
  168. Meule A, Kolar DR, Voderholzer U. (2022): Weight suppression and body mass index at admission interactively predict weight trajectories during inpatient treatment of anorexia nervosa.Journal of Psychosomatic Research. https://doi.org/10.1016/j.jpsychores.2022.110924
  169. Moody JW, Keister LA, Ramos MC. (2022): Reproducibility in the social sciences.Annual Review of Sociology, 48(1): 65–85. https://doi.org/10.1146/annurev-soc-090221-035954
  170. Khorozyan I. (2022): Importance of non-journal literature in providing evidence for predator conservation.Perspectives in Ecology and Conservation, 20(4): 346–351. https://doi.org/10.1016/j.pecon.2022.08.003
  171. Fréchette GR, Sarnoff K, Yariv L. (2022): Experimental economics: Past and future.Annual Review of Economics, 14(1): 777–794. https://doi.org/10.1146/annurev-economics-081621-124424
  172. Courtney MGR, Rakhymbayeva Z, Shilibekova A, Ziyedenova D, Soltangazina S, Muratkyzy A, Goodman B, Olzhayeva A. (2022): Kazakh, Russian, and Uyghur child language literacy: The role of the updated curriculum on longitudinal growth trajectories in Kazakhstan.Studies in Educational Evaluation. https://doi.org/10.1016/j.stueduc.2022.101189
  173. Elpers N, Jensen G, Holmes KJ. (2022): Does grammatical gender affect object concepts? Registered replication of Phillips and Boroditsky (2003).Journal of Memory and Language. https://doi.org/10.1016/j.jml.2022.104357
  174. Ellis RJ. (2022): Questionable research practices, low statistical power, and other obstacles to replicability: Why preclinical neuroscience research would benefit from registered reports.ENeuro, 9(4). https://doi.org/10.1523/ENEURO.0017-22.2022
  175. Grant S, Wendt KE, Leadbeater BJ, Supplee LH, Mayo-Wilson E, Gardner F, Bradshaw CP. (2022): Transparent, open, and reproducible prevention science.Prevention Science: The Official Journal of the Society for Prevention Research, 23(5): 701–722. https://doi.org/10.1007/s11121-022-01336-w
  176. Courtney M, Karakus M, Ersozlu Z, Nurumov K. (2022): The influence of ICT use and related attitudes on students’ math and science performance: multilevel analyses of the last decade’s PISA surveys.Large-Scale Assessments in Education, 10(1). https://doi.org/10.1186/s40536-022-00128-6
  177. Gureje O, Oladeji BD, Kola L, Bello T, Ayinde O, Faregh N, Bennett I, Zelkowitz P. (2022):Effect of intervention delivered by frontline maternal care providers to improve outcome and parenting skills among adolescents with perinatal depression in Nigeria (the RAPiD study): A cluster randomized controlled trial.Journal of Affective Disorders, 312: 169–176. https://doi.org/10.1016/j.jad.2022.06.032
  178. Matabuena M, Karas M, Riazati S, Caplan N, Hayes PR. (2022): Estimating knee movement patterns of recreational runners across training sessions using multilevel functional regression models.The American Statistician. https://doi.org/10.1080/00031305.2022.2105950
  179. Vogel D, Xu C. (2021): Everything hacked? What is the evidential value of the experimental public administration literature?Journal of Behavioral Public Administration, 4(2). https://doi.org/10.30636/jbpa.42.239
  180. Parslow E, Rose JE. (2020): Stress and risk – preferences and noise.SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3733379
  181. Mulder J. (2023): Bayesian testing of linear versus nonlinear effects using Gaussian process priors.The American Statistician, 77(1):1–11. https://doi.org/10.1080/00031305.2022.2028675
  182. Xu X, Zhang Y, Ha P, Chen Y, et al. (2023): A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery.Bioengineering & Translational Medicine8(1), e10355. https://doi.org/10.1002/btm2.10355
  183. Razavi P, Shaban-Azad H, Srivastava S. (2023): Gheirat as a complex emotional reaction to relational boundary violations: A mixed-methods investigation.Journal of Personality and Social Psychology, 124(1):179–214. https://doi.org/10.1037/pspp0000424
  184. Hou Z, Wang D. (2023): New observations on Zipf’s law in passwords.IEEE Transactions on Information Forensics and Security, 18:517–532. https://doi.org/10.1109/tifs.2022.3176185
  185. Kardum I, Hudek-Knezevic J, Marijanović K, Shackelford TK. (2023): Predicting mate poaching experiences from personality traits using a dyadic analysis.Journal of Sex Research60(3):384–398. https://doi.org/10.1080/00224499.2022.2092586
  186. Medić S, Anastassopoulou C, Lozanov-Crvenković Z, Vuković V, Dragnić N, et al. (2022): Risk and severity of SARS-CoV-2 reinfections during 2020-2022 in Vojvodina, Serbia: A population-level observational study.The Lancet Regional Health. Europe20, 100453. https://doi.org/10.1016/j.lanepe.2022.100453
  187. Aiken A, Chan G, Yuen WS, Clare PJ, Hutchinson D, McBride N, Najman JM, et al. (2022):Trajectories of parental and peer supply of alcohol in adolescence and associations with later alcohol consumption and harms: A prospective cohort study.Drug and Alcohol Dependence237(109533), 109533. https://doi.org/10.1016/j.drugalcdep.2022.109533
  188. Constable PA, Marmolejo-Ramos F, Gauthier M, Lee IO, Skuse DH, Thompson DA. (2022):Discrete wavelet transform analysis of the electroretinogram in autism spectrum disorder and attention deficit hyperactivity disorder.Frontiers in Neuroscience16, 890461. https://doi.org/10.3389/fnins.2022.890461
  189. Arroyo-Barrigüete JL, Obregón A, Ortiz-Lozano JM, Rua-Vieites A. (2022): Spain is not different: teaching quantitative courses can also be hazardous to one’s career (at least in undergraduate courses).PeerJ10, e13456. https://doi.org/10.7717/peerj.13456
  190. Wolff RV, Struck O, Osiander C, Senghaas M, Stephan G. (2022): Justice perceptions of occupational training subsidies: findings from a factorial survey.Journal for Labour Market Research56(1). https://doi.org/10.1186/s12651-022-00311-w
  191. Semenyna SW, Rule NO, Vasey PL. (2022): Fertility status does not facilitate women’s judgment of male sexual orientation.Archives of Sexual Behavior51(7):3351–3360. https://doi.org/10.1007/s10508-022-02356-x
  192. Marchi NA, Pizzarotti B, Solelhac G, Berger M, Haba-Rubio J, Preisig M, et al. (2022): Abnormal brain iron accumulation in obstructive sleep apnea: A quantitative MRI study in the HypnoLaus cohort.Journal of Sleep Research31(6), e13698. https://doi.org/10.1111/jsr.13698
  193. Colley M Hummler C, Rukzio E. (2022): Effects of mode distinction, user visibility, and vehicle appearance on mode confusion when interacting with highly automated vehicles.Transportation Research. Part F, Traffic Psychology and Behaviour89, 303–316. https://doi.org/10.1016/j.trf.2022.06.020
  194. Delios A, Clemente EG, Wu T, Tan H, Wang Y, Gordon M, Viganola D, Chen Z, Dreber A, et al. (2022): Examining the generalizability of research findings from archival data.Proceedings of the National Academy of Sciences of the United States of America119(30), e2120377119. https://doi.org/10.1073/pnas.2120377119
  195. Schad DJ, Vasishth S. (2022): The posterior probability of a null hypothesis given a statistically significant result.The Quantitative Methods for Psychology18(2):130–199. https://doi.org/10.20982/tqmp.18.2.p011
  196. Vail EA, Avidan MS. (2022): Trials with “non-significant” results are not insignificant trials: a common significance threshold distorts reporting and interpretation of trial results.British Journal of Anaesthesia129(5):643–646. https://doi.org/10.1016/j.bja.2022.06.023
  197. Garofalo S, Giovagnoli S, Orsoni M, Starita F, Benassi M. (2022): Interaction effect: Are you doing the right thing?PloS One17(7), e0271668. https://doi.org/10.1371/journal.pone.0271668
  198. Semenyna SW, Gómez Jiménez FR, Vasey PL. (2022): Intra- and intersexual mate competition in two cultures : A comparison of women’s response to mate competition with women and gender-nonbinary males in Samoa and among the Istmo Zapotec: A comparison of women’s response to mate competition with women and gender-nonbinary males in Samoa and among the istmo Zapotec.Human Nature (Hawthorne, N.Y.), 33(2):145–171. https://doi.org/10.1007/s12110-022-09424-0
  199. van den Bemd M, Schalk BWM, Bischoff EWMA, Cuypers M, Leusink GL. (2022): Chronic diseases and comorbidities in adults with and without intellectual disabilities: comparative cross-sectional study in Dutch general practice.Family Practice, 39(6):1056–1062. https://doi.org/10.1093/fampra/cmac042
  200. Suzuki T, Masugi Y, Inoue Y, Hamada T, Tanaka M, Takamatsu M, Arita J, Kato T, et al. (2022):KRAS variant allele frequency, but not mutation positivity, associates with survival of patients with pancreatic cancer.Cancer Science, 113(9):3097–3109. https://doi.org/10.1111/cas.15398
  201. Lin L, Chu H. (2022): Assessing and visualizing fragility of clinical results with binary outcomes in R using the fragility package.PloS One, 17(6), e0268754. https://doi.org/10.1371/journal.pone.0268754
  202. Radzvilas M, De Pretis F, Peden W, Tortoli D, Osimani B. (2022): Incentives for research effort: An evolutionary model of publication markets with double-blind and open review.Computational Economics. https://doi.org/10.1007/s10614-022-10250-w
  203. Berrar D. (2022): Using p-values for the comparison of classifiers: pitfalls and alternatives.Data Mining and Knowledge Discovery, 36(3):1102–1139. https://doi.org/10.1007/s10618-022-00828-1
  204. Mo D, Zou X, Wong W. (2022): Neural stylist: Towards online styling service.Expert Systems with Applications, 203, 117333. https://doi.org/10.1016/j.eswa.2022.117333
  205. Lee DH, Tabung FK, Giovannucci EL. (2022): Association of animal and plant protein intakes with biomarkers of insulin and insulin-like growth factor axis.Clinical Nutrition (Edinburgh, Scotland), 41(6):1272–1280. https://doi.org/10.1016/j.clnu.2022.04.003
  206. Temp AGM, Ly A, van Doorn J, Wagenmakers EJ, Tang Y, Lutz MW, Teipel S. (2022): A Bayesian perspective on Biogen’s aducanumab trial.Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 18(11):2341–2351. https://doi.org/10.1002/alz.12615
  207. Al Rahwanji MJ, Abouras H, Shammout MS, Altalla R, Al Sakaan R, Alhalabi N, Alhalabi M. (2022): The optimal period for oocyte retrieval after the administration of recombinant human chorionic gonadotropin in in vitro fertilization.BMC Pregnancy and Childbirth, 22(1), 184. https://doi.org/10.1186/s12884-022-04412-9
  208. Hyytinen A, Tuimala J, Hammar M. (2022): Enhancing the adoption of digital public services: Evidence from a large-scale field experiment.Government Information Quarterly, 39(3). https://doi.org/10.1016/j.giq.2022.101687
  209. Leichtmann B, Nitsch V, Mara M. (2022): Crisis ahead? Why human-robot interaction user studies may have replicability problems and directions for improvement.Frontiers in Robotics and AI, 9, 838116. https://doi.org/10.3389/frobt.2022.838116
  210. Li G, So MKP, Tam KY. (2022): Identifying the big shots—A quantile-matching way in the big data context.ACM Transactions on Management Information Systems, 13(2):1–30. https://doi.org/10.1145/3490395
  211. Muff S, Nilsen EB, O’Hara RB, Nater CR. (2022): Response to “Why P values are not measures of evidence” by D. Lakens.Trends in Ecology & Evolution, 37(4):291–292. https://doi.org/10.1016/j.tree.2022.01.001
  212. Pinto da Costa JFP da, Cabral M. (2022): Statistical methods with applications in data mining: A review of the most recent works.Mathematics, 10(6):993. https://doi.org/10.3390/math10060993
  213. Reddy AK, Scott JT, Joshua Stephens B, Patel A, Checketts JX, Stotler WM, Hawkins BJ, Vassar M. (2022): Evaluation of proposed protocol changing statistical significance from 0.05 to 0.005 in foot and ankle randomized controlled trials.The Journal of Foot and Ankle Surgery: Official Publication of the American College of Foot and Ankle Surgeons, 61(5):925–926. https://doi.org/10.1053/j.jfas.2022.03.005
  214. McDonough IM, Cody SL, Harrell ER, Garrett SL, Popp TE. (2022): Cognitive differences across ethnoracial category, socioeconomic status across the Alzheimer’s disease spectrum: Can an ability discrepancy score level the playing field?Memory & Cognition. https://doi.org/10.3758/s13421-022-01304-3
  215. Liao S, Qin S. (2022): Ultra-chaos: An insurmountable objective obstacle of reproducibility and replication.Advances in Applied Mathematics and Mechanics, 14(4):799–815. https://doi.org/10.4208/aamm.oa-2021-0364
  216. van Meijeren AR, Ties D, de Koning MSLY, van Dijk R, van Blokland IV, et al. (2022): Association of epicardial adipose tissue with different stages of coronary artery disease: A cross-sectional UK Biobank cardiovascular magnetic resonance imaging substudy.International Journal of Cardiology. Heart & Vasculature, 40, 101006. https://doi.org/10.1016/j.ijcha.2022.101006
  217. Scholl J, Trier HA, Rushworth MFS, Kolling N. (2022): The effect of apathy and compulsivity on planning and stopping in sequential decision-making.PLoS Biology, 20(3), e3001566. https://doi.org/10.1371/journal.pbio.3001566
  218. Geeraert N, Ward C, Hanel PHP. (2022): Returning home: The role of expectations in re-entry adaptation.Applied Psychology. Health and Well-Being, 14(3):949–966. https://doi.org/10.1111/aphw.12361
  219. Harlid S, Van Guelpen B, Qu C, Gylling B, Aglago EK, Amitay EL, Brenner H, et al. (2022):Diabetes mellitus in relation to colorectal tumor molecular subtypes: A pooled analysis of more than 9000 cases.International Journal of Cancer. Journal International Du Cancer, 151(3):348–360. https://doi.org/10.1002/ijc.34015
  220. Kang SW, Lee B, Song C, Eeom KY, Jang BS, Kim IA, Kim JS, Chung JB, et al. (2022): Clinical implementation of PerFRACTIONTMfor pre-treatment patient-specific quality assurance.The Journal of the Korean Physical Society, 80(6):516–525. https://doi.org/10.1007/s40042-022-00440-y
  221. Zahrai K, Veer E, Ballantine PW, de Vries HP, Prayag G. (2022): Either you control social media or social media controls you: Understanding the impact of self‐control on excessive social media use from the dual‐system perspective.The Journal of Consumer Affairs, 56(2):806–848. https://doi.org/10.1111/joca.12449
  222. Furlan M, Mariano E. (2022): A confirmatory factor model for climate justice: Integrating human development and climate actions in low carbon economies.Environmental Science & Policy, 133:17–30. https://doi.org/10.1016/j.envsci.2022.03.004
  223. Fujihara S, Tabuchi T. (2022): The impact of COVID-19 on the psychological distress of youths in Japan: A latent growth curve analysis.Journal of Affective Disorders, 305:19–27. https://doi.org/10.1016/j.jad.2022.02.055
  224. Wenzel M, Rowland Z, Mey LK, Kurth K, Tüscher O, Kubiak T. (2022): Variability in negative affect is an important feature of neuroticism above mean negative affect once measurement issues are accounted for.European Journal of Personality, 089020702210891. https://doi.org/10.1177/08902070221089139
  225. AbdusSalam SS, Agocs FJ, Allanach BC, Athron P, Balázs C, Bagnaschi E, Bechtle P, et al. (2022): Simple and statistically sound recommendations for analysing physical theories.Reports on Progress in Physics. Physical Society (Great Britain), 85(5). https://doi.org/10.1088/1361-6633/ac60ac
  226. Lee IO, Skuse DH, Constable PA, Marmolejo-Ramos F, Olsen LR, Thompson DA. (2022): The electroretinogram b-wave amplitude: a differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder.Journal of Neurodevelopmental Disorders, 14(1), 30. https://doi.org/10.1186/s11689-022-09440-2
  227. Byrd N, Thompson M. (2022): Testing for implicit bias: Values, psychometrics, and science communication.Wiley Interdisciplinary Reviews. Cognitive Science, 13(5), e1612. https://doi.org/10.1002/wcs.1612
  228. Hoch VBB, Kohler AF, Augusto DG, Lobo-Alves SC, Malheiros D, Cipolla GA, Boldt ABW, Braun-Prado K, et al. (2022): Genetic associations and differential mRNA expression levels of host genes suggest a viral trigger for endemic Pemphigus foliaceus.Viruses, 14(5), 879. https://doi.org/10.3390/v14050879
  229. Bruno AM, Blue NR. (2022): Challenges in interpreting obstetrics and gynecology literature.Clinical Obstetrics and Gynecology, 65(2):225–235. https://doi.org/10.1097/GRF.0000000000000707
  230. Deng X, Liang X, Zhan X, Rosenfeld JP, Olson J, Yan G, Xue C, Lu Y. (2022): A novel and effective item-source complex trial protocol: Discrimination of guilty from both knowledgeable and unknowledgeable innocent subjects.Psychophysiology, 59(8), e14033. https://doi.org/10.1111/psyp.14033
  231. Liebst LS, Ejbye-Ernst P, de Bruin M, Thomas J, Lindegaard MR. (2022): No evidence that mask-wearing in public places elicits risk compensation behavior during the COVID-19 pandemic.Scientific Reports, 12(1), 1511. https://doi.org/10.1038/s41598-022-05270-3
  232. Rodríguez-Hernández AJ, Sevcik C. (2022): Hidden chaos factors inducing random walks which reduce hospital operative efficiency.PloS One, 17(1), e0262815. https://doi.org/10.1371/journal.pone.0262815
  233. Chabert S, Mallinger RE, Sénéchal C, Fougeroux A, Geist O, Guillemard V, Leylavergne S, Malard C, Pousse J, Vaissière BE. (2022): Importance of maternal resources in pollen limitation studies with pollinator gradients: A case study with sunflower.Agriculture, Ecosystems & Environment, 330, 107887. https://doi.org/10.1016/j.agee.2022.107887
  234. Andrea C. (2022): As fast as a hare: Did intraspecific morphological change bring the Hallands Väderö Island population of Lepus timidus close to interspecific differences in less than 150 years?Zoology (Jena, Germany), 152, 126014. https://doi.org/10.1016/j.zool.2022.126014
  235. Elomaa H, Ahtiainen M, Väyrynen SA, Ogino S, Nowak JA, Friman M, Helminen O, et al. (2022):Prognostic significance of spatial and density analysis of T lymphocytes in colorectal cancer.British Journal of Cancer, 127(3):514–523. https://doi.org/10.1038/s41416-022-01822-6
  236. Ergen P, Koçoğlu ME, Nural M, Kuşkucu MA, Aydin Ö, İnal FY, Öztürk H, Üçişik AC, et al. (2022):Carbapenem-resistant Klebsiella pneumoniae outbreak in a COVID-19 intensive care unit; a case-control study.Journal of Chemotherapy (Florence, Italy), 34(8):517–523. https://doi.org/10.1080/1120009X.2022.2064698
  237. Holm Hansen R, Højsgaard Chow H, Talbot J, Buhelt S, Nickelsen Hellem MN, Nielsen JE, Sellebjerg FT, von Essen MR. (2022): Peripheral helper T cells in the pathogenesis of multiple sclerosis.Multiple Sclerosis (Houndmills, Basingstoke, England), 28(9):1340–1350. https://doi.org/10.1177/13524585211067696
  238. Lilleholt L, Zettler I. (2022): A closer look on the relation between nostalgia and risk-taking.Personality & Social Psychology Bulletin, 1461672221074113. https://doi.org/10.1177/01461672221074113
  239. Khorozyan I, Heurich M. (2022): Large-scale sheep losses to wolves (Canis lupus) in Germany are related to the expansion of the wolf population but not to increasing wolf numbers.Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.778917
  240. Bultez A, Derbaix C, Herrmann JL. (2022): Statistically significant? Let us recognize that estimates of tested effects are uncertain. Recherche et Applications En Marketing (English Edition), 37(1):82–105. https://doi.org/10.1177/20515707211040743
  241. Kelter R. (2022): Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors.Computational Statistics & Data Analysis, 165, 107326. https://doi.org/10.1016/j.csda.2021.107326
  242. Hobbs C, Vozarova P, Sabharwal A, Shah P, Button K. (2022): Is depression associated with reduced optimistic belief updating?Royal Society Open Science, 9(2), 190814. https://doi.org/10.1098/rsos.190814
  243. Forgetta V, Jiang L, Vulpescu NA, Hogan MS, Chen S, Morris JA, Grinek S, Benner C, Jang DK, Hoang Q, et al. (2022): An effector index to predict target genes at GWAS loci.Human Genetics, 141(8):1431–1447. https://doi.org/10.1007/s00439-022-02434-z
  244. Mammola S, Viel N, Amiar D, Mani A, Hervé C, Heard SB, Fontaneto D, Pétillon J. (2022):Taxonomic practice, creativity, and fashion: What’s in a spider name? InbioRxiv. https://doi.org/10.1101/2022.02.06.479275
  245. Wortzel JR, Maeng DD, Francis A, Oldham MA. (2021): Prevalent gaps in understanding the features of catatonia among psychiatrists, psychiatry trainees, and medical students.The Journal of Clinical Psychiatry, 82(5). https://doi.org/10.4088/JCP.21m14025
  246. Väyrynen JP, Haruki K, Lau MC, Väyrynen SA, Ugai T, Akimoto N, Zhong R, Zhao M, Dias Costa A, et al. (2022): Spatial organization and prognostic significance of NK and NKT-like cells via multimarker analysis of the colorectal cancer microenvironment.Cancer Immunology Research, 10(2):215–227. https://doi.org/10.1158/2326-6066.CIR-21-0772
  247. Vandenbruaene J, Ceuster MD, Annaert J. (2022): Efficient spread betting markets: A literature review.Journal of Sports Economics, 23(7):907–949. https://doi.org/10.1177/15270025211071042
  248. Nostedt S, Joffe AR. (2022): Critical care randomized trials demonstrate power failure: A low positive predictive value of findings in the critical care research field.Journal of Intensive Care Medicine, 37(8):1082–1093. https://doi.org/10.1177/08850666221077203
  249. Martin OA, Teste FP. (2022): A call for changing data analysis practices: from philosophy and comprehensive reporting to modeling approaches and back.Plant and Soil, 476(1–2):743–753. https://doi.org/10.1007/s11104-022-05329-0
  250. Otte WM, Vinkers CH, Habets PC, van IJzendoorn DGP, Tijdink JK. (2022): Analysis of 567,758 randomized controlled trials published over 30 years reveals trends in phrases used to discuss results that do not reach statistical significance.PLoS Biology, 20(2), e3001562. https://doi.org/10.1371/journal.pbio.3001562
  251. Held L, Matthews RA. (2022): Carl Liebermeister and the emergence of modern medical statistics, Part 1: his remarkable work in historical context.Journal of the Royal Society of Medicine, 115(2):69–72. https://doi.org/10.1177/01410768221077205
  252. Atee M, Hoti K, Chivers P, Hughes JD. (2022): Faces of pain in dementia: Learnings from a real-world study using a technology-enabled pain assessment tool.Frontiers in Pain Research (Lausanne, Switzerland), 3, 827551. https://doi.org/10.3389/fpain.2022.827551
  253. Bartoš F, Aust F, Haaf JM. (2022): Informed Bayesian survival analysis.BMC Medical Research Methodology, 22(1):238. https://doi.org/10.1186/s12874-022-01676-9
  254. Bonkhoff AK, Grefkes C. (2022): Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence.Brain: A Journal of Neurology, 145(2):457–475. https://doi.org/10.1093/brain/awab439
  255. Pastorino R, Pezzullo AM, Villani L, Causio FA, Axfors C, Contopoulos-Ioannidis DG, Boccia S, Ioannidis JPA. (2022): Change in age distribution of COVID-19 deaths with the introduction of COVID-19 vaccination.Environmental Research, 204(Pt C), 112342. https://doi.org/10.1016/j.envres.2021.112342
  256. Bickel DR. (2022): Coherent checking and updating of Bayesian models without specifying the model space: A decision-theoretic semantics for possibility theory.International Journal of Approximate Reasoning: Official Publication of the North American Fuzzy Information Processing Society, 142:81–93. https://doi.org/10.1016/j.ijar.2021.11.006
  257. Huber C, Huber J, Kirchler M. (2022): Volatility shocks and investment behavior.Journal of Economic Behavior & Organization, 194:56–70. https://doi.org/10.1016/j.jebo.2021.12.007
  258. Hepper EG, Ellett L, Kerley D, Kingston JL. (2022): Are they out to get me? Individual differences in nonclinical paranoia as a function of narcissism and defensive self-protection.Journal of Personality, 90(5):727–747. https://doi.org/10.1111/jopy.12693
  259. Lopez H, Devos T, Somo A. (2022): State-level cultural tightness–looseness accounts for implicit associations between American and White identities.Current Research in Ecological and Social Psychology, 3(100033), 100033. https://doi.org/10.1016/j.cresp.2021.100033
  260. Berman R, Van den Bulte C. (2022): False discovery in A/B testing.Management Science, 68(9):6762–6782. https://doi.org/10.1287/mnsc.2021.4207
  261. Fusaroli R, Grossman R, Bilenberg N, Cantio C, Jepsen JRM, Weed E. (2022): Toward a cumulative science of vocal markers of autism: A cross-linguistic meta-analysis-based investigation of acoustic markers in American and Danish autistic children. Autism Research: Official Journal of the International Society for Autism Research, 15(4):653–664. https://doi.org/10.1002/aur.2661
  262. Walach H, Ofner M, Ruof V, Herbig M, Klement (2022): Why do people consent to receiving SARS-CoV2 vaccinations? A Representative Survey in Germany. In Research Square. https://doi.org/10.21203/rs.3.rs-1216502/v1
  263. Borgogna NC, McDermott RC. (2022): Is traditional masculinity ideology stable over time in men and women?Psychology of Men & Masculinity. https://doi.org/10.1037/men0000393
  264. Wortzel JR, Maeng DD, Francis A, Oldham MA. (2022): Evaluating the effectiveness of an educational module for the Bush-Francis Catatonia Rating Scale.Academic Psychiatry: The Journal of the American Association of Directors of Psychiatric Residency Training and the Association for Academic Psychiatry, 46(2):185–193. https://doi.org/10.1007/s40596-021-01582-0
  265. Jusup M, Holme P, Kanazawa K, Takayasu M, Romić I, Wang Z, Geček S, Lipić T, Podobnik B, et al. (2022): Social physics.Physics Reports, 948:1–148. https://doi.org/10.1016/j.physrep.2021.10.005
  266. Godard M, Wamain Y, Ott L, Delepoulle S, Kalénine S. (2022): How competition between action representations affects object perception during development.Journal of Cognition and Development: Official Journal of the Cognitive Development Society, 23(3):360–384. https://doi.org/10.1080/15248372.2022.2025808
  267. Albert G, Richardson GB, Arnocky S, Bird BM, Fisher M, Hlay JK, McHale TS, Hodges-Simeon CR. (2022): A psychometric evaluation of the Intrasexual Competition Scale.Archives of Sexual Behavior, 51(6):2741–2758. https://doi.org/10.1007/s10508-021-02167-6
  268. Hensel L, Witte M, Caria AS, Fetzer T, Fiorin S, Götz FM, Gomez M, Haushofer J, Ivchenko A, et al. (2022): Global behaviors, perceptions, and the emergence of social norms at the onset of the COVID-19 pandemic.Journal of Economic Behavior & Organization, 193, 473–496. https://doi.org/10.1016/j.jebo.2021.11.015
  269. Akhmedova A, Mas-Machuca M, Magomedova N. (2022): Nexus between strategic fit and social mission accomplishment in social enterprises: Does organizational form matter?Journal of Cleaner Production, 330(129891), 129891. https://doi.org/10.1016/j.jclepro.2021.129891
  270. Nostedt S, Joffe AR. (2022): Reverse Bayesian implications of p-values reported in critical care randomized trials.Journal of Intensive Care Medicine, 37(7), 954–964. https://doi.org/10.1177/08850666211053793
  271. Thakur P, Jha V. (2022): Potential effects of lowering the threshold of statistical significance in the field of chronic rhinosinusitis – A meta-research on published randomized controlled trials over last decade.Brazilian Journal of Otorhinolaryngology, 88(5):83–89. https://doi.org/10.1016/j.bjorl.2021.11.004
  272. Bartlett J, Charles S. (2022): Power to the People: A Beginner’s Tutorial to Power Analysis using jamovi.Meta-Psychology, 6. https://doi.org/10.15626/mp.2021.3078
  273. Romano D, Rossetti G, Stefanini C. (2022): Learning on a chip: Towards the development of trainable biohybrid sensors by investigating cognitive processes in non-marine Ostracoda via a miniaturised analytical system.Biosystems Engineering, 213:162–174. https://doi.org/10.1016/j.biosystemseng.2021.11.004
  274. Berner D, Amrhein V. (2022):Why and how we should join the shift from significance testing to estimation. https://doi.org/10.20944/preprints202112.0235.v2
  275. Ruest M, Léonard G, Thomas A, Desrosiers J, Guay M. (2022): Algo’s integrated knowledge translation process in homecare services: A cross-sectional correlational study for identifying its level of utilization and its associated characteristics.Canadian Journal of Occupational Therapy. Revue Canadienne d’ergotherapie, 89(1):13–25. https://doi.org/10.1177/00084174211064495
  276. Nelson NC, Chung J, Ichikawa K, Malik MM. (2022): Psychology exceptionalism and the multiple discovery of the replication crisis.Review of General Psychology: Journal of Division 1, of the American Psychological Association, 26(2):184–198. https://doi.org/10.1177/10892680211046508
  277. Sokolowski HM, Hawes Z, Leibovich-Raveh T, Ansari D. (2022): Number symbols are processed more automatically than nonsymbolic numerical magnitudes: Findings from a Symbolic-Nonsymbolic Stroop task. Acta Psychologica, 228, 103644. https://doi.org/10.1016/j.actpsy.2022.103644
  278. Chopik WJ, Francis J. (2022): Partner influences on ICT use variety among middle-aged and older adults: The role of need for cognition. Computers in Human Behavior, 126, 107028. https://doi.org/10.1016/j.chb.2021.107028
  279. Hyatt CS, Crowe ML, West SJ, Vize CE, Carter NT, Chester DS, Miller JD. (2022): An empirically based power primer for laboratory aggression research. Aggressive Behavior, 48(3):279–289. https://doi.org/10.1002/ab.21996
  280. Miller J, Ulrich R. (2022): Optimizing research output: How can psychological research methods be improved? Annual Review of Psychology, 73(1):691–718. https://doi.org/10.1146/annurev-psych-020821-094927
  281. Ugai T, Väyrynen JP, Lau MC, Borowsky J, Akimoto N, Väyrynen SA, Zhao M, Zhong R, Haruki K, et al. (2022): Immune cell profiles in the tumor microenvironment of early-onset, intermediate-onset, and later-onset colorectal cancer. Cancer Immunology, Immunotherapy: CII, 71(4):933–942. https://doi.org/10.1007/s00262-021-03056-6
  282. Ghislain MM, Gerard OB, Emeric TN, Adolphe MI. (2022): Improvement of environmental characteristics of natural monoesters for use as insulating liquid in power transformers. Environmental Technology & Innovation, 27, 102784. https://doi.org/10.1016/j.eti.2022.102784
  283. Wagenmakers EJ, Ly A. (2022): History and nature of the Jeffreys–Lindley paradox. Archive for History of Exact Sciences, 77(1):25–72. https://doi.org/10.1007/s00407-022-00298-3
  284. Ma Y, Mockus A, Zaretzki R, Bradley R, Bichescu B. (2022): A Methodology for Analyzing Uptake of Software Technologies Among Developers. IIEEE Trans Software Eng. doi:10.1109/tse.2020.2993758
  285. McCloskey A, Michaillat P. (2022): Incentive-Compatible Critical Values. National Bureau of Economic Research. doi:10.3386/w29702
  286. Vélez D, Pérez ME., Pericchi LR. (2022): Increasing the replicability for linear models via adaptive significance levels. TEST. doi:10.1007/s11749-022-00803-4
  287. Bland S. (2022): An Interactionist Approach to Cognitive Debiasing. Episteme 19(1):66-88. doi:10.1017/epi.2020.9
  288. Dennis EL, Baron D, Bartnik-Olson B, Caeyenberghs K, Esopenko C, Hillary FG, … Wilde EA. (2022): ENIGMA brain injury: Framework, challenges, and opportunities. Human brain mapping 43(1):149-166. doi:10.1002/hbm.25046
  289. Parke E, Du Bois SN, Woodward H. (2022): Exploring political diversity in relation to health and stress, among graduate students in the mental health field. Journal of American College Health 70(4):1247-1256. doi:10.1080/07448481.2020.1791130
  290. Bickel DR. (2022): Confidence distributions and empirical Bayes posterior distributions unified as distributions of evidential support. Communications in Statistics – Theory and Methods 51(10):3142-3163. doi:10.1080/03610926.2020.1790004
  291. Kelemen JA, Kaserer A, Jensen KO, et al. (2022): Prevalence and outcome of contrast-induced nephropathy in major trauma patients. Eur J Trauma Emerg Surg 48:907-913. doi:10.1007/s00068-020-01496-w
  292. Sun J, Neufeld B, Snelgrove P, Vazire S. (2022): Personality evaluated: What do people most like and dislike about themselves and their friends? Journal of Personality and Social Psychology 122(4):731. doi:10.1037/pspp0000388.
  293. Keating CT, Fraser DS, Sowden S, et al. (2022): Differences Between Autistic and Non-Autistic Adults in the Recognition of Anger from Facial Motion Remain after Controlling for Alexithymia. J Autism Dev Disord 52:1855-1871. doi:10.1007/s10803-021-05083-9
  294. Yarkoni T. (2022): The generalizability crisis. Behavioral and Brain Sciences 45:E1. doi:10.1017/S0140525X20001685
  295. Chalfin A, Hansen B, Lerner J, et al. (2022): Reducing Crime Through Environmental Design: Evidence from a Randomized Experiment of Street Lighting in New York City. J Quant Criminol38:127-157. doi:10.1007/s10940-020-09490-6
  296. Nosek BA, Hardwicke TE, Moshontz H, Allard A, Corker KS, Dreber A, Fidler F, Hilgard J, Kline Struhl M, Nuijten MB, Rohrer JM, Romero F, Scheel AM, Scherer LD, Schönbrodt FD, Vazire S. (2022): Replicability, Robustness, and Reproducibility in Psychological Science. Annu Rev Psychol 73:719-748. doi:10.1146/annurev-psych-020821-114157
  297. Dufwenberg M, Johansson-Stenman O, Kirchler M, Lindner F, Schwaiger R. (2022): Mean markets or kind commerce? Journal of Public Economics 209:104648. doi:10.1016/j.jpubeco.2022.104648
  298. Druckman J. (2022): Experimental Thinking. Cambridge University Press.
  299. Schad DJ, Nicenboim B, Bürkner P-C, Betancourt M, Vasishth S. (2022): Workflow techniques for the robust use of bayes factors. Psychological Methods. Advance online publication. doi:10.1037/met0000472
  300. Catalano R, Karasek D, Bruckner T, et al. (2022): African American Unemployment and the Disparity in Periviable Births. J. Racial and Ethnic Health Disparities 9:840-848. doi:10.1007/s40615-021-01022-7
  301. Dunleavy DJ, Lacasse JR. (2022): The Use and Misuse of Classical Statistics: A Primer for Social Workers. Research on Social Work Practice 31(5):438-453. doi:10.1177/10497315211008247
  302. Hoga Y. (2022): Quantifying the data-dredging bias in structural break tests. Stat Papers 63:143-155. doi:10.1007/s00362-021-01233-4
  303. Bal VH, Wilkinson E, Fok M. (2022): Cognitive profiles of children with autism spectrum disorder with parent-reported extraordinary talents and personal strengths. Autism 26(1):62-74. doi:10.1177/13623613211020618
  304. Schroeder SA. (2022): An Ethical Framework for Presenting Scientific Results to Policy-Makers. Kennedy Institute of Ethics Journal 32(1):33-67. doi:10.1353/ken.2022.0002
  305. Ehlke SJ, Kelley ML, Lewis RJ, Braitman AL. (2022): The role of alcohol demand on daily microaggressions and alcohol use among emerging adult bisexual+ women. Psychology of Addictive Behaviors 36(2):209-219. doi:10.1037/adb0000754
  306. Onkhar V, Bazilinksyy P, Dodou D, De Winter JCF. (2022): The effect of drivers’ eye contact on pedestrians’ perceived safety. Transportation Research Part F: Traffic Psychology and Behaviour84:194-210. doi:10.1016/j.trf.2021.10.017
  307. Torbahn G, Sulz I, Großhauser F, et al. (2022): Predictors of incident malnutrition-a nutritionDay analysis in 11,923 nursing home residents. Eur J Clin Nutr 76:382-388. doi:10.1038/s41430-021-00964-9
  308. McGue M, Anderson EL, Willoughby E, Giannelis A, Iacono WG, Lee JJ. (2022): Not by g alone: The benefits of a college education among individuals with low levels of general cognitive ability. Intelligence92:101642. doi:10.1016/j.intell.2022.101642
  309. Holzmeister F, Huber J, Kirchler M, Schwaiger R. (2022): Nudging debtors to pay their debt: Two randomized controlled trials. Journal of Economic Behavior & Organization 198:535-551. doi:10.1016/j.jebo.2022.04.006
  310. Muff S, Nilsen EB, O’Hara RB, Nater CR. (2021): Rewriting results sections in the language of evidence. Trends in Ecology & Evolution. doi:10.1016/j.tree.2021.10.009
  311. Hervochon R, Vauterin A, Lahlou G, Nguyen Y, Lamas G, Tankéré F. (2021): Is preoperative bone conduction shape a prognostic factor in otosclerosis surgery? Clin Otolaryngol. doi:10.1111/coa.13885
  312. Moshontz H, Ebersole CR, Weston SJ, Klein RA. (2021): A guide for many authors: Writing manuscripts in large collaborations. Soc Personal Psychol Compass. doi:10.1111/spc3.12590
  313. Lewis NA. (2021): What counts as good science? How the battle for methodological legitimacy affects public psychology. The American Psychologist, 76(8):1323–1333. https://doi.org/10.1037/amp0000870
  314. Jørgensen CLT, Larsson AM, Forsare C, Aaltonen K, Jansson S, Bradshaw R, Bendahl PO, Rydén L. (2021): PAM50 intrinsic subtype profiles in primary and metastatic Breast Cancer show a significant shift toward more aggressive subtypes with prognostic implications. Cancers, 13(7):1592. https://doi.org/10.3390/cancers13071592
  315. Zhang X, Meng Z, Beusch C, Gharibi H, Cheng Q, Stefano L, Wang J, Saei A, Vegvari A, Gaetani M, Zubarev R. (2021): Ultralight ultrafast enzymes. In Research Square. https://doi.org/10.21203/rs.3.rs-1103656/v1
  316. Yuen WS, Bruno R, Chan GCK, McCambridge J, Slade T, Clare PJ, Aiken A, Kypri K, Hutchinson D, McBride N, Boland V, Upton E, Farrell M, Mattick RP, Peacock A. (2021): The experience of physiological and psychosocial alcohol-related harms across adolescence and its association with alcohol use disorder in early adulthood: A prospective cohort study. Alcoholism, Clinical and Experimental Research, 45(12):2518–2527. https://doi.org/10.1111/acer.14726
  317. Majumdar G, Yazin F, Banerjee A, Roy D. (2021): Emotion dynamics as hierarchical Bayesian inference in time. In bioRxiv. https://doi.org/10.1101/2021.11.30.470667
  318. Chicco D, Lovejoy CA, Oneto L (2021): A machine learning analysis of health records of patients with chronic kidney disease at risk of cardiovascular disease. IEEE Access: Practical Innovations, Open Solutions, 9, 165132–165144. https://doi.org/10.1109/access.2021.3133700
  319. Kent MG, Jakubiec JA. (2021): An examination of range effects when evaluating discomfort due to glare in Singaporean buildings. Lighting Research & Technology (London, England: 2001), 147715352110472. https://doi.org/10.1177/14771535211047220
  320. Almesned MA, Prins FM, Lipšic E, Connelly MA, Garcia E, Dullaart RPF, Groot HE, van der Harst P. (2021): Temporal course of plasma trimethylamine N-oxide (TMAO) levels in ST-elevation myocardial infarction. Journal of Clinical Medicine, 10(23):5677. https://doi.org/10.3390/jcm10235677
  321. Baltussen G, Swinkels L, Van Vliet P. (2021): Global factor premiums. Journal of Financial Economics, 142(3):1128–1154. https://doi.org/10.1016/j.jfineco.2021.06.030
  322. Moshkov N, Smetanin A, Tatarinova TV. (2021): Local ancestry prediction with PyLAE. PeerJ, 9(e12502), e12502. https://doi.org/10.7717/peerj.12502
  323. Naeem M, Yu J, Aamir M, Khan SA, Adeleye O, Khan Z. (2021): Comparative analysis of machine learning approaches to analyze and predict the COVID-19 outbreak. PeerJ. Computer Science, 7(e746), e746. https://doi.org/10.7717/peerj-cs.746
  324. Fowlie A. (2021): Neyman–Pearson lemma for Bayes factors. Communications in Statistics: Theory and Methods, 1–8. https://doi.org/10.1080/03610926.2021.2007265
  325. Henderson MET, Brayson D, Halsey LG. (2021): The cardio-respiratory effects of passive heating and the human thermoneutral zone. Physiological Reports, 9(16), e14973. https://doi.org/10.14814/phy2.14973
  326. Gordon M, Pfeiffer T. (2021): Can scientists change their minds? Nature Human Behaviour, 5(12):1598–1599. https://doi.org/10.1038/s41562-021-01201-w
  327. Esposito L, Theuerkauf UG. (2021): Economic well-being and self-placements on a Left-Right scale: evidence from undergraduate students in seven countries. Journal of Political Ideologies, 1–23. https://doi.org/10.1080/13569317.2021.2003974
  328. Schwab S, Janiaud P, Dayan M, Amrhein V, Panczak R, Palagi PM, Hemkens LG, Ramon M, Rothen N, Senn S, Furrer E, Held L. (2021): Ten simple rules for good research practice. https://doi.org/10.31219/osf.io/am5ck
  329. Schlögl M, Käch I, Beeler PE, Pape HC, Neuhaus V. (2021): Trauma patients with hypokalemia have an increased risk of morbidity and mortality. Elsevier. https://doi.org/10.5167/UZH-209784
  330. Yeo S. (2021): Null hypothesis significance testing in special education research: Problems and solutions. Special Education Research, 20(3):33–53. https://doi.org/10.18541/ser.2021.08.20.3.33
  331. Bilén D, Dreber A, Johannesson M. (2021): Are women more generous than men? A meta-analysis. Journal of the Economic Science Association, 7(1):1–18. https://doi.org/10.1007/s40881-021-00105-9
  332. Alteio LV, Séneca J, Canarini A, Angel R, Jansa J, Guseva K, Kaiser C, Richter A, Schmidt H. (2021): A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biology & Biochemistry, 160, 108357. https://doi.org/10.1016/j.soilbio.2021.108357
  333. Li C, Teixeira H, Tanna N, Zheng Z, Chen SHY, Zou M, Chung CH. (2021): The reliability of two- and three-dimensional cephalometric measurements: A CBCT study. Diagnostics (Basel, Switzerland), 11(12):2292. https://doi.org/10.3390/diagnostics11122292
  334. Andrews CW, Vries MS. de. (2021): The experimental method in Public Administration: lessons from replication in Psychology. Revista de Administração Pública, 55(5):1017–1033. https://doi.org/10.1590/0034-761220200746
  335. Determining the sample size. (2021). In Statistical Issues in Drug Development (pp. 241–264). Wiley. https://doi.org/10.1002/9781119238614.ch13
  336. Gutiérrez-Hernández O, García LV. (2021): Multiplicity eludes peer review: The case of COVID-19 research. International Journal of Environmental Research and Public Health, 18(17):9304. https://doi.org/10.3390/ijerph18179304
  337. Teah GE, Conner TS. (2021): Psychological and demographic predictors of vaping and vaping susceptibility in young adults. Frontiers in Psychology, 12, 659206. https://doi.org/10.3389/fpsyg.2021.659206
  338. Salmela-Aro K, Upadyaya K, Vinni-Laakso J, Hietajärvi L. (2021): Adolescents’ longitudinal school engagement and burnout before and during COVID-19-the role of Socio-emotional skills. Journal of Research on Adolescence: The Official Journal of the Society for Research on Adolescence, 31(3):796–807. https://doi.org/10.1111/jora.12654
  339. Wagenmakers EJ, Sarafoglou A, Aarts S, Albers C, Algermissen J, Bahník Š, van Dongen N, Hoekstra R, Moreau D, van Ravenzwaaij D, Sluga A, Stanke F, Tendeiro J, & Aczel B. (2021): Seven steps toward more transparency in statistical practice. Nature Human Behaviour, 5(11):1473–1480. https://doi.org/10.1038/s41562-021-01211-8
  340. Clements AJ, Kinman G. (2021): Job demands, organizational justice, and emotional exhaustion in prison officers. Criminal Justice Studies (Abingdon, England), 34(4):441–458. https://doi.org/10.1080/1478601x.2021.1999114
  341. Olefir V, Bosniuk V. (2021): Calculation of the sample size as the cornerstone of planning scientific research. Lviv University Herald. Series: Psychological Sciences, 9:186–195. https://doi.org/10.30970/ps.2021.9.24
  342. Murphy BA, Lilienfeld SO. (2021): C. S. peirce’s forgotten but enduring relevance to psychological science. The American Journal of Psychology, 134(3):347–361. https://doi.org/10.5406/amerjpsyc.134.3.0347
  343. Rachev NR, Han H, Lacko D, Gelpí R, Yamada Y, Lieberoth A. (2021): Replicating the Disease framing problem during the 2020 COVID-19 pandemic: A study of stress, worry, trust, and choice under risk. PloS One, 16(9), e0257151. https://doi.org/10.1371/journal.pone.0257151
  344. Semenyna SW, Gómez Jiménez FR, Vasey PL. (2021): Testing Women’s Trust in Other Women and Same-Sex Attracted Males in Three Cultures. In Archives of Sexual Behavior 50(8):3479–3488. Springer Science and Business Media LLC. https://doi.org/10.1007/s10508-021-02139-w
  345. Gilan D, Müssig M, Hahad O, Kunzler AM, Samstag S, Röthke N, Thrul J, Kreuter F, Bosnjak M, Sprengholz P, Betsch C, Wollschläger D, Tüscher O, Lieb K. (2021): Protective and risk factors for mental distress and its impact on health-protective behaviors during the SARS-CoV-2 pandemic between March 2020 and March 2021 in Germany. International Journal of Environmental Research and Public Health, 18(17), 9167. https://doi.org/10.3390/ijerph18179167
  346. Laccourreye O, Jankowski R, Lisan Q. (2021): Maîtriser les statistiques descriptives utilisées en otorhinolaryngologie. Annales françaises d Oto-rhino-laryngologie et de Pathologie Cervico-faciale, 138(5):390–393. https://doi.org/10.1016/j.aforl.2020.09.006
  347. Böschen I. (2021): Evaluation of JATSdecoder as an automated text extraction tool for statistical results in scientific reports. Scientific Reports, 11(1), 19525. https://doi.org/10.1038/s41598-021-98782-3
  348. Tchoualeu DD, Harvey B, Nyaku M, Opare J, Traicoff D, Bonsu G, Quaye P, Sandhu HS. (2021):Evaluation of the impact of immunization second year of life training interventions on health care workers in Ghana. Global Health, Science and Practice, 9(3):498–507. https://doi.org/10.9745/GHSP-D-21-00091
  349. Agapito G, Cannataro M. (2021): Using BioPAX-Parser (BiP) to enrich lists of genes or proteins with pathway data. BMC Bioinformatics, 22(13), 376. https://doi.org/10.1186/s12859-021-04297-z
  350. Ives AR, Zhu L, Wang F, Zhu J, Morrow CJ, Radeloff VC. (2021): Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment, 266, 112678. https://doi.org/10.1016/j.rse.2021.112678
  351. Puhl RM, Lessard LM, Pearl RL, Grupski A, Foster GD. (2021): Policies to address weight discrimination and bullying: Perspectives of adults engaged in weight management from six nations. Obesity (Silver Spring, Md.), 29(11):1787–1798. https://doi.org/10.1002/oby.23275
  352. Salerno JM, Campbell JC, Phalen HJ, Bean SR, Hans VP, Spivack D, Ross L. (2021): The impact of minimal versus extended voir dire and judicial rehabilitation on mock jurors’ decisions in civil cases. Law and Human Behavior, 45(4):336–355. https://doi.org/10.1037/lhb0000455
  353. Vasishth S, Gelman A. (2021): How to embrace variation and accept uncertainty in linguistic and psycholinguistic data analysis. Linguistics. doi:10.1515/ling-2019-0051
  354. Kellner R, Rösch D. (2021): A Bayesian Re-Interpretation of “significant2 empirical financial research. Finance Research Letters. doi:10.1016/j.frl.2019.101402
  355. Viganola D, Buckles G, Chen Y, Diego-Rosell P, Johannesson M, Nosek BA, Pfeiffer T, Siegel A, Dreber A. (2021): Using prediction markets to predict the outcomes in the Defense Advanced Research Projects Agency’s next-generation social science programme. R Soc open sci. doi:10.1098/rsos.181308
  356. Huber C, Huber J, Kirchler M. (2021): Market shocks and professionals’ investment behavior – Evidence from the COVID-19 crash. Journal of Banking & Finance 33:106247. Elsevier BV. doi:10.1016/j.jbankfin.2021.106247
  357. Kelter R. (2021): How to Choose between Different Bayesian Posterior Indices for Hypothesis Testing in Practice. Multivariate Behavioral Research. doi:10.1080/00273171.2021.1967716
  358. Statistical Inference: The Missing Piece of RecSys Experiment Reliability Discourse, Ngozi Ihemelandu , Michael D. Ekstrand
  359. Biswas RK, Rahman N, Islam H, Senserrick T, Bhowmik J. (2021): Exposure of mobile phones and mass media in maternal health services use in developing nations: evidence from Urban Health Survey 2013 of Bangladesh. Contemporary South Asia 29(3):460-473. doi:10.1080/09584935.2020.1770698
  360. Schmid NA, Limère V, Raa B. (2021): Mixed model assembly line feeding with discrete location assignments and variable station space. Omega 102:102286. doi:10.1016/j.omega.2020.102286
  361. Tahamont S, Jelveh Z, Chalfin A, et al. (2021): Dude, Where’s My Treatment Effect? Errors in Administrative Data Linking and the Destruction of Statistical Power in Randomized Experiments. J Quant Criminol 37:715-749. doi:10.1007/s10940-020-09461-x
  362. Kelter R. (2021): fbst: An R package for the Full Bayesian Significance Test for testing a sharp null hypothesis against its alternative via the e value. Behav Res. doi:10.3758/s13428-021-01613-6
  363. Bickel DR. (2021): Null Hypothesis Significance Testing Defended and Calibrated by Bayesian Model Checking. The American Statistician 75(3):249-255, doi:10.1080/00031305.2019.1699443
  364. De Capitani L, De Martini D. (2021): Improving reproducibility probability estimation and preserving RP-testing. Stat Methods Appl 30:49-77. doi.org/10.1007/s10260-020-00513-x
  365. Mansur M, Afiaz A, Hossain MS. (2021): Sociodemographic risk factors of under-five stunting in Bangladesh: Assessing the role of interactions using a machine learning method. PloS One, 16(8), e0256729. https://doi.org/10.1371/journal.pone.0256729
  366. Salcedo LF, LeBlanc BL, Martin SM, Nossaman BD. (2021): Preoperative Administration of Hycet Elixir Reduces Hospital Length of Stay After Pediatric Outpatient Adeno/Tonsillectomy. In Ochsner Journal. 21(3):240–244. Ochsner Journal. https://doi.org/10.31486/toj.20.0101
  367. Kline B. (2021): Bayes Factors Based on p-Values and Sets of Priors With Restricted Strength. The American Statistician 1-11. Informa UK Limited. doi:10.1080/00031305.2021.1877815
  368. Hoffmann S, Schönbrodt F, Elsas R, Wilson R, Strasser U, Boulesteix A-L. (2021): The multiplicity of analysis strategies jeopardizes replicability: lessons learned across disciplines. Royal Society Open Science8(4). The Royal Society. doi:10.1098/rsos.201925
  369. Ziermans TB, Schirmbeck F, Oosterwijk F, Geurts HM, de Haan L, Genetic Risk and Outcome of Psychosis (GROUP) Investigator.s (2021): Autistic traits in psychotic disorders: prevalence, familial risk, and impact on social functioning. Psychological Medicine 51:1704-1713. doi:10.1017/ S0033291720000458
  370. Williams AJ, Botanov Y, Kilshaw RE, Wong RE, Sakaluk JK. (2021): Potentially harmful therapies: A meta-scientific review of evidential value. Clinical Psychology: Science and Practice 28(1):5-18. American Psychological Association (APA). doi:10.1111/cpsp.12331
  371. Vexler A. (2021): Valid p-values and expectations of p-values revisited. Ann Inst Stat Math 73:227-248. doi:10.1007/s10463-020-00747-2
  372. Nichols R, Slingerland E, Nielbo KL, Kirby P, Logan C. (2021): Supernatural agents and prosociality in historical China: micro-modeling the cultural evolution of gods and morality in textual corpora. Religion, Brain & Behavior 11(1):46-64. doi:10.1080/2153599X.2020.1742778
  373. Bazilinskyy P, Kooijman L, Dodou D, de Winter JCF. (2021): How should external human-machine interfaces behave? Examining the effects of colour, position, message, activation distance, vehicle yielding, and visual distraction among 1,434 participants. Applied Ergonomics 95:103450. Elsevier BV. doi:10.1016/j.apergo.2021.103450
  374. van Ravenzwaaij D, Etz A. (2021): Simulation Studies as a Tool to Understand Bayes Factors. Advances in Methods and Practices in Psychological Science 4(1):251524592097262. SAGE Publications. doi:10.1177/2515245920972624
  375. Ramsey R. (2021): A Call for Greater Modesty in Psychology and Cognitive Neuroscience. Collabra: Psychology 7(1). University of California Press. doi:10.1525/collabra.24091
  376. Bertolino F, Manca M, Musio M, Racugno W, Ventura L. (2021): A new Bayesian discrepancy measure. arXiv. doi:10.48550/ARXIV.2105.13716
  377. Klement RJ, Koebrunner PS, Meyer D, Kanzler S, Sweeney RA. (2021): Impact of a ketogenic diet intervention during radiotherapy on body composition: IV. Final results of the KETOCOMP study for rectal cancer patients. Clinical Nutrition 40(7):4674-4684. doi:10.1016/j.clnu.2021.05.015
  378. Puhl RM, Lessard LM, Himmelstein MS, Foster GD. (2021): The roles of experienced and internalized weight stigma in healthcare experiences: Perspectives of adults engaged in weight management across six countries. PLoS ONE. doi:10.1371/journal.pone.0251566
  379. Puhl RM, Lessard LM, Pearl RL, et al. (2021): International comparisons of weight stigma: addressing a void in the field. Int J Obes 45:1976-1985. doi:10.1038/s41366-021-00860-z
  380. Simões JCDR. (2021): A importância do CRM e o seu impacto no relacionamento com os clients. Doctoral dissertation, Instituto Politacnico de Coimbra.
  381. Wan S, Liang X, Jiang H, Sun J, Djilali N, Zhao T. (2021): A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries. Applied Energy 298:117177.doi:10.1016/j.apenergy.2021.117177
  382. Riffo-Campos AL, Ayala G, Domingo J. (2021): Ordering of Omics Features Using Beta Distributions on Montecarlo p-Values. Mathematics 9(11):1307. doi:10.3390/math9111307
  383. Squazzoni F, Bravo G, Grimaldo F, García-Costa D, Farjam M, Mehmani B (2021): Gender gap in journal submissions and peer review during the first wave of the COVID-19 pandemic. A study on 2329 Elsevier journals.PloS One, 16(10), e0257919. https://doi.org/10.1371/journal.pone.0257919
  384. Voisin S, Jacques M, Landen S, Harvey NR, Haupt LM, Griffiths LR, Gancheva S, Ouni M, Jähnert M, Ashton KJ, Coffey VG, Thompson JM, Doering TM, Gabory A, Junien C, Caiazzo R, Verkindt H, Raverdy V, Pattou F, Froguel P, Craig JM, Blocquiaux S, Thomis M, Sharples AP, Schürmann A, Roden M, Horvath S, Eynon N. (2021): Meta-analysis of genome-wide DNA methylation and integrative omics of age in human skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle 12(4):1064-1078. doi:10.1002/jcsm.12741
  385. Wu Y, Schunn CD. (2021): From plans to actions: A process model for why feedback features influence feedback implementation. Instr Sci 49:365-394. doi:10.1007/s11251-021-09546-5
  386. Bruno AM, Shea AE, Einerson BD, Metz TD, Allshouse AA, Scott JR, Blue NR. (2021): Impact of the p-Value Threshold on Interpretation of Trial Outcomes in Obstetrics and Gynecology. Am J Perinatol38(12):1223-1230. doi:10.1055/s-0041-1731345
  387. Janiaud P, Agarwal A, Tzoulaki I, et al. (2021): Validity of observational evidence on putative risk and protective factors: appraisal of 3744 meta-analyses on 57 topics. BMC Med 19:157. doi:10.1186/s12916-021-02020-6
  388. Rubin M. (2021): When to adjust alpha during multiple testing: a consideration of disjunction, conjunction, and individual testing. Synthese 199:10969-11000. doi:10.1007/s11229-021-03276-4
  389. Tzavella L, Lawrence NS, Button KS, Hart EA, Holmes NM, Houghton K, Badkar N, et al. (2021): Effects of go/no-go training on food-related action tendencies, liking and choice.Royal Society Open Science, 8(8), 210666. https://doi.org/10.1098/rsos.210666
  390. Barclay K, Hällsten M. (2021): Does the impact of parental death vary by parental socioeconomic status? A study of children’s educational and occupational attainment. J of Marriage and Family 84(1):141-164. doi:10.1111/jomf.12786
  391. Semenyna SW, Gómez Jiménez FR, Vasey PL. (2021): Women’s Reaction to Opposite- and Same-Sex Infidelity in Three Cultures. Hum Nat 32:450-469. doi:10.1007/s12110-021-09405-9
  392. Everett JAC, Colombatto C, Awad E, et al. (2021): Moral dilemmas and trust in leaders during a global health crisis. Nat Hum Behav 5:1074-1088. doi:10.1038/s41562-021-01156-y
  393. Kemp AH, Fisher Z. (2021): Application of Single-Case Research Designs in Undergraduate Student Reports: An Example From Wellbeing Science. Teaching of Psychology. doi:10.1177/00986283211029929
  394. McDonald MM, James RM, Roberto DP. (2021): True Crime Consumption as Defensive Vigilance: Psychological Mechanisms of a Rape Avoidance System. Arch Sex Behav50:2085-2108. doi:10.1007/s10508-021-01990-1
  395. Stahel WA. (2021): New relevance and significance measures to replace p-values. PLoS ONE. doi:10.1371/journal.pone.0252991
  396. Errington TM, Mathur M, Soderberg CK, Denis A, Perfito N, Iorns E, Nosek BA. (2021): Investigating the replicability of preclinical cancer biology. ELife, 10. https://doi.org/10.7554/eLife.71601
  397. Lieberoth A, Lin SY, Stöckli S, Han H, Kowal M, Gelpi R, et al. (2021): Stress and worry in the 2020 coronavirus pandemic: relationships to trust and compliance with preventive measures across 48 countries in the COVIDiSTRESS global survey. Royal Society Open Science 8(2):200589. doi:10.1098/rsos.200589
  398. Turna J, Belisario K, Balodis I, Van Ameringen M, Busse J, MacKillop J. (2021): Cannabis use and misuse in the year following recreational cannabis legalization in Canada: A longitudinal observational cohort study of community adults in Ontario. Drug and Alcohol Dependence 225:108781. doi:10.1016/j.drugalcdep.2021.108781
  399. Gurkan G, Benjamini Y, Braun H. (2021): Defensible inferences from a nested sequence of logistic regressions: a guide for the perplexed. Large-scale Assess Educ 9:16. doi:10.1186/s40536-021-00111-7
  400. Krpan D. (2021): (When) should psychology be a science? J Theory Soc Behav 52(1):183-198. doi:10.1111/jtsb.12316
  401. Griesbach C, Groll A, Bergherr E. (2021): Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques. PLoS ONE. doi:10.1371/journal.pone.0254178
  402. Sikavi DR, Nguyen LH, Haruki K, Ugai T, Ma W, Wang DD, Thompson KN, Yan Y, Branck T, Wilkinson JE, Akimoto N, Zhong R, Lau MC, Mima K, Kosumi K, Morikawa T, Rimm EB, Garrett WS, Izard J, Cao Y, Song M, Huttenhower C, Ogino S, Chan AT. (2021): The Sulfur Microbial Diet and Risk of Colorectal Cancer by Molecular Subtypes and Intratumoral Microbial Species in Adult Men. Clinical and Translational Gastroenterology 12(8):e00338. doi:10.14309/ctg.0000000000000338
  403. Fasola S, Cilluffo G, Montalbano L, Malizia V, Ferrante G, La Grutta SA. (2021): Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests. Genes 12:933. doi:10.3390/ genes12060933
  404. Jirkof P, Potschka H. (2021): Effects of untreated pain, anesthesia, and analgesia in animal experimentation. In Experimental Design and Reproducibility in Preclinical Animal Studies. 105–126. Springer International Publishing.
  405. Speicher N. (2021): The Public Communication of Researchers Using CRISPR: Where Frequency Meets form. North Carolina State University.
  406. Fritz BA, King CR, Mickle AM, Wildes TS, Budelier TP, Oberhaus J, Kronzer A, et al. (2021): Effect of electroencephalogram-guided anaesthesia administration on 1-yr mortality: follow-up of a randomised clinical trial. British Journal of Anaesthesia 127(3):386-395. doi:10.1016/j.bja.2021.04.036
  407. Ramí­rez-Vélez R, López-Gil JF, de Asteasu MLS, et al. (2021): Handgrip strength as a moderator of the influence of age on olfactory impairment in US adult population ≥  40 years of age. Sci Rep 11:14085. doi:10.1038/s41598-021-93355-w
  408. Estafanos S. (2021): Maintaining the Carbohydrate-Energy Deficit Following High-Intensity Interval Exercise Improves Next-Day Glycemic Control in Women. Masters thesis, University of Toronto (Canada).
  409. Méndez EMI, Pérez GML. (2021): Overview on the opinion of changing the standard p-value from 0.05 to 0.005 throughout the academic disciplines. Revista [IN] Genios 7(2):1-10.
  410. Ullrich M, Strong DS. (2021): EXPLORING STUDENTS’ INTERPRETATIONS OF SUCCESS: A RESEARCH INSTRUMENT. Proceedings of the Canadian Engineering Education Association (CEEA) 145.
  411. Barrafrem K, Västfjäll D, Tinghög G. (2021): The arithmetic of outcome editing in financial and social domains. Journal of Economic Psychology 86:102408. doi:10.1016/j.joep.2021.102408
  412. Karlovich MW, Wallisch P. (2021): Scintillating Starbursts: Concentric Star Polygons Induce Illusory ray Patterns. i-Perception 12(3):1-17. doi:10.1177/20416695211018720
  413. Priilaid D, Hall D. (2021): Price preferences reveal asymmetric price effect – A preliminary study. Journal of Sensory Studies 36(4). doi:10.1111/joss.12665
  414. Shen C, Ferro EG, Xu H, Kramer DB, Patell R, Kazi DS. (2021): Underperformance of Contemporary Phase III Oncology Trials and Strategies for Improvement. Journal of the National Comprehensive Cancer Network 19(9). doi:10.6004/jnccn.2020.7690
  415. Logg JM, Dorison CA. (2021): Pre-registration: Weighing costs and benefits for researchers. Organizational Behavior and Human Decision Processes 167:18-27. doi:10.1016/j.obhdp.2021.05.006
  416. Heirene RM, Vanichkina DP, Gainsbury SM. (2021): Patterns and correlates of consumer protection tool use by Australian online gambling customers. Psychology of Addictive Behaviors 35(8):974-984. doi:10.1037/adb0000761
  417. Lombardo MV, Busuoli EM, Schreibman L, et al. (2021): Pre-treatment clinical and gene expression patterns predict developmental change in early intervention in autism. Mol Psychiatry26:7641-7651. doi:10.1038/s41380-021-01239-2
  418. Meshi D, Freestone D, Özdem-Mertens C. (2021): Problematic social media use is associated with the evaluation of both risk and ambiguity during decision making. JBA 10(3):779-787. doi:10.1556/2006.2021.00047
  419. Imbens GW. (2021): Statistical Significance, p-Values, and the Reporting of Uncertainty. Journal of Economic Perspectives 35(3):157-74. doi:10.1257/jep.35.3.157
  420. Abuzandah S, Alshehre R. (2021): Significance of Scientific Research in the Educational System. Asian Journal of Sociological Research 5(2):9-12.
  421. Khorozyan I. (2021): Defining practical and robust study designs for interventions targeted at terrestrial mammalian predators. Conservation Biology 36(2):e13805. doi:10.1111/cobi.13805
  422. Ugai T, Vayrynen JP, Haruki K, Akimoto N, Lau MC, Zhong R, Kishikawa J, Vayrynen SA, Zhao M, Fujiyoshi K, Dias Costa A, Borowsky J, Arima K, Guerriero JL, Fuchs CS, Zhang X, Song M, Wang M, Giannakis M, Meyerhardt JA, Nowak JA, Ogino S. (2021): Smoking and Incidence of Colorectal Cancer Subclassified by Tumor-Associated Macrophage Infiltrates. JNCI: Journal of the National Cancer Institute 114(1):68-77. doi:10.1093/jnci/djab142
  423. Quan-Hoang V, Viet-Phuong L, Trung T, Minh-Hoang N, Manh-Toan H. (2021): Gọi tên “giá trị văn hóa thứ 11”.
  424. Dreher RT, Hoffmann L, Kramer-Sunderbrink A, Pütz P, Werner R. (2021): A Proposed Hybrid Effect Size Plus p-Value Criterion: A Comment on Goodman et al. (2019). arXiv. doi:10.48550/ARXIV.2107.08860
  425. Heirene RM, Wang A, Gainsbury SM. (2021): Accuracy of self-reported gambling frequency and outcomes: Comparisons with account data. Psychology of Addictive Behaviors. Advance online publication. doi:10.1037/adb0000792
  426. Garcia Guerra G, Joffe AR, Sheppard C, et al. (2021): Music Use for Sedation in Critically ill Children (MUSiCC trial): a pilot randomized controlled trial. j intensive care 9(7). doi:10.1186/s40560-020-00523-7
  427. Laccourreye O, Fakhry N, Franco-Vidal V, Jankowski R, Karkas A, Leboulanger N, Makeief M, Malard O, Michel J, Righini C, Rumeau C, Vincent C, Lisan Q. (2021): Les statistiques des articles scientifiques publié dans les European Annals of Otorhinolaryngology Head & Neck Diseases. Annales francaises d‘Oto-rhino-laryngologie et de Pathologie Cervico-faciale 138(2):98-102. Elsevier BV. doi:10.1016/j.aforl.2020.05.013
  428. Romero F, Sprenger J. (2021): Scientific self-correction: the Bayesian way. Synthese 198:5803-5823. doi:10.1007/s11229-020-02697-x
  429. Kißler C, Schwenk C, Kuhn J-T. (2021): Zur Additivität kognitiver Defizitprofile bei komorbiden Lernstörungen. Lernen und Lernstörungen 10(2):89-101. Hogrefe Publishing Group. doi:10.1024/2235-0977/a000310
  430. Botzet LJ, Rohrer JM, Arslan RC. (2021): Analysing effects of birth order on intelligence, educational attainment, big five and risk aversion in an Indonesian sample. European Journal of Personality 35(2):234-248. doi:10.1002/per.2285
  431. Zhong J, Wang D, Li C. (2021): A nonparametric health index and its statistical threshold for machine condition monitoring. Measurement 167:108290. Elsevier BV. doi:10.1016/j.measurement.2020.108290
  432. Alister M, Vickers-Jones R, Sewell DK, Ballard T. (2021): How Do We Choose Our Giants? Perceptions of Replicability in Psychological Science. Advances in Methods and Practices in Psychological Science. doi:10.1177/25152459211018199
  433. Kaplan J, Chalfin A. (2021): Ambient lighting, use of outdoor spaces and perceptions of public safety: evidence from a survey experiment. Secur J. doi:10.1057/s41284-021-00296-0
  434. Albert G, Richardson GB, Arnocky S, et al. (2021): The Development and Psychometric Evaluation of a New Mating Effort Questionnaire. Arch Sex Behav 50:511-530. doi:10.1007/s10508-020-01799-4
  435. Lantian A. (2021): Les pratiques de recherche ouvertes en psychologie. Psychologie Française 66(1):71-90. Elsevier BV. doi:10.1016/j.psfr.2020.09.001
  436. Götz FM, Gvirtz A, Galinsky AD, Jachimowicz JM. (2021): How personality and policy predict pandemic behavior: Understanding sheltering-in-place in 55 countries at the onset of COVID-19. American Psychologist 76(1):39-49. doi:10.1037/amp0000740
  437. Zhang J, Zheng L, Zhang S, Xu W, Zheng Y. (2021): Vocal characteristics predict infidelity intention and relationship commitment in men but not in women. Personality and Individual Differences 168:110389. doi:10.1016/j.paid.2020.110389
  438. Roden-Foreman JW, Rapier NR, Foreman ML, Cribari C, Parsons M, Zagel AL, Cull J, Coniglio RA, McGraw C, Blackmore AR, Lyell CA, Adams CA Jr, Lueckel SN, Regner JL, Holzmacher J, Sarani B, Sexton KW, Beck WC, Milia DJ, et al. (2021): Avoiding Cribari gridlock 2: The standardized triage assessment tool outperforms the Cribari matrix method in 38 adult and pediatric trauma centers. Injury 52(3):443-449. Elsevier BV. doi:10.1016/j.injury.2020.09.027
  439. Zwet EW, Cator EA. (2021): The significance filter, the winner’s curse and the need to shrink. Statistica Neerlandica 75(4):437-452. Wiley. doi:10.1111/stan.12241
  440. Kang YS, Kwon HJ, Stammen J, et al. (2021): Biomechanical Response Targets of Adult Human Ribs in Frontal Impacts. Ann Biomed Eng 49:900-911. doi:10.1007/s10439-020-02613-x
  441. Willer D, Emanuelson P. (2021): Theory and the Replication Problem. Sociological Methodology. 51(1):146-165. doi:10.1177/0081175020955216
  442. Azarian C, Foster S, Devloo-Delva F, Feutry P. (2021): Population differentiation from environmental DNA: Investigating the potential of haplotype presence/ absence-based analysis of molecular variance. Environmental DNA 3:541-552. doi:10.1002/edn3.143
  443. Batailler C, Muller D, Nurra C, Rougier M, Trouilloud D. (2021): Math approach training changes implicit identification with math: A close preregistered replication. Journal of Experimental Social Psychology 92:104059. doi:10.1016/j.jesp.2020.104059
  444. Hoffman G, Zhao X. (2021): A Primer for Conducting Experiments in Human-Robot Interaction. ACM Transactions on Human-Robot Interaction 10(1):1-31. doi:10.1145/3412374
  445. Tenney ER, Costa E, Allard A, Vazire S. (2021): Open science and reform practices in organizational behavior research over time (2011 to 2019). Organizational Behavior and Human Decision Processes 162:218-223. doi:10.1016/j.obhdp.2020.10.015
  446. Perez-Ruixo C, Rossenu S, Zannikos P, et al. (2021): Population Pharmacokinetics of Esketamine Nasal Spray and its Metabolite Noresketamine in Healthy Subjects and Patients with Treatment-Resistant Depression. Clin Pharmacokinet 60:501-516. doi:10.1007/s40262-020-00953-4
  447. Fang Z, He M, Song M. (2021): Serum lipid profiles and risk of colorectal cancer: a prospective cohort study in the UK Biobank. Br J Cancer 124:663-670. doi:10.1038/s41416-020-01143-6
  448. Tsigaris P, Teixeira da Silva JA. (2021): Why blacklists are not reliable: A theoretical framework. The Journal of Academic Librarianship 47(1):102266. doi:10.1016/j.acalib.2020.102266
  449. Linde M, Tendeiro JN, Selker R, Wagenmakers E-J, van Ravenzwaaij D. (2021): Decisions about equivalence: A comparison of TOST, HDI-ROPE, and the Bayes factor. Psychological Methods. Advance online publication. doi.10.1037/met0000402
  450. Cimci M, Witassek F, Radovanovic D, Rickli H, Pedrazzini GB, Erne P, Müller O, Eberli FR, Roffi M. (2021): Temporal trends in cardiovascular risk factors’ prevalence in patients with myocardial infarction. Eur J Clin Invest 51(4):e13466. doi:10.1111/eci.13466
  451. Strickland L, Heathcote A, Humphreys MS, Loft S. (2021): Target learning in event-based prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi:10.1037/xlm0000900
  452. Ganz M, Nørgaard M, Beliveau V, Svarer C, Knudsen GM, Greve DN. (2021): False positive rates in positron emission tomography (PET) voxelwise analyses. Journal of Cerebral Blood Flow & Metabolism 41(7):1647-1657. doi:10.1177/0271678X20974961
  453. Tierney W, Hardy J III, Ebersole CR, Viganola D, Clemente EG, Gordon M, Hoogeveen S, Haaf J, Dreber A, Johannesson M, Pfeiffer T, Huang JL, Vaughn LA, DeMarree K, Igou ER, Chapman H, Gantman A, Vanaman M, Wylie J, Storbeck J, Andreychik MR, McPhetres J, Uhlmann EL. (2021): A creative destruction approach to replication: Implicit work and sex morality across cultures. Journal of Experimental Social Psychology 93(104060). doi:10.1016/j.jesp.2020.104060
  454. Libman A, Obydenkova AV. (2021): Historical legacies of communism: Modern politics, society, and economic development. Cambridge University Press.
  455. Grahek I, Schaller M, Tackett JL. (2021): Anatomy of a Psychological Theory: Integrating Construct-Validation and Computational-Modeling Methods to Advance Theorizing. Perspect Psychol Sci. doi:10.1177/1745691620966794
  456. van der Lee C, Gatt A, van Miltenburg E, Krahmer E. (2021): Human evaluation of automatically generated text: Current trends and best practice guidelines. Computer Speech & Language. doi:10.1016/j.csl.2020.101151
  457. Brophy JM. (2021): Key Issues in the Statistical Interpretation of Randomized Clinical Trials. Canadian Journal of Cardiology 37(9):1312-1321. doi:10.1016/j.cjca.2020.12.014
  458. Evans S, Anderson JM, Johnson AL, Checketts JX, Scott J, Middlemist K, Fishbeck K, Vassar M. (2021): The Potential Effect of Lowering the Threshold of Statistical Significance From P < .05 to P < .005 in Orthopaedic Sports Medicine. Arthroscopy: The Journal of Arthroscopic & Related Surgery 37(4):1068-1074. doi:10.1016/j.arthro.2020.11.041
  459. Ighalo JO, Igwegbe CA, Adeniyi AG, Abdulkareem SA. (2021): Artificial Neural Network Modeling of the Water Absorption Behavior of Plantain Peel and Bamboo Fibers Reinforced Polystyrene Composites. Journal of Macromolecular Science Part B 60(7):472-484. doi:10.1080/00222348.2020.1866282
  460. Fritsch A, Lenggenhager B, Bekrater-Bodmann R. (2021): Prosthesis embodiment and attenuation of prosthetic touch in upper limb amputees – A proof-of-concept study. Consciousness and Cognition88:103073.
  461. Limbachia C, Morrow K, Khibovska A, et al. (2021): Controllability over stressor decreases responses in key threat-related brain areas. Commun Biol 4:42. doi:10.1038/s42003-020-01537-5
  462. Fletcher SC. (2021): The role of replication in psychological science. Euro Jnl Phil Sci 11:23. doi:10.1007/s13194-020-00329-2
  463. Fossen FM, Neyse L, Johannesson M, Dreber A. (2021): 2D:4D and Self-Employment: A Preregistered Replication Study in a Large General Population Sample. Entrepreneurship Theory and Practice. doi:10.1177/1042258720985478
  464. Zhang J, Zhang L. (2021): Masculine Voices Predict Attachment Style and Relationship Communication Patterns in Romantic Relationships. Journal of Sex & Marital Therapy. doi:10.1080/0092623x.2020.1869125
  465. Cicconardi F, Lewis JJ, Martin SH, Reed RD, Danko CG, Montgomery SH. (2021): The effects of chromosome fusions on genetic diversity and evolutionary turnover of functional loci consistently depends on chromosome size. bioRxiv. doi:10.1101/2021.01.06.425547
  466. Álvarez-Muelas A, Gómez-Berrocal C, Sierra JC. (2021): Study of Sexual Satisfaction in Different Typologies of Adherence to the Sexual Double Standard. Front. Psychol. 11:609571. doi:10.3389/fpsyg.2020.609571
  467. Gulevich O, Krivoshchekov V, Sorokina A, Samekin A. (2021): Are Benevolent Attitudes More Closely Related to Attitudes toward Homosexuals than Hostile Ones? Cases of Belarus, Kazakhstan, and Russia. Journal of Homosexuality 69(5):796-820. doi:10.1080/00918369.2020.1855030
  468. Liao Y, Tang J, McNeill A, et al. (2021): Impact of cigarette package warnings on attitudes towards sharing and gifting cigarettes in China: a nationwide study of smokers and non-smokers. Tobacco Control. doi:10.1136/tobaccocontrol-2020-056160
  469. Petterson LJ, Vasey PL. (2021): Canadian undergraduate men’s visual attention to cisgender women, cisgender men, and feminine trans individuals. Sci Rep 11:388. doi:10.1038/s41598-020-79870-2
  470. Bae H, Kim SJ, Kim C-E. (2021): Lessons From Deep Neural Networks for Studying the Coding Principles of Biological Neural Networks. Front Syst Neurosci 14. doi:10.3389/fnsys.2020.615129
  471. Alice C, Tilling K, Munafo MR. (2021): Considerations of Sample Size and Power Calculations Given a Range of Analytical Scenarios. PsyArXiv. doi:10.31234/osf.io/tcqrn
  472. Mima K, Miyanari N, Kosumi K, et al. (2021): The efficacy of adjuvant chemotherapy for resected high-risk stage II and stage III colorectal cancer in frail patients. Int J Clin Oncol 26:903-912. doi:10.1007/s10147-021-01876-1
  473. Fuscone S, Favre B, Prévot L. (2021): Reproducibility in speech rate convergence experiments. Lang Resources & Evaluation 55:817-832. doi:10.1007/s10579-021-09528-6
  474. Hang D, He X, Kværner AS, et al. (2021): Plasma sex hormones and risk of conventional and serrated precursors of colorectal cancer in postmenopausal women. BMC Med 19:18. doi:10.1186/s12916-020-01895-1
  475. Walley RJ, Grieve AP. (2021): Optimising the trade-off between type I and II error rates in the Bayesian context. Pharmaceutical Statistics 20(4):710-720. doi:10.1002/pst.2102
  476. Hamasaki T, Bretz F, LaVange LM, Müller P, Pennello G, Pinheiro JC. (2021): Editorial: Roles of Hypothesis Testing, p-Values and Decision Making in Biopharmaceutical Research. Statistics in Biopharmaceutical Research 13(1):1-5, doi:10.1080/19466315.2021.1874803
  477. Praetzellis A. (2021): Archaeology of San Francisco Jews: Themes for the Study of Jewish Domestic Life. Int J Histor Archaeol 25:1024-1064. doi:10.1007/s10761-021-00589-5
  478. Ajdacic-Gross V, Ajdacic L, Xu Y, Müller M, Rodgers S, Wyss C, Olbrich S, Buadze A, Seifritz E, Wagner E-YN, Radovanovic D, von Wyl V, Steinemann N, Landolt MA, Castelao E, Strippoli M-PF, Gholamrezaee MM, Glaus J, Vandeleur C, Preisig M, von Känel R. (2021): Backtracing persistent biomarker shifts to the age of onset: A novel procedure applied to men‘s and women’s white blood cell counts in post-traumatic stress disorder. Biomarkers in Neuropsychiatry 4:100030. doi:10.1016/j.bionps.2021.100030
  479. Liebst LS, Ejbye-Ernst P, Bruin M, Thomas J, Lindegaard MR. (2021): Mask-wearing and social distancing: Evidence from a video-observational and natural-experimental study of public space behavior during the COVID-19 pandemic. doi:10.21203/rs.3.rs-311669/v1
  480. Sean M, Coulombe-Lévêque A, Vincenot M, Martel M, Gendron L, Marchand S, Léonard G. (2021): Transcutaneous electrical nerve stimulation (TENS): towards the development of a clinic-friendly method for the evaluation of excitatory and inhibitory pain mechanisms. Canadian Journal of Pain 5(1):56-65. doi:10.1080/24740527.2020.1862624
  481. Sadler M, Somo A,  Devos T. (2021): Would that it were so simple: Dimensions of context diversity differentially relate to four implicit interethnic associations. The Journal of Social Psychology 161(6):731-752. doi:10.1080/00224545.2020.1845594
  482. Liu C, Dong W, Xia L, Lv J, Jiang D, Wang Q, et al. (2021): Safety and tolerability of a humanized rabbit monoclonal antibody (SSS07) in healthy adults: Randomized double-blind placebo-controlled single ascending dose trial. International Immunopharmacology 91:107263. doi:10.1016/j.intimp.2020.107263
  483. Engzell P, Rohrer J. (2021): Improving Social Science: Lessons from the Open Science Movement. PS: Political Science & Politics 54(2):297-300. doi:10.1017/S1049096520000967
  484. Heffetz O. (2021): Are reference points merely lagged beliefs over probabilities? Journal of Economic Behavior & Organization 181:252-269. doi:10.1016/j.jebo.2020.11.010
  485. Awal MdA, Masud M, Hossain MdS, Bulbul AA-M, Mahmud SMH, Bairagi AK. (2021): A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data. IEEE Access 9:10263-10281. doi:10.1109/access.2021.3050852
  486. Lackner M, Sonnabend H. (2021): Coping with advantageous inequity-Field evidence from professional penalty kicking. Journal of Behavioral and Experimental Economics 91:101678. doi:10.1016/j.socec.2021.101678
  487. Mitre-Becerril D, Chalfin A. (2021): Testing public policy at the frontier: The effect of the $15 minimum wage on public safety in Seattle. Criminology & Public Policy 20(2):291-328. doi:10.1111/1745-9133.12539
  488. Semenyna SW, Vasey PL. (2021): Women’s trust in gay men: An experimental study. Personality and Individual Differences 175:110727. doi:10.1016/j.paid.2021.110727
  489. Wijaya D, DS JH, Barus S, Pasaribu B, Sirbu LI, Dharma A. (2021): Uplift modeling VS conventional predictive model: A reliable machine learning model to solve employee turnover. Int J Artif Intell Res 5(1). doi:10.29099/ijair.v4i2.169
  490. van Dongen NNN, van Grootel L. (2021): Overview on the Null Hypothesis Significance Test. PsyArXiv. doi:10.31234/osf.io/hwk4n
  491. Al-Muzian L, Almuzian M, Mohammed H, Ulhaq A, Keightley AJ. (2021): Are developmentally missing teeth a predictive risk marker of malignant diseases in non-syndromic individuals? A systematic review. Journal of Orthodontics 48(3):221-230. doi:10.1177/1465312520984166
  492. Weiss B, Jahn A, Hyatt CS, Owens MM, Carter NT, Sweet LH, Miller JD, and Haas BW. (2021): Investigating the neural substrates of Antagonistic Externalizing and social-cognitive Theory of Mind: an fMRI examination of functional activity and synchrony. Personality Neuroscience 4(e1):1-10. doi:10.1017/pen.2020.12
  493. Hu Z, Li F, Wang X, Lin Q. (2021): Description Length Guided Unified Granger Causality Analysis. IEEE Access. doi:10.1109/access.2021.3051985
  494. Verschuere B, De Schryver M, van den Bergh D, Wagenmakers E-J, Meijer E. (2021): Are dishonest politicians more likely to be reelected? A Bayesian view. Proc Natl Acad Sci USA 118(6):e2022718118. doi:10.1073/pnas.2022718118
  495. Smith JA, Muhling B, Sweeney J, Tommasi D, Pozo Buil M, Fiechter J, Jacox MG. (2021): The potential impact of a shifting Pacific sardine distribution on U.S. West Coast landings. Fish Oceanogr 30(4):437-454. doi:10.1111/fog.12529
  496. Liu Y, Liu X, Wang Y, Wang D, Ma P. (2021): Interpretation of Guidelines for controlling confounding factors and reporting results in causal inference studies. Zhonghua wei Zhong Bing ji jiu yi xue 33(1):113-116. doi:10.3760/cma.j.cn121430-20201127-00734
  497. Frias-Navarro D, Pascual-Soler M, Perezgonzalez J, Monterde-i-Bort H, Pascual-Llobell J. (2021): Spanish Scientists’ Opinion about Science and Researcher Behavior. The Spanish Journal of Psychology 24:E7. doi:10.1017/SJP.2020.59
  498. Bal VH, Wilkinson E, White LC, Law JK, Feliciano P, Chung WK. (2021): Early Pandemic Experiences of Autistic Adults: Predictors of Psychological Distress. Autism Research 14(6):1209-1219. doi:10.1002/aur.2480
  499. Chicco D, Jurman G (2021): An Ensemble Learning Approach for Enhanced Classification of Patients With Hepatitis and Cirrhosis. IEEE Access 9:24485-24498. doi:10.1109/ACCESS.2021.3057196
  500. Søndergaard HB, Airas L, Christensen JR, Nielsen BR, Börnsen L, Oturai A, Sellebjerg F (2021): Pregnancy-Induced Changes in microRNA Expression in Multiple Sclerosis. Front. Immunol. 11:552101. doi: 10.3389/fimmu.2020.552101
  501. Malhotra N. (2021): Threats to the Scientific Credibility of Experiments. In: Druckman J, Green DP, (eds.). Advances in Experimental Political Science. Cambridge University Press Kapitel 19:354-368. doi:10.1017/9781108777919
  502. Aguilar-Velázquez D. (2021): Critical Neural Networks Minimize Metabolic Cost. Physics 3:42-58. doi:10.3390/physics 3010005
  503. Kubsch M, Stamer I, Steiner M, Neumann K, Parchmann I. (2021): Beyond pvalues: Using Bayesian Data Analysis in Science Education Research. Practical Assessment, Research, and Evaluation 26(4). doi:10.7275/vzpw-ng13
  504. Chen Z, Boehnke M, Wen X, Mukherjee B. (2021): Revisiting the genome-wide significance threshold for common variant GWAS. G3 Genes|Genomes|Genetics 11(2). doi:10.1093/g3journal/jkaa056
  505. Christensen JD, Orquin JL, Perkovic S, Lagerkvist CJ. (2021): Preregistration is important, but not enough: Many statistical analyses can inflate the risk of false-positives. Center for Open Science. doi:10.31234/osf.io/cj3xq
  506. Lundberg P. (2021): Flagship species as fundraising tools:-their role in biodiversity conservation and in environmental philanthropic behavior. Doctoral dissertation, University of Helsinki.
  507. Bishara AJ, Li J, Conley C. (2021): Informal versus formal judgment of statistical models: The case of normality assumptions. Psychon Bull Rev 28:1164-1182. doi:10.3758/s13423-021-01879-z
  508. Urbig D, Bönte W, Schmutzler J, Curcio AFZ, Andonova V. (2021): Diverging associations of dimensions of competitiveness with gender and personality. Personality and Individual Differences 176:110775. doi:10.1016/j.paid.2021.110775
  509. Goto Y, Funada A, Maeda T, Goto Y. (2021): Time boundaries of the three-phase time-sensitive model for ventricular fibrillation cardiac arrest. Resuscitation Plus 6:100095. Elsevier BV. doi:10.1016/j.resplu.2021.100095
  510. Held L, Matthews R, Ott M, Pawel S. (2021): Reverse-Bayes methods for evidence assessment and research synthesis. Research Synthesis Methods 13(3):295-314. doi:10.1002/jrsm.1538
  511. Slob E. (2021): Integrating Genetics into Economics. Doctoral thesis, Erasmus University Rotterdam.
  512. Otte WM, Vinkers CH, Habets P, van IJzendoorn DGP, Tijdink JK. (2021): Almost significant: trends and P values in the use of phrases describing marginally significant results in 567,758 randomized controlled trials published between 1990 and 2020. Cold Spring Harbor Laboratory. doi:10.1101/2021.03.01.21252701
  513. Simon LS, Keshav V, Baharozian C, et al. (2021): Thrombospondin 1 polymorphism associated with decreased expression and increased risk of pterygium. Graefes Arch Clin Exp Ophthalmol259:2301-2307. doi:10.1007/s00417-021-05121-3
  514. Zhang M, Liu J, Zhang H, et al. (2021): CTA-Based Non-invasive Estimation of Pressure Gradients Across a CoA: a Validation Against Cardiac Catheterisation. J. of Cardiovasc. Trans. Res.14:873-882. doi:10.1007/s12265-020-10092-7
  515. Cieśliński I, Gierczuk D, Sadowski J. (2021): Identification of success factors in elite wrestlers-An exploratory study. PLoS ONE. doi:10.1371/journal.pone.0247565
  516. Sjoberg EA, Ramos S, López-Tolsa GE, Johansen EB, Pellón R. (2021): The irrelevancy of the inter-trial interval in delay-discounting experiments on an animal model of ADHD. Behavioural Brain Research408:113236. doi:10.1016/j.bbr.2021.113236
  517. Markun S, Gravestock I, Jäger L, Rosemann T, Pichierri G, Burgstaller JM. (2021): Effects of Vitamin B12 Supplementation on Cognitive Function, Depressive Symptoms, and Fatigue: A Systematic Review, Meta-Analysis, and Meta-Regression. Nutrients 13:923. doi:10.3390/nu13030923
  518. Schimmack U. (2021): Invalid Claims About the Validity of Implicit Association Tests by Prisoners of the Implicit Social-Cognition Paradigm. Perspectives on Psychological Science 16(2):435-442. doi:10.1177/1745691621991860
  519. Strømland E. (2021): Making our “meta-hypotheses” clear: heterogeneity and the role of direct replications in science. Euro Jnl Phil Sci 11:35. doi:10.1007/s13194-021-00348-7
  520. Machery E. (2021): A mistaken confidence in data. Euro Jnl Phil Sci 11:34. doi:10.1007/s13194-021-00354-9
  521. Pramanik S, Johnson VE, Bhattacharya A. (2021): A modified sequential probability ratio test. Journal of Mathematical Psychology 101:102505. doi:10.1016/j.jmp.2021.102505
  522. Li X, Celotto S, Pizzol D, Gasevic D, Ji M, Barnini T, Solmi M, Stubbs B, Smith L, López Sánchez GF, Pesolillo G, Yu Z, Tzoulaki I, Theodoratou E, Ioannidis JPA, Veronese N, Demurtas J. (2021): Metformin and health outcomes: An umbrella review of systematic reviews with meta-analyses. Eur J Clin Invest 51(7):e13536. doi:10.1111/eci.13536
  523. Hanin L. (2021): Cavalier Use of Inferential Statistics Is a Major Source of False and Irreproducible Scientific Findings. Mathematics 9:603. https://doi.org/10.3390/math9060603
  524. Sorenson SB, Sinko L, Berk RA. (2021): The Endemic Amid the Pandemic: Seeking Help for Violence Against Women in the Initial Phases of COVID-19. Journal of Interpersonal Violence 36(9-10):4899-4915. doi:10.1177/0886260521997946
  525. Belshan M, Holbrook A, George JW, Durant HE, Callahan M, Jaquet S, et al. (2021): Discovery of candidate HIV-1 latency biomarkers using an OMICs approach. Virology 558:86-95. doi:10.1016/j.virol.2021.03.003
  526. Johnstone D. (2021): Accounting research and the significance test crisis. Critical Perspectives on Accounting. doi:10.1016/j.cpa.2021.102296
  527. Echenique F, He K. (2021): Screening p-Hackers: Dissemination Noise as Bait. doi:10.48550/ARXIV.2103.09164
  528. Bajpai R, Chaturvedi HK. (2021): Toward a More Nuanced Interpretation of Statistical Significance in Biomedical Research. Asian Journal of Oncology 7(2):49-51. doi:10.1055/s-0041-1727066
  529. Matabuena M, Riazati S, Caplan N, Hayes P. (2021): Are Multilevel functional models the next step in sports biomechanics and wearable technology? A case study of Knee Biomechanics patterns in typical training sessions of recreational runners. doi:10.48550/ARXIV.2103.15704
  530. Kirk DS, Rovira M. (2021): An audit experiment to investigate the “war on cops”: a research note. J Exp Criminol. doi:10.1007/s11292-021-09458-x
  531. Dörnemann A, Boenisch N, Schommer L, Winkelhorst L, Wingen T. (2021): How do Good and Bad News Impact Mood During the Covid-19 Pandemic? The Role of Similarity. Center for Open Science. doi:10.31219/osf.io/sy2kd
  532. Talesh S, Mertz E, Klug H. (2021): Research Handbook on Modern Legal Realism. Kapitel 13:191-207. Edward Elgar Publishing. doi:10.4337/9781788117777
  533. Leach S, Sutton RM, Douglas KM, Dhont K. (2021): The ‘me’ in meat: Does affirming the self make eating animals seem more morally wrong? Journal of Experimental Social Psychology 95:104135. doi:10.1016/j.jesp.2021.104135
  534. Freese J, Schnell S, Schäfer A, Klement RJ, Krüger S, Lückemann L, Lötzerich H. (2021): How to dismantle modern stressors: does a short trip to simulated Paleolithic conditions in the wild reduce cortisol levels? F1000Research 10:238. doi:10.12688/f1000research.50793.1
  535. Kämmerer U, Klement RJ, Joos FT, Sütterlin M, Reuss-Borst M. (2021): Low Carb and Ketogenic Diets Increase Quality of Life, Physical Performance, Body Composition, and Metabolic Health of Women with Breast Cancer. Nutrients 13:1029. doi:10.3390/nu13031029
  536. Afiaz A, Masud MS, Mansur M. (2021): Impact of child’s cognitive and social-emotional difficulties on child abuse: Does mother’s justification of intimate partner violence also play a role? Child Abuse & Neglect 117:105028. doi:10.1016/j.chiabu.2021.105028
  537. Nikolakopoulos S, Ntzoufras I. (2021): Meta Analysis of Bayes Factors. doi:10.48550/ARXIV.2103.13236
  538. Matthews R. (2021): The p-value statement, five years on. Significance. doi:10.1111/1740-9713.01505
  539. Jørgensen CLT, Larsson A-M, Forsare C, Aaltonen K, Jansson S, Bradshaw R, Bendahl P-O, Rydén L. (2021): PAM50 Intrinsic Subtype Profiles in Primary and Metastatic Breast Cancer Show a Significant Shift toward More Aggressive Subtypes with Prognostic Implications. Cancers 13:1592. doi:10.3390/ cancers13071592
  540. Li G, Zhang Q, Lin Q, Gao W. (2021): A Three-Level Radial Basis Function Method for Expensive Optimization. IEEE Transactions on Cybernetics 1-12. doi:10.1109/tcyb.2021.3061420
  541. Wortzel JR, Turner BE, Weeks BT, Fragassi C, Ramos V, Truong T, Li D, Sahak O, O‘Connor TG. (2021): Trends in US pediatric mental health clinical trials: An analysis of ClinicalTrials.gov from 2007-2018. PLoS ONE. doi:10.1371/journal.pone.0248898
  542. Valentine KD, Buchanan EM, Cunningham A, Hopke T, Wikowsky A, Wilson H. (2021): Have psychologists increased reporting of outliers in response to the reproducibility crisis? Soc Personal Psychol Compass 15(5):12591. doi:10.1111/spc3.12591
  543. Cleasby IR, Morrissey BJ, Bolton M, Owen E, Wilson L, Wischnewski S, Nakagawa S. (2021): What is our power to detect device effects in animal tracking studies? Methods Ecol Evol 12(7):1174-1185. doi:10.1111/2041-210x.13598
  544. Minhas M, Murphy CM, Balodis IM, Samokhvalov AV, MacKillop J. (2021): Food addiction in a large community sample of Canadian adults: prevalence and relationship with obesity, body composition, quality of life and impulsivity. Addiction 116(10):2870-2879. doi:10.1111/add.15446
  545. Bountress KE, Vladimirov V, McMichael G, Taylor ZN, Hardiman G, Chung D, Adams ZW, Danielson CK, Amstadter AB. (2021): Gene Expression Differences Between Young Adults Based on Trauma History and Post-traumatic Stress Disorder. Frontiers in psychiatry 12:581093. doi:10.3389/fpsyt.2021.581093
  546. Hudson R. (2021): Should We Strive to Make Science Bias-Free? A Philosophical Assessment of the Reproducibility Crisis. J Gen Philos Sci 52:389-405. doi:10.1007/s10838-020-09548-w
  547. Wang J, Fan X, Yang M, Song M, Wang K, Giovannucci E, Ma H, Jin G, Hu Z, Shen H, Hang D. (2021): Sex-specific associations of circulating testosterone levels with all-cause and cause-specific mortality. European Journal of Endocrinology 184(5):723-732. doi:10.1530/eje-20-1253
  548. Parisien RL, Constant M, Saltzman BM, et al. (2021): The Fragility of Statistical Significance in Cartilage Restoration of the Knee: A Systematic Review of Randomized Controlled Trials. CARTILAGE 147S-155S. doi:10.1177/19476035211012458
  549. Said MA, Yeung MW, van de Vegte YJ, Benjamins JW, Dullaart RPF, Ruotsalainen S, Ripatti S, Natarajan P, Juarez-Orozco LE, Verweij N, van der Harst P. (2021): Genome-Wide Association Study and Identification of a Protective Missense Variant on Lipoprotein(a) Concentration. ATVB 41(5). doi:10.1161/atvbaha.120.315300
  550. Bickel DR. (2021): Interval estimation, point estimation, and null hypothesis significance testing calibrated by an estimated posterior probability of the null hypothesis. Communications in Statistics – Theory and Methods. doi:10.1080/03610926.2021.1921805
  551. Rosenkranz GK. (2021): Replicability of studies following a dual-criterion design. Statistics in Medicine 40(18):4068-4076. doi:10.1002/sim.9014
  552. Liebst LS, Ejbye-Ernst P, Bruin M, Thomas J, Lindegaard MR. (2021): Face-touching behaviour as a possible correlate of mask-wearing: A video observational study of public place incidents during the COVID-19 pandemic. Transbounding Emerging Dis 69(3):1319-1325. doi:10.1111/tbed.14094
  553. Hanson NA, Lavallee MB, Thiele RH. (2021): Apophenia and anesthesia: how we sometimes change our practice prematurely. Can J Anesth/J Can Anesth 68:1185-1196. doi:10.1007/s12630-021-02005-2
  554. Akimoto N, Zhao M, Ugai T, Zhong R, Lau MC, Fujiyoshi K, et al. (2021): Tumor Long Interspersed Nucleotide Element-1 (LINE-1) Hypomethylation in Relation to Age of Colorectal Cancer Diagnosis and Prognosis. Cancers 13(9):2016. doi:10.3390/cancers13092016
  555. Reito A. (2021): Past, Present and Future With p-Values, Confidence Intervals and Effect Sizes. The Journal of Foot and Ankle Surgery 60(3):642-643. doi:10.1053/j.jfas.2020.04.017
  556. Scandola M, Romano D. (2021): Bayesian multilevel single case models using ‘Stan’. A new tool to study single cases in neuropsychology. Neuropsychologia 156:107834.doi:10.1016/j.neuropsychologia.2021.107834
  557. van de Weijer MP, Pelt DHM, van Beijsterveldt CEM, et al. (2021): Genetic factors explain a significant part of associations between adolescent well-being and the social environment. Eur Child Adolesc Psychiatry. doi:10.1007/s00787-021-01798-3
  558. Jackson A. (2021): Are knowledge ascriptions sensitive to social context? Synthese 199:8579-8610. doi:10.1007/s11229-021-03176-7
  559. Neyse L, Johannesson M, Dreber A. (2021): 2D:4D does not predict economic preferences: Evidence from a large, representative sample. Journal of Economic Behavior & Organization 185:390-401. doi:10.1016/j.jebo.2021.02.029
  560. Lessard LM, Puhl RM, Himmelstein MS, Pearl RL, Foster GD. (2021): Eating and Exercise-Related Correlates of Weight Stigma: A Multinational Investigation. Obesity 29(6):966-970.doi:10.1002/oby.23168
  561. Noguchi K, Konietschke F, Marmolejo-Ramos F, et al. (2021): Permutation tests are robust and powerful at 0.5% and 5% significance levels. Behav Res 53:2712-2724. doi:10.3758/s13428-021-01595-5
  562. Richardson GB, McGee N, Copping LT. (2021): Advancing the Psychometric Study of Human Life History Indicators. Hum Nat 32:363-386. doi:10.1007/s12110-021-09398-5
  563. Oztas M, Dincer ZT, Sut N, Yazici H. (2021): Changing the traditional p-value significance threshold to .005 does not decrease the number of statistically significant p-values in observational studies more than in randomised controlled trials. Clinical and Experimental Rheumatology 39(3):696.
  564. Cheng H-C, Chang T-K, Su W-C, Tsai H-L, Wang J-Y. (2021): Narrative review of the influence of diabetes mellitus and hyperglycemia on colorectal cancer risk and oncological outcomes. Translational Oncology 14(7):101089. doi:10.1016/j.tranon.2021.101089
  565. Mima K, Kosumi K, Miyanari N, et al. (2021): Impairment of Activities of Daily Living is an Independent Risk Factor for Recurrence and Mortality Following Curative Resection of Stage I-III Colorectal Cancer. J Gastrointest Surg 25:2628-2636. doi:10.1007/s11605-021-04990-7
  566. Murphy AK, Jerolmack C, Smith D. (2021): Ethnography, Data Transparency, and the Information Age. Annu Rev Sociol 47:41-61. doi:10.1146/annurev-soc-090320-124805
  567. Nuijten MB. (2021): Assessing and improving robustness of psychological research findings in four steps. Center for Open Science. doi:10.31234/osf.io/a4bu2
  568. Sonon P, Collares CVA, Ferreira MLB, Almeida RS, Sadissou I, Cordeiro MT, et al. (2021): Peripheral spectrum neurological disorder after arbovirus infection is associated with HLA-F variants among Northeastern Brazilians. Infection, Genetics and Evolution 92:104855. doi:10.1016/j.meegid.2021.104855
  569. Li G, Walter SD, Thabane L. (2021): Shifting the focus away from binary thinking of statistical significance and towards education for key stakeholders: revisiting the debate on whether it’s time to de-emphasize or get rid of statistical significance. Journal of Clinical Epidemiology 137:104-112. doi:10.1016/j.jclinepi.2021.03.033
  570. Heide RD. (2021): Bayesian learning: Challenges, limitations and pragmatics. Doctoral thesis, Leiden University.
  571. Wu J, Nivargi R, Lanka SST, Menon AM, Modukuri SA, Nakshatri N, Wei X, Wang Z, Caverlee J, Rajtmajer SM, Giles CL. (2021): Predicting the Reproducibility of Social and Behavioral Science Papers Using Supervised Learning Models. arXiv. doi:10.48550/ARXIV.2104.04580
  572. Bhowmik J, Biswas RK, Hossain S. (2021): Child Marriage and Adolescent Motherhood: A Nationwide Vulnerability for Women in Bangladesh. Int. J. Environ. Res. Public Health 18:4030. doi:10.3390/ijerph18084030
  573. Afiaz A, Biswas RK. (2021): Awareness on menstrual hygiene management in Bangladesh and the possibilities of media interventions: using a nationwide crosssectional survey. BMJ Open 11:e042134. doi:10.1136/ bmjopen-2020-042134
  574. Vitiello VE, Williford AP. (2021): Alignment of teacher ratings and child direct assessments in preschool: A closer look at teaching strategies GOLD. Early Childhood Research Quarterly 56:114-123.doi:10.1016/j.ecresq.2021.03.004
  575. Roessler P, Carroll P, Myamba F, Jahari C, Kilama B, Nielson D. (2021): The economic impact of mobile phone ownership: Results from a randomized controlled trial in Tanzania. Centre for the Study of African Economies WPS 2021-05.
  576. Bellou V, Belbasis L, Evangelou E. (2021): Tobacco Smoking and Risk for Pulmonary Fibrosis. Chest 160(3):983-993. doi:10.1016/j.chest.2021.04.035
  577. Awal MdA, Hossain MdS, Debjit K, Ahmed N, Nath RD, Habib GMM, Khan MdS, Islam MdA, Mahmud MAP. (2021): An Early Detection of Asthma Using BOMLA Detector. IEEE Access 9. doi:10.1109/access.2021.3073086
  578. Cohen-Blankshtain G, Sulitzeanu-Kenan R. (2021): Foregone and predicted futures: challenges of opportunity cost neglect and impact bias for public participation in policymaking. Journal of European Public Policy 28(5):677-697. doi:10.1080/13501763.2021.1912152
  579. Teja Lanka SS, Rajtmajer S, Wu J, Giles CL. (2021): Extraction and Evaluation of Statistical Information from Social and Behavioral Science Papers. Companion Proceedings of the Web Conference 2021. doi:10.1145/3442442.3451363
  580. Proulx T, Morey R. (2021): Beyond statistical ritual: theory in psychological science. Perspectives on Psychological Science 16(4):671-681. doi:10.1177/17456916211017098
  581. Loder RT, Kacena MA, Ogbemudia B, Ngwe HN, Aasar A, Ninad N, Mufti O, Gunderson Z, Whipple EC. (2021): Bibliometric Analysis of the English Musculoskeletal Literature over the Last 30 Years. The Scientific World Journal. doi:10.1155/2021/5548481
  582. Fowlie A. (2021): Comment on “Reproducibility and Replication of Experimental Particle Physics Results”. Harvard Data Science Review 3(2). doi:10.1162/99608f92.b9bfc518
  583. Simin J. (2021): The role of oestrogens and antibiotics on the development of cancer. Doctoral thesis, Karolinska Institutet (Sweden).
  584. Väyrynen JP, Haruki K, Väyrynen SA, et al. (2021): Prognostic significance of myeloid immune cells and their spatial distribution in the colorectal cancer microenvironment. Journal for ImmunoTherapy of Cancer 9:e002297. doi:10.1136/jitc-2020-002297S
  585. Fisher JT, Hamilton KA. (2021): Integrating Media Selection and Media Effects Using Decision Theory. Journal of Media Psychology 33(4):215-225. doi:10.1027/1864-1105/a000315
  586. Torkar R, Furia CA, Feldt R. (2021): Bayesian Data Analysis for Software Engineering. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)328-329. doi:10.1109/ICSE-Companion52605.2021.00140
  587. Swanson EMD. (2021): When Is Science Significant? Understanding the p Value. Plastic and Reconstructive Surgery 147(6):1080e. doi:10.1097/PRS.0000000000007962
  588. de Almeida Júnior ER, de Oliveira DB, dos Santos GR, de Oliveira Felice R, Gomes FA, Mendes-Rodrigues C. (2021): The 4-year Experience of Nursing Activities Score Use in a Brazilian Cardiac Intensive Care Unit. International Journal for Innovation Education and Research 9(5).
  589. Faber J. (2021): Conceitos sobre Significância Estatística em Biociências: Um Guia para a Interpretação do Valor-P. Editora Appris.
  590. Panzera F, Bergamo P, Fäh D. (2021): Canonical Correlation Analysis Based on Site-Response Proxies to Predict Site-Specific Amplification Functions in Switzerland. Bulletin of the Seismological Society of America 111(4):1905-1920. doi:10.1785/0120200326
  591. Shelley SL, Brusatte SL, Williamson TE. (2021): Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction. Proc. R. Soc. B. 288:20210393. doi:10.1098/rspb.2021.0393
  592. TOCCACELI P. Conformal and Venn Predictors for large, imbalanced and sparse chemoinformatics data. Doctoral dissertation, UNIVERSITY OF LONDON.
  593. Spescha A. (2021): False Feedback in Economics: The Case for Replication (1st ed.). Routledge. doi:10.4324/9781003186991
  594. Duvergé L, Bondiau P-Y, Claude L, Supiot S, Vaugier L, Thillays F, et al. (2021): Discontinuous stereotactic body radiotherapy schedule increases overall survival in early-stage non-small cell lung cancer. Lung Cancer 157:100-108. doi:10.1016/j.lungcan.2021.05.016
  595. Grawitch MJ, Lavigne K, Mudigonda SP. (2021): The Sex of Interactants Affects Perceptions of Sexism in Ambiguous Situations. Center for Open Science. doi:10.31234/osf.io/z6cwq
  596. Pavlov YG, Adamian N, Appelhoff S, Arvaneh M, Benwell CSY, Beste C, Bland AR, Bradford DE, Bublatzky F, Busch NA, Clayson PE, Cruse D, Czeszumski A, Dreber A, Dumas G, Ehinger B, Ganis G, He X, Hinojosa JA, Huber-Huber C, Inzlicht M, Jack BN, Johannesson M, Jones R, Kalenkovich E, Kaltwasser L, Karimi-Rouzbahani H, Keil A, König P, Kouara L, Kulke L, Ladouceur CD, Langer N, Liesefeld HR, Luque D, MacNamara A, Mudrik L, Muthuraman M, Neal LB, Nilsonne G, Niso G, Ocklenburg S, Oostenveld R, Pernet CR, Pourtois G, Ruzzoli M, Sass SM, Schaefer A, Senderecka M, Snyder JS, Tamnes CK, Tognoli E, van Vugt MK, Verona E, Vloeberghs R, Welke D, Wessel JR, Zakharov I, Mushtaq F. (2021): #EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex 114:213-229. doi:10.1016/j.cortex.2021.03.013
  597. Białek M, Domurat A, Paruzel-Czachura M, Muda R. (2021): Limits of the foreign language effect: intertemporal choice. Thinking & Reasoning 28(1):97-124. doi:10.1080/13546783.2021.1934899
  598. Berk RA. (2021): Post-Model-Selection Statistical Inference with Interrupted Time Series Designs: An Evaluation of an Assault Weapons Ban in California. arXiv preprint arXiv:2105.10624.
  599. Schmid N. (2021): Managing complex assembly lines: solving assembly line balancing and feeding problems. Doctoral dissertation, Ghent University.
  600. Keating CT, Fraser DS, Sowden S, Cook JL. (2021): Differences Between Autistic and Non-Autistic Adults in the Recognition of Anger from Facial Motion Remain after Controlling for Alexithymia. J Autism Dev Disord 52:1855-1871. doi:10.1007/s10803-021-05083-9
  601. Truong MK, Berger M, Haba-Rubio J, Siclari F, Marques-Vidal P, Heinzer R. (2021): Impact of smoking on sleep macro- and microstructure. Sleep Medicine 84:86-92. doi:10.1016/j.sleep.2021.05.024
  602. Temp AG, Lutz MW, Trepel D, Tang Y, Wagenmakers EJ, Khachaturian AS, Teipel S. (2021): How Bayesian statistics may help answer some of the controversial questions in clinical research on Alzheimer’s disease. Alzheimer’s & dementia: the journal of the Alzheimer’s Association 17(6):917-919.
  603. Anderson SF. (2020): Misinterpreting p: The discrepancy between p values and the probability the null hypothesis is true, the influence of multiple testing, and implications for the replication crisis. Psychological Methods. doi:10.1037/met0000248
  604. Rigdon EE, Sarstedt M, Becker J-M. (2020): Quantify uncertainty in behavioral research. Nat Hum Behav. doi:10.1038/s41562-019-0806-0
  605. Krämer MD, Rodgers JL. (2020): The impact of having children on domain-specific life satisfaction: A quasi-experimental longitudinal investigation using the Socio-Economic Panel (SOEP) data. Journal of Personality and Social Psychology. doi:10.1037/pspp0000279
  606. Bird A. (2020): Understanding the replication crisis as a base rate fallacy. The British Journal for the Philosophy of Science, 72(4):965–993. https://doi.org/10.1093/bjps/axy051
  607. Shi H, Yin G. (2020): Reconnecting p-Value and Posterior Probability Under One- and Two-Sided Tests. The American Statistician. doi:10.1080/00031305.2020.1717621
  608. Orozco V, Bontemps C, Maigné E, Piguet V, Hofstetter A, Lacroix A, Levert F, Rousselle J. (2020): HOW TO MAKE A PIE: REPRODUCIBLE RESEARCH FOR EMPIRICAL ECONOMICS AND ECONOMETRICS. Journal of Economic Surveys 34:1134-1169. doi:10.1111/joes.12389
  609. Morton RB, Ou K, Qin X. (2020): The effect of religion on Muslims’ charitable contributions to members of a non-Muslim majority. Journal of Public Economic Theory, 22(2):433-448. Wiley. doi:10.1111/jpet.12352
  610. Sahoo S. (2020): Shipping business unwrapped: illusion, bias and fallacy in the shipping business. WMU Journal of Maritime Affairs, 19(3), pp. 393-396. Springer Science and Business Media LLC. doi:10.1007/s13437-020-00216-w
  611. To M-S, Jukes A. (2020): Reporting trends of p values in the neurosurgical literature. Journal of Neurosurgery. doi:10.3171/2018.8.jns172897
  612. Holzmeister F, Huber J, Kirchler M, Lindner F, Weitzel U, Zeisberger S. (2020): What Drives Risk Perception? A Global Survey with Financial Professionals and Laypeople. Management Science. doi:10.1287/mnsc.2019.3526
  613. Vigren A, Pyddoke R. (2020): The impact on bus ridership of passenger incentive contracts in public transport. Transportation Research Part A: Policy and Practice. doi:10.1016/j.tra.2020.03.003
  614. Lovell DP. (2020): Null hypothesis significance testing and effect sizes: can we ‘effect’ everything .. or … anything? Current Opinion in Pharmacology. doi:10.1016/j.coph.2019.12.001
  615. Thompson WH, Wright J, Bissett PG. (2020): Open exploration. eLife 9:e52157. doi:10.7554/elife.52157
  616. Pfeiler TM, Egloff B. (2020): Personality and eating habits revisited: Associations between the big five, food choices, and Body Mass Index in a representative Australian sample. Appetite. doi:10.1016/j.appet.2020.104607
  617. Lyu X, Xu Y, Zhao X, Zuo X, Hu C. (2020): Beyond psychology: Prevalence of p value and confidence interval misinterpretation across different fields. Journal of Pacific Rim Psychology 14(E6). doi:10.1017/prp.2019.28
  618. Lemonnier S, Désiré L, Brémond R, Baccino T. (2020): Drivers’ visual attention: A field study at intersections. Transportation Research Part F: Traffic Psychology and Behaviour 69:206-221. doi:10.1016/j.trf.2020.01.012
  619. Farrar BG, Boeckle M, Clayton NS. (2020): Replications in Comparative Cognition: What Should We Expect and How Can We Improve? Animal behavior and cognition7(1):1-22. doi:10.26451/abc.07.01.02.2020
  620. Shen A. (2020): Randomness Tests: Theory and Practice. Fields of Logic and Computation III. doi:10.1007/978-3-030-48006-6_18
  621. Hillary FG, Medaglia JD. (2020): What the replication crisis means for intervention science. International Journal of Psychophysiology. doi:10.1016/j.ijpsycho.2019.05.006
  622. Wagenmakers E-J, Lee MD, Rouder JN, Morey RD. (2020): The Principle of Predictive Irrelevance or Why Intervals Should Not be Used for Model Comparison Featuring a Point Null Hypothesis. The Theory of Statistics in Psychology. doi:10.1007/978-3-030-48043-1_8
  623. Lu Z, Happee R, de Winter JCF. (2020): Take over! A video-clip study measuring attention, situation awareness, and decision-making in the face of an impending hazard. Transportation Research Part F: Traffic Psychology and Behaviour. doi:10.1016/j.trf.2020.05.013
  624. Asken BM, Houck ZM, Schmidt JD, et al. (2020): A Normative Reference vs. Baseline Testing Compromise for ImPACT: The CARE Consortium Multiple Variable Prediction (CARE-MVP) Norms. Sports Med50:1533-1547. doi:10.1007/s40279-020-01263-2
  625. Schweizer G, Furley P, Rost N, Barth K. (2020): Reliable measurement in sport psychology: The case of performance outcome measures. Psychology of Sport and Exercise 48(101663). doi:10.1016/j.psychsport.2020.101663
  626. Salgado C, Oosting J, Janssen B, Kumar R, Gruis N, Doorn R. (2020): Genome-wide characterization of 5-hydoxymethylcytosine in melanoma reveals major differences with nevus. Genes Chromosomes Cancer 59(6):366-374. doi:10.1002/gcc.22837
  627. Mathias SR, Knowles EEM, Mollon J, Rodrigue A, Koenis MMC, Alexander-Bloch AF, Winkler AM, Olvera RL, Duggirala R, Göring HHH, Curran JE, Fox PT, Almasy L, Blangero J, Glahn DC. (2020): Minimal Relationship between Local Gyrification and General Cognitive Ability in Humans. Cerebral Cortex 30(6):3439-3450. doi.org/10.1093/cercor/bhz319
  628. Kohavi R, Tang D, Xu Y. (2020): Trustworthy online controlled experiments: A practical guide to a/b testing. Cambridge University Press.
  629. Orlando A, Rubin B, Panchal R, Tanner A II, Hudson J, Harken K, Madayag R, Berg G, Bar-Or D. (2020): In Patients Over 50 Years, Increased Age Is Associated With Decreased Odds of Documented Loss of Consciousness After a Concussion. Front. Neurol. 11:39. doi:10.3389/fneur.2020.00039
  630. Sercy E, Orlando A, Carrick M, Lieser M, Madayag R, Vasquez D, Tanner II A, Rubin B, Bar-Or D. (2020): Long-term mortality and causes of death among patients with mild traumatic brain injury: a 5-year multicenter study. Brain Injury 34(4):556-566, doi:10.1080/02699052.2020.1725981
  631. Zhang F, Hughes CL. (2020): Beyond p-value: the rigor and power of study. Glob Clin Transl Res 2(1):1-6. doi:10.36316/gcatr.02.0021
  632. Sharma S. (2020): ANOVA and ANCOVA. In: Atkinson P, Delamont S, Cernat A, Sakshaug JW, Williams RA, (eds.). SAGE Research Methods Foundations. doi:10.4135/9781526421036889597
  633. Cicconardi F, Krapf P, D‘Annessa I, Gamisch A, Wagner HC, Nguyen AD, Economo EP, Mikheyev AS, Guénard B, Grabherr R, Andesner P, Wolfgang A, Di Marino D, Steiner FM, Schlick-Steiner BC. (2020): Genomic Signature of Shifts in Selection in a Subalpine Ant and Its Physiological Adaptations. Molecular Biology and Evolution. doi:10.1093/molbev/msaa076
  634. Braganza O. (2020): A simple model suggesting economically rational sample-size choice drives irreproducibility. PLoS ONE. doi:10.1371/journal.pone.0229615
  635. Rafi Z, Greenland S. (2020): Semantic and cognitive tools to aid statistical science: replace confidence and significance by compatibility and surprise. BMC Med Res Methodol. doi:10.1186/s12874-020-01105-9
  636. Zhang F, Wang Y, Mukiibi R, et al. (2020): Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits. BMC Genomics 21(36). doi:10.1186/s12864-019-6362-1
  637. Chen C, Zarazua de Rubens G, Noel L, Kester J, Sovacool BK. (2020): Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2019.109692
  638. Lewandowsky, S., Oberauer, K. (2020): Low replicability can support robust and efficient science. Nat Commun 11(358). doi:10.1038/s41467-019-14203-0
  639. Hughes BT, Costello CK, Pearman J, Razavi P, Bedford-Petersen C, Ludwig RM, Srivastava S. (2020): The Big Five Across Socioeconomic Status: Measurement Invariance, Relationships, and Age Trends. Collabra: Psychology. doi:10.31234/osf.io/4jema
  640. Bono MS, Beasley S, Hanhauser E, Hart AJ, Karnik R, Vaishnav C. (2020):  Fieldwork-based determination of design priorities for point-of-use drinking water quality sensors for use in resource-limited environments. PLoS ONE. doi:10.1371/journal.pone.0228140
  641. Houde F, Martel M, Coulombe-Lévêque A, Harvey M-P, Auclair V, Mathieu D, Whittingstall K, Goffaux P, Léonard G. (2020): Perturbing the activity of the superior temporal gyrus during pain encoding prevents the exaggeration of pain memories: A virtual lesion study using single-pulse transcranial magnetic stimulation. Neurobiology of Learning and Memory 169(107174). doi:10.1016/j.nlm.2020.10717
  642. Chen EE, Chang J-H. (2020): Investigating implicit and explicit attitudes toward sexual minorities in Taiwan. Psychology of Sexual Orientation and Gender Diversity 7(2):197-207. doi:10.1037/sgd0000362
  643. Owens MM, Sweet LH, MacKillop J. (2020): Recent cannabis use is associated with smaller hippocampus volume: High-resolution segmentation of structural subfields in a large non-clinical sample. Addiction Biology, e12874. doi:10.1111/adb.12874
  644. Kamei D, Kamei Y, Nagano M. et al. (2020): Elobixibat alleviates chronic constipation in hemodialysis patients: a questionnaire-based study. BMC Gastroenterol 20(26). doi:10.1186/s12876-020-1179-6
  645. Wang Y, Zhang F, Mukiibi R, et al. (2020): Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: II: carcass merit traits. BMC Genomics 21(38). doi:10.1186/s12864-019-6273-1
  646. Wei L, Mei Y, Zou L, Chen J, Tan M, Wang C, Cai Z, Lin L, Chai C, Yin S, Liu X. (2020): Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus. Molecules 25(340). doi:10.3390/molecules25020340
  647. Brandt MJ, Turner-Zwinkels FM. (2020): July 4th. https://osf.io/26bua/
  648. Diaz-Quijano FA, Calixto FM, da Silva JMN. (2020): How feasible is it to abandon statistical significance? A reflection based on a short survey. BMC Med Res Methodol. doi:10.1186/s12874-020-01030-x
  649. Hyatt CS, Owens MM, Crowe ML, Carter NT, Lynam DR, Miller JD. (2020): The quandary of covarying: A brief review and empirical examination of covariate use in structural neuroimaging studies on psychological variables. NeuroImage. doi:10.1016/j.neuroimage.2019.116225
  650. Vitiello VE, Pianta RC, Whittaker JE, Ruzek EA. (2020): Alignment and misalignment of classroom experiences from Pre-K to kindergarten. Early Childhood Research Quarterly. doi:10.1016/j.ecresq.2019.06.014
  651. Fellman D, Jylkkä J, Waris O, Soveri A, Ritakallio L, Haga S, Salmi J, Nyman TJ, Laine M. (2020): The role of strategy use in working memory training outcomes. Journal of Memory and Language. doi:10.1016/j.jml.2019.104064
  652. Holm Hansen R, Højsgaard Chow H, Christensen JR, Sellebjerg F, von Essen MR. (2020): Dimethyl fumarate therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders. doi:10.1016/j.msard.2019.101451
  653. Leach S, Weick M. (2020): When smiles (and frowns) speak words: Does power impact the correspondence between self-reported affect and facial expressions? Br J Psychol. doi:10.1111/bjop.12433
  654. Mima K, Sakamoto Y, Kosumi K, Ogata Y, Miyake K, Hiyoshi Y, Ishimoto T, Iwatsuki M, Baba Y, Iwagami S, Miyamoto Y, Yoshida N, Ogino S, Baba H. (2020): Mucosal cancer-associated microbes and anastomotic leakage after resection of colorectal carcinoma. Surgical Oncology. doi:10.1016/j.suronc.2019.11.005
  655. Köllner MG, Bleck K. (2020): Exploratory Evidence of Sex-Dimorphic Associations of the Ulna-to-Fibula Ratio, a Potential Marker of Pubertal Sex Steroid Exposure, with the Implicit Need for Power. Adaptive Human Behavior and Physiology 6:93-118. doi:10.1007/s40750-020-00130-8
  656. Stark G, Schwarz R, Meiri S. (2020): Does nocturnal activity prolong gecko longevity? Israel Journal of Ecology and Evolution 66(3-4):231-238. doi:10.1163/22244662-20191074
  657. Di Leo G, Sardanelli F. (2020): Statistical significance: p value, 0.05 threshold, and applications to radiomics-reasons for a conservative approach. Eur Radiol Exp 4:18. doi:10.1186/s41747-020-0145-y
  658. Breig Z. (2020): Prediction and Model Selection in Experiments. Economic Record 96(313):153-176. Wiley. doi:10.1111/1475-4932.12533
  659. Belbasis L, Mavrogiannis MC, Emfietzoglou M, et al. (2020): Environmental factors, serum biomarkers and risk of atrial fibrillation: an exposure-wide umbrella review of meta-analyses. Eur J Epidemiol35:223-239. doi:10.1007/s10654-020-00618-3
  660. Rodrigues DA. (2020): Emoções e sentimentos académicos em estudantes de ensino superior. Master’s thesis, Universidade de Évora.
  661. Walters C, Meyer C, Fladie I, et al. (2020): Lowering the threshold of statistical significance in gastroenterology trials. Indian J Gastroenterol 39:92-96. doi:10.1007/s12664-019-01007-9
  662. Hall LM, Hendricks AE. (2020): High-throughput analysis suggests differences in journal false discovery rate by subject area and impact factor but not open access status. BMC Bioinformatics21:564. doi:10.1186/s12859-020-03817-7
  663. Wilson BM, Harris CR, Wixted JT. (2020): Science is not a signal detection problem. Proceedings of the National Academy of Sciences, 117(11):5559-5567. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1914237117
  664. Hoehl S, Fairhurst M, Schirmer A. (2020): Interactional synchrony: signals, mechanisms and benefits. Social Cognitive and Affective Neuroscience 16(1-2):5-18. Oxford University Press (OUP). doi:10.1093/scan/nsaa024
  665. Lasala R, Logreco A, Romagnoli A, et al. (2020): Cancer drugs for solid tumors approved by the EMA since 2014: an overview of pivotal clinical trials. Eur J Clin Pharmacol 76:843-850. doi:10.1007/s00228-020-02850-y
  666. Wang J, Iversen T, Hennig-Schmidt H, Godager G. (2020): Are patient-regarding preferences stable? Evidence from a laboratory experiment with physicians and medical students from different countries. European Economic Review 125:103411. Elsevier BV. doi:10.1016/j.euroecorev.2020.103411
  667. Butera L, Grossman P, Houser D, List J, Villeval M-C. (2020): A New Mechanism to Alleviate the Crises of Confidence in Science-With An Application to the Public Goods Game. National Bureau of Economic Research. doi:10.3386/w26801
  668. Vovk V, Wang R. (2020): True and false discoveries with independent e-values (Version 1). arXiv. doi:10.48550/ARXIV.2003.00593
  669. Segerstrom SC. (2020): Statistical Guideline No. 5. Include Results of a Power Analysis; if a Power Analysis Was Not Performed, Describe the Stopping Rule for Recruitment. Int.J. Behav. Med. 27:140-141. doi:10.1007/s12529-020-09868-7
  670. Zimmer F, Imhoff R. (2020): Abstinence from Masturbation and Hypersexuality. Arch Sex Behav 49:1333-1343. doi:10.1007/s10508-019-01623-8
  671. Gahl B, Stanger O. (2020): Wissenschaftliche Grundlagen der herzchirurgischen Fachliteratur. Kompendium der modernen Herzchirurgie beim Erwachsenen 327-345. Springer Vienna. doi:10.1007/978-3-7091-0451-4_20
  672. Voisin S, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, Coffey VG, Doering TM, Thompson JM, Benedict C, Cedernaes J, Lindholm ME, Craig JM, Rowlands DS, Sharples AP, Horvath S, Eynon N. (2020): An epigenetic clock for human skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle 11(4):887-898. Wiley. doi:10.1002/jcsm.12556
  673. Ejima K, Brown AW, Smith DL, et al. (2020): Murine genetic models of obesity: type I error rates and the power of commonly used analyses as assessed by plasmode-based simulation. Int J Obes44:1440-1449. doi:10.1038/s41366-020-0554-2
  674. Puoliväli T, Palva S, Palva JM. (2020): Influence of multiple hypothesis testing on reproducibility in neuroimaging research: A simulation study and Python-based software. Journal of Neuroscience Methods 337:108654. Elsevier BV. doi:10.1016/j.jneumeth.2020.108654
  675. Stark G, Pincheira-Donoso D, Meiri S. (2020): No evidence for the ‘rate-of-living’ theory across the tetrapod tree of life. R. Field (Ed.), Global Ecology and Biogeography 29(5):857-884. Wiley. doi:10.1111/geb.13069
  676. Tsigaris P, Teixeira da Silva JA. (2020): Reproducibility issues with correlating Beall-listed publications and research awards at a small Canadian business school. Scientometrics123:143-157. doi:10.1007/s11192-020-03353-4
  677. Diaz-Quijano FA. (2020): Estimating and Testing an Index of Bias Attributable to Composite Outcomes in Comparative Studies. Cold Spring Harbor Laboratory. doi:10.1101/2020.02.13.20020966
  678. Chén OY, Saraiva RG, Nagels G, Phan H, Schwantje T, Cao H, Gou J, Reinen JM, Xiong B, de Vos M. (2020): Thou Shalt Not Reject the P-value (Version 6). arXiv. doi:10.48550/ARXIV.2002.07270
  679. Han H, Lee K, Soylu F. (2020): Applying the deep learning method for simulating outcomes of educational interventions. SN Computer Science 1(2):1-14.
  680. Pudney EV, Himmelstein MS, Puhl RM, Foster GD. (2020): Distressed or not distressed? A mixed methods examination of reactions to weight stigma and implications for emotional wellbeing and internalized weight bias. Social Science &amp; Medicine 249:112854. Elsevier BV. doi:10.1016/j.socscimed.2020.112854
  681. Feschet-Chassot E, Chennell P, Cueff R, Mailhot-Jensen B, Sautou V. (2020): Anodic alumina oxide surfaces prepared by dual hard and mild anodization at subzero temperature: Surface microscopic characterization and influence on wettability. Surfaces and Interfaces 19:100473. Elsevier BV. doi:10.1016/j.surfin.2020.100473
  682. de Souza Tavares de Morais G. (n.d.): Alternativa para a resolução da equação de Schrödinger para problemas de estrutura eletrônica de Átomos. Universidade Estadual de Campinas – Repositorio Institucional. doi:10.47749/t/unicamp.2019.1101268
  683. Duppong Hurley K, Lambert MC, Patwardhan I, Ringle JL, Thompson RW, Farley J. (2020): Parental report of outcomes from a randomized trial of in-home family services. Journal of Family Psychology, 34(1):79-89. doi:10.1037/fam0000594
  684. Turner DP, Deng H, Houle TT. (2020): Statistical Hypothesis Testing: Overview and Application. Headache: The Journal of Head and Face Pain 60(2):302-308. Wiley. doi:10.1111/head.13706
  685. Schwaiger R, Kirchler M, Lindner F, Weitzel U. (2020): Determinants of investor expectations and satisfaction. A study with financial professionals. Journal of Economic Dynamics and Control 110:103675. Elsevier BV. doi:10.1016/j.jedc.2019.03.002
  686. Johannes N. (2020): Effects of smartphone cues and online vigilance on well-being and performance. Doctoral dissertation, [Sl: sn]
  687. Dynako J, Owens GW, Loder RT, Frimpong T, Gerena RG, Hasnain F, Snyder D, Freiman S, Hart K, Kacena MA, Whipple EC. (2020): Bibliometric and authorship trends over a 30 year publication history in two representative US sports medicine journals. Heliyon 6(3):e03698. Elsevier BV. doi:10.1016/j.heliyon.2020.e03698
  688. Lima Portugal LC, Alves R de CS, Junior OF, Sanchez TA, Mocaiber I, Volchan E, Smith Erthal F, David IA, Kim J, Oliveira L, Padmala S, Chen G, Pessoa L, Pereira MG. (2020): Interactions between emotion and action in the brain. NeuroImage 214:116728. Elsevier BV. doi:10.1016/j.neuroimage.2020.116728
  689. Myte R, Harlid S, Sundkvist A, et al. (2020): A longitudinal study of prediagnostic metabolic biomarkers and the risk of molecular subtypes of colorectal cancer. Sci Rep 10:5336. doi:10.1038/s41598-020-62129-1
  690. Cavaillon J, Singer M, Skirecki T. (2020): Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Molecular Medicine 12(4). EMBO. doi:10.15252/emmm.201810128
  691. Hardwicke TE, Serghiou S, Janiaud P, Danchev V, Crüwell S, Goodman SN, Ioannidis JPA (2020): Calibrating the Scientific Ecosystem Through Meta-Research. Annual Review of Statistics and Its Application 7(1):11-37.
  692. Barbieri N, Marzucchi A, Rizzo U. (2020): Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones? Research Policy49(2):103901. Elsevier BV. doi:10.1016/j.respol.2019.103901
  693. Gardner M, Hutt S, Kamentz D, Duckworth AL, D’Mello SK. (2020): How Does High School Extracurricular Participation Predict Bachelor’s Degree Attainment? It is Complicated. Journal of Research on Adolescence 30(3):753-768. Wiley. doi:10.1111/jora.12557
  694. Lal RM, Ramaswami A, Russell AG. (2020): Assessment of the Near-Road (monitoring) Network including comparison with nearby monitors within U.S. cities. Environmental Research Letters 15(11):114026. IOP Publishing. doi:10.1088/1748-9326/ab8156
  695. Lohse KR. (2020): Methodological Advances in Motor Learning and Development. Journal of Motor Learning and Development 8(1):1-13. Human Kinetics. doi:10.1123/jmld.2019-0054
  696. Claus CF, Lytle E, Carr DA, Tong D. (2020): Big data registries in spine surgery research: the lurking dangers. BMJ Evidence-Based Medicine 26(3):103-105. BMJ. doi:10.1136/bmjebm-2019-111333
  697. Williams M, Marshall-Edwards S. (2020): Conceptual replication of Seo (2008), “Self-efficacy as a mediator in the relationship between self-oriented perfectionism and academic procrastination”.
  698. Doluk E, Rudawska A, Kuczmaszewski J, PieÅ›ko P. (2020): Influence of Cutting Parameters on the Surface Quality of Two-Layer Sandwich Structures. Materials 13(7):1664. doi:10.3390/ma13071664
  699. Hussey I, Hughes S. (2020): Hidden Invalidity Among 15 Commonly Used Measures in Social and Personality Psychology. Advances in Methods and Practices in Psychological Science 3(2):166-184. SAGE Publications. doi:10.1177/2515245919882903
  700. Gates S, Brock K, Ryan EG. (2020): Bayesian statistical methods and their application to resuscitation trials. Resuscitation 149:60-64. Elsevier BV. doi:10.1016/j.resuscitation.2020.01.030
  701. Fritz BA, King CR, Ben Abdallah A, Lin N, Mickle AM, Budelier TP, Oberhaus J, Park D, Maybrier HR, Wildes TS, Avidan MS. (2020): Preoperative Cognitive Abnormality, Intraoperative Electroencephalogram Suppression, and Postoperative Delirium. Anesthesiology 132(6):1458-1468.Ovid Technologies (Wolters Kluwer Health). doi:10.1097/aln.0000000000003181
  702. Tschantret J. (2020): Democratic breakdown and terrorism. Conflict Management and Peace Science 073889422091136. SAGE Publications. doi:10.1177/0738894220911366
  703. Imhoff R, Lamberty P. (2020): A Bioweapon or a Hoax? The Link Between Distinct Conspiracy Beliefs About the Coronavirus Disease (COVID-19) Outbreak and Pandemic Behavior. Social Psychological and Personality Science 11(8):1110-1118. SAGE Publications. doi:10.1177/1948550620934692
  704. Steyerberg EW, van Ben CB. (2020): Redefining significance and reproducibility for medical research: a plea for higher p-value thresholds for diagnostic and prognostic models. European Journal of Clinical Investigation e13229. doi:10.1111/eci.13229
  705. Mahmud M, Soetanto D, Jack S. (2020): Environmental management and product innovation: The moderating role of the dynamic capability of small manufacturing firms. Journal of Cleaner Production 121633. doi:10.1016/j.jclepro.2020.121633
  706. Mima K, Miyanari N, Morito A, Yumoto S, Matsumoto T, Kosumi K, Inoue M, Mizumoto T, Kubota T, Baba H. (2020): Frailty is an independent risk factor for recurrence and mortality following curative resection of stage I-III colorectal cancer. Annals of Gastroenterological Surgery 4(4):405-412. Wiley. doi:10.1002/ags3.12337
  707. Jørgensen CLT, Forsare C, Bendahl P-O, Falck A-K, Fernö M, Lövgren K, Aaltonen K, Rydén L. (2020): Expression of epithelial-mesenchymal transition-related markers and phenotypes during breast cancer progression. Breast Cancer Research and Treatment 181(2):369-381. Springer Science and Business Media LLC. doi:10.1007/s10549-020-05627-0
  708. Klement RJ, Sonke J-J, Allgäuer M, Andratschke N, Appold S, Belderbos J, Belka C, Blanck O, Dieckmann K, Eich HT, Mantel F, Eble M, Hope A, Grosu AL, Nevinny-Stickel M, Semrau S, Sweeney RA, Hörner-Rieber J, Werner-Wasik M, et al. (2020): Correlating Dose Variables with Local Tumor Control in Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer: A Modeling Study on 1500 Individual Treatments. International Journal of Radiation Oncology*Biology*Physics 107(3):579-586. Elsevier BV. doi:10.1016/j.ijrobp.2020.03.005
  709. Kelter R. (2020): Analysis of Bayesian posterior significance and effect size indices for the two-sample t-test to support reproducible medical research. BMC Med Res Methodol 20(88). doi:10.1186/s12874-020-00968-2
  710. Kurdi B, Ferguson M. (2020): Does the surveillance paradigm provide evidence for unconscious evaluative conditioning? A Bayesian perspective.
  711. Krpan D. (2020): Unburdening the Shoulders of Giants: A Quest for Disconnected Academic Psychology. Perspectives on Psychological Science 15(4):1042-1053. SAGE Publications. doi:10.1177/1745691620904775
  712. Bonneel N, Coeurjolly D, Digne J, Mellado N. (2020): Code replicability in computer graphics. ACM Transactions on Graphics 39(4). Association for Computing Machinery (ACM). doi:10.1145/3386569.3392413
  713. Boyce DG, Lotze HK, Tittensor DP, et al. (2020): Future ocean biomass losses may widen socioeconomic equity gaps. Nat Commun 11:2235. doi:10.1038/s41467-020-15708-9
  714. Wibble T, Engström J, Pansell T. (2020): Visual and Vestibular Integration Express Summative Eye Movement Responses and Reveal Higher Visual Acceleration Sensitivity than Previously Described. Investigative Opthalmology Visual Science 61(5):4. Association for Research in Vision and Ophthalmology (ARVO). doi:10.1167/iovs.61.5.4
  715. Bergram K, Bezençon V, Maingot P, Gjerlufsen T, Holzer A. (2020): “Digital Nudges for Privacy Awareness: From consent to informed consent?”. Proceedings of the 28th European Conference on Information Systems (ECIS), An Online AIS Conference, June 15-17, 2020. https://aisel.aisnet.org/ecis2020_rp/64
  716. Pavlov YG, Kotchoubey B. (2020): The electrophysiological underpinnings of variation in verbal working memory capacity. Cold Spring Harbor Laboratory. doi:10.1101/200.05.02.073825
  717. ZHANG L, WEI X, LU J, PAN J. (2020): Lasso regression: From explanation to prediction. Advances in Psychological Science 28(10):1777. China Science Publishing & Media Ltd. doi:10.3724/sp.j.1042.2020.01777
  718. Fujiyoshi K, Chen Y, Haruki K, Ugai T, Kishikawa J, Hamada T, Liu L, Arima K, Borowsky J, Väyrynen JP, Zhao M, Lau MC, Gu S, Shi S, Akimoto N, Twombly TS, Drew DA, Song M, Chan AT, et al. (2020): Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectrum 4(5). Oxford University Press (OUP). doi:10.1093/jncics/pkaa040
  719. Power SA, Velez G. (2020): The MOVE Framework: Meanings, Observations, Viewpoints, and Experiences in processes of Social Change. Review of General Psychology 24(4):321-334. SAGE Publications. doi:10.1177/1089268020915841
  720. Carvalho AF, Solmi M, Sanches M. et al. (2020): Evidence-based umbrella review of 162 peripheral biomarkers for major mental disorders. Transl Psychiatry 10:152. doi:10.1038/s41398-020-0835-5
  721. Shaw M, Cloos LJR, Luong R, Elbaz S, Flake JK. (2020): Measurement practices in large-scale replications: Insights from Many Labs 2. Canadian Psychology/Psychologie canadienne 61(4):289-298. American Psychological Association (APA). doi:10.1037/cap0000220
  722. Pilch M, O’Hora D, Jennings C, Caes L, McGuire BE, Kainz V, Vervoort T. (2020): Perspective-taking influences attentional deployment towards facial expressions of pain: an eye-tracking study. Pain161(6):1286-1296. Ovid Technologies (Wolters Kluwer Health). doi:10.1097/j.pain.000000000000182
  723. Wang L, Wang Y, Chen Y, Pan X, Zhang W. (2020): Performance shaping factors dependence assessment through moderating and mediating effect analysis. Reliability Engineering & System Safety 107034. doi:10.1016/j.ress.2020.107034
  724. Zwolak R, Sih A. (2020): Animal personalities and seed dispersal: A conceptual review. K. Pum Lee (Ed.), Functional Ecology 34(7):1294-1310. Wiley. doi:10.1111/1365-2435.13583
  725. Himmelstein MS, Puhl RM, Pearl RL, Pinto AM, Foster GD. (2020): Coping with Weight Stigma Among Adults in a Commercial Weight Management Sample. International Journal of Behavioral Medicine 27(5):576-590. Springer Science and Business Media LLC. doi:10.1007/s12529-020-09895-4
  726. Jamieson RK, Pexman PM. (2020): Moving beyond 20 questions: We (still) need stronger psychological theory. Canadian Psychology/Psychologie canadienne 61(4):273-280. doi:10.1037/cap0000223
  727. Silva F. (2020): A probabilistic framework and significance test for the analysis of structural orientations in skyscape archaeology. Journal of Archaeological Science 118:105138. Elsevier BV. doi:10.1016/j.jas.2020.105138
  728. Rodriguez DN, Berry MA. (2020): Sensitizing jurors to eyewitness evidence using a counterfactual mindset induction. Applied Cognitive Psychology 34(3):768-775. doi:10.1002/acp.3667
  729. Fossen FM, Neyse L, Johanneson M, Dreber A. (2020): 2D:4D and Self-Employment Using SOEP Data: A Replication Study. SSRN Electronic Journal. Elsevier BV. doi:10.2139/ssrn.3583293
  730. Warren KL. (2020): Senior therapeutic community members show greater consistency when affirming peers: evidence of social learning. Therapeutic Communities: The International Journal of Therapeutic Communities 41(1):5-13. doi:10.1108/TC-11-2019-0014
  731. Yingbo L. (2020): Optimization of Rural Ecological Environment Governance Path from the Perspective of Marxist Philosophy. CONVIVIUM (41):689-698.
  732. Stachaczyk M, Atashzar SF, Farina D. (2020): Adaptive Spatial Filtering of High-Density EMG for Reducing the Influence of Noise and Artefacts in Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28(7):1511-1517. doi:10.1109/TNSRE.2020.2986099.
  733. Pearl RL, Puhl RM, Himmelstein MS, Pinto AM, Foster GD. (2020): Weight Stigma and Weight-Related Health: Associations of Self-Report Measures Among Adults in Weight Management. Annals of Behavioral Medicine 54(11):904-914. Oxford University Press (OUP). doi:10.1093/abm/kaaa026
  734. Lin J, Yu Y, Zhou Y, et al. (2020): How many preprints have actually been printed and why: a case study of computer science preprints on arXiv. Scientometrics 124:555-574. doi:10.1007/s11192-020-03430-8
  735. Samarei R, Mabarian S. (2020): A randomised trial comparing the subjective outcomes following septoplasty with or without inferior turbinoplasty. European Annals of Otorhinolaryngology, Head and Neck Diseases 137(4):277-283. Elsevier BV. doi:10.1016/j.anorl.2020.01.024
  736. Wright DB. (2020): Improving Trust in Research: Supporting Claims with Evidence. Open Education Studies 2(1):1-8. Walter de Gruyter GmbH. doi:10.1515/edu-2020-0106
  737. Bertol BC, Dias FC, Debortoli G, Souto BM, Mendonça PB, Araújo RC, et al. (2020): HLA-G liver expression and HLA-G extended haplotypes are associated with chronic hepatitis C in HIV-negative and HIV-coinfected patients. Clinical Immunology 108482. doi:10.1016/j.clim.2020.108482
  738. Sweeten G. (2020): Standard Errors in Quantitative Criminology: Taking Stock and Looking Forward. J Quant Criminol 36:263-272. doi:10.1007/s10940-020-09463-9
  739. Buss DM, Durkee PK, Shackelford TK, Bowdle BF, Schmitt DP, Brase GL, Choe JC, Trofimova I. (2020): Human status criteria: Sex differences and similarities across 14 nations. Journal of Personality and Social Psychology 119(5):979-998. doi:10.1037/pspa0000206
  740. Erosheva EA, Grant S, Chen M-C, Lindner MD, Nakamura RK, Lee CJ. (2020): NIH peer review: Criterion scores completely account for racial disparities in overall impact scores. Science Advances 6(23). American Association for the Advancement of Science (AAAS). doi:10.1126/sciadv.aaz4868
  741. Veronese N, Demurtas J, Thompson T, Solmi M, Pesolillo G, Celotto S, et al. (2020): Effect of low-dose aspirin on health outcomes: An umbrella review of systematic reviews and meta-analyses. British journal of clinical pharmacology 86(8):1465-1475. doi:10.1111/bcp.14310
  742. Spitzer MWH, Spitzer M. (2020): Die Replikationskrise in der Psychologie. Nervenheilkunde 39(6):404-416. doi:10.1055/a-1095-0144
  743. Hua J, Wang G, Huang M, Hua S, Yang S. (2020): A Visual Approach for the SARS (Severe Acute Respiratory Syndrome) Outbreak Data Analysis. International Journal of Environmental Research and Public Health 17(11):3973. MDPI AG. doi:10.3390/ijerph17113973
  744. Lundkvist E, Wagnsson S, Davis L, Ivarsson A. (2020): Integration of immigrant youth in Sweden: does sport participation really have an impact? International Journal of Adolescence and Youth 25(1):891-906. doi:10.1080/02673843.2020.1775099
  745. Armstrong-Carter E, Trejo S, Hill LJB, Crossley KL, Mason D, Domingue BW. (2020): The Earliest Origins of Genetic Nurture: The Prenatal Environment Mediates the Association Between Maternal Genetics and Child Development. Psychological Science 31(7):781-791. doi:10.1177/0956797620917209
  746. Turna J, Balodis I, Munn C, Van Ameringen M, Busse J, MacKillop J. (2020): Overlapping patterns of recreational and medical cannabis use in a large community sample of cannabis users. Comprehensive Psychiatry 102:152188. Elsevier BV. doi:10.1016/j.comppsych.2020.152188
  747. Granberg M, Andersson PA, Ahmed A. (2020): Hiring Discrimination Against Transgender People: Evidence from a Field Experiment. Labour Economics 65:101860. Elsevier BV. doi:10.1016/j.labeco.2020.101860
  748. Lin L. (2020): Factors that impact fragility index and their visualizations. Journal of Evaluation in Clinical Practice. doi:10.1111/jep.13428
  749. Meiri S, Avila L, Bauer AM, Chapple DG, Das I, Doan TM, et al. (2020): The global diversity and distribution of lizard clutch sizes. Global Ecology and Biogeography. doi:10.1111/geb.13124
  750. Polanin JR, Hennessy EA, Tsuji S. (2020): Transparency and Reproducibility of Meta-Analyses in Psychology: A Meta-Review. Perspectives on Psychological Science 174569162090641. doi:10.1177/1745691620906416
  751. List J. (2020): 2020: A Summary of Artefactual Field Experiments on fieldexperiments.com: The Who’s, What’s, Where’s, and When’sArtefactual Field Experiments 00721, The Field Experiments Website
  752. Hides L, Quinn C, Chan G, Cotton S, Pocuca N, Connor JP, Witkiewitz K, Daglish MRC, Young R McD, Stoyanov S, Kavanagh DJ. (2020): Telephone-based motivational interviewing enhanced with individualised personality-specific coping skills training for young people with alcohol-related injuries and illnesses accessing emergency or rest/recovery services: a randomized controlled trial (QuikFix). Addiction 116(3):474-484. Wiley. doi:10.1111/add.15146
  753. Soprun LA, Utekhin VJ, Gvozdetskiy AN, Akulin IM, Churilov LP. (2020): Anthropogenic environmental factors as triggers of type 1 diabetes mellitus in children. Pediatrician (St. Petersburg) 11(2):57-65. ECO-Vector LLC. doi:10.17816/ped11257-65
  754. Heggedal TR, Helland L, Knutsen MV. (2020): The Power of Outside Options in the Presence of Obstinate Types.
  755. Coqueret G. (2020): Stock-specific sentiment and return predictability. Quantitative Finance 20(9):1531-1551, doi:10.1080/14697688.2020.1736314
  756. Ballard T, Fisher G, Sewell DK. (2020): A systematic investigation of differences in perceptual decision-making as a function of the time and method of participant recruitment. Center for Open Science. doi:10.31234/osf.io/w9d67
  757. Rietveld CA, Slob EAW, Thurik AR. (2020): A decade of research on the genetics of entrepreneurship: a review and view ahead. Small Business Economics 57(3):1303-1317. Springer Science and Business Media LLC. doi:10.1007/s11187-020-00349-5
  758. Stähli BE, Roffi M, Eberli FR, Rickli H, Erne P, Maggiorini M, Pedrazzini G, Radovanovic D. (2020): Temporal trends in in-hospital complications of acute coronary syndromes: Insights from the nationwide AMIS Plus registry. International Journal of Cardiology 313:16-24. Elsevier BV. doi:10.1016/j.ijcard.2020.04.003
  759. Clayton G, Davis N, Holliday A, Joffe D, Oakley DS, Palermo FX, Poddar S, Rueda M. (2020): In-clinic event related potentials after sports concussion: A 4-year study. Journal of Pediatric Rehabilitation Medicine 13(1):81-92. IOS Press. doi:10.3233/prm-190620
  760. Cinelli C, Ferwerda J, Hazlett C. (2020): Sensemakr: Sensitivity Analysis Tools for OLS in R and Stata. SSRN Electronic Journal. Elsevier BV. doi:10.2139/ssrn.3588978
  761. Hoover BA, Miller JA, Long J. (2020): Mapping areas of asynchronous-temporal interaction in animal-telemetry data. Transactions in GIS 24(3):573-586. Wiley. doi:10.1111/tgis.12622
  762. Han SJ, Stieha V. (2020): Growth Mindset for Human Resource Development: A Scoping Review of the Literature with Recommended Interventions. Human Resource Development Review 19(3):309-331. SAGE Publications. doi:10.1177/1534484320939739
  763. Gibson EW. (2020): The Role of p-Values in Judging the Strength of Evidence and Realistic Replication Expectations. Statistics in Biopharmaceutical Research 13(1):6-18. Informa UK Limited. doi:10.1080/19466315.2020.1724560
  764. Tackman AM, Baranski EN, Danvers AF, Sbarra DA, Raison CL, Moseley SA, Polsinelli AJ, Mehl MR. (2020): ‘Personality in its Natural Habitat’ Revisited: A Pooled, Multi-sample Examination of the Relationships between the Big Five Personality Traits and Daily Behaviour and Language Use. European Journal of Personality 34(5):753-776. SAGE Publications. doi:10.1002/per.2283
  765. Thibault RT, Munafò MR. (2020): Commentary: Improving our statistical inferences requires meta-research. International Journal of Epidemiology 49(3):894-895. Oxford University Press (OUP). doi:10.1093/ije/dyaa051
  766. Ho SY, Wong L, Goh WWB. (2020): Avoid Oversimplifications in Machine Learning: Going beyond the Class-Prediction Accuracy. Patterns 1(2):100025. Elsevier BV. doi:10.1016/j.patter.2020.100025
  767. Aurtenetxe S, Molinaro N, Davidson D, Carreiras M. (2020): Early dissociation of numbers and letters in the human brain. Cortex 130:192-202. Elsevier BV. doi:10.1016/j.cortex.2020.03.030
  768. Kleinberg B. (2020): Manipulating emotions for ground truth emotion analysis (Version 1). arXiv. doi:10.48550/ARXIV.2006.08952
  769. Flournoy JC, Vijayakumar N, Cheng TW, Cosme D, Flannery JE, Pfeifer JH. (2020): Improving practices and inferences in developmental cognitive neuroscience. Developmental Cognitive Neuroscience45:100807. Elsevier BV. doi:10.1016/j.dcn.2020.100807
  770. Piroli F, Angelini F, D’Ascenzo F, De Ferrari GM. (2020): Does lowering p value threshold to 0.005 impact on evidence-based medicine? An analysis of current European Society of Cardiology guidelines on STEMI. European Journal of Internal Medicine 79:147-148. Elsevier BV. doi:10.1016/j.ejim.2020.05.036
  771. Mann FD, Atherton OE, DeYoung CG, Krueger RF, Robins RW. (2020): Big five personality traits and common mental disorders within a hierarchical taxonomy of psychopathology: A longitudinal study of Mexican-origin youth. Journal of Abnormal Psychology 129(8):769-787. doi:10.1037/abn0000633
  772. Gao J. (2020): P-values – a chronic conundrum. BMC Med Res Methodol 20(167). doi:10.1186/s12874-020-01051-6
  773. Rice DB, Raffoul H, Ioannidis JPA, Moher D. (2020): Academic criteria for promotion and tenure in biomedical sciences faculties: cross sectional analysis of international sample of universities. BMJ m2081. BMJ. doi:10.1136/bmj.m2081
  774. Gervais WM, McKee SE, Malik S. (2020): Do Religious Primes Increase Risk Taking? Evidence Against “Anticipating Divine Protection” in Two Preregistered Direct Replications of Kupor, Laurin, and Levav (2015). Psychological Science 31(7):858-864. SAGE Publications. doi:10.1177/0956797620922477
  775. Kline B. (2020): Classical p-values and the Bayesian posterior probability that the hypothesis is approximately true.
  776. Keysers C, Gazzola V. Wagenmakers EJ. (2020): Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat Neurosci 23:788-799. doi:10.1038/s41593-020-0660-4
  777. Veronese N, Smith L, Bolzetta F, et al. (2020): Efficacy of conservative treatments for hand osteoarthritis. Wien Klin Wochenschr 133:234-240. doi:10.1007/s00508-020-01702-0
  778. Li C, Shen H, Sheng X, Wei H, Chen J. (2020): Kinetics and fractionation of carbon and oxygen isotopes during the solid-phase transformation of biogenic aragonite to calcite: The effect of organic matter. Palaeogeography, Palaeoclimatology, Palaeoecology 556:109876. doi:10.1016/j.palaeo.2020.109876
  779. Kantonen T, Karjalainen T, Isojärvi J, Nuutila P, Tuisku J, Rinne J, Hietala J, Kaasinen V, Kalliokoski K, Scheinin H, Hirvonen J, Vehtari A, Nummenmaa L. (2020): Interindividual variability and lateralization of μ-opioid receptors in the human brain. NeuroImage 217:116922. Elsevier BV. doi:10.1016/j.neuroimage.2020.116922
  780. TARG Meta-Research Group. (2020): Statistics education in undergraduate psychology: A survey of UK course content. Center for Open Science. doi:10.31234/osf.io/jv8x3
  781. Li JJ, Tong X. (2020): Statistical Hypothesis Testing versus Machine Learning Binary Classification: Distinctions and Guidelines. Patterns 1(7):100115. Elsevier BV. doi:10.1016/j.patter.2020.100115
  782. Holtz P. (2020): Two Questions to Foster Critical Thinking in the Field of Psychology. Meta-Psychology 4. Linnaeus University. doi:10.15626/mp.2018.984
  783. Lautenbacher LM, Neyse L. (2020): Depression, neuroticism and 2D:4D ratio: evidence from a large, representative sample. Sci Rep 10:11136. doi:10.1038/s41598-020-67882-x
  784. Świątkowski W, Carrier A. (2020): There is Nothing Magical about Bayesian Statistics: An Introduction to Epistemic Probabilities in Data Analysis for Psychology Starters. Basic and Applied Social Psychology 42(6):387-412. Informa UK Limited. doi:10.1080/01973533.2020.1792297
  785. Fujiyoshi K, Väyrynen JP, Borowsky J, Papke DJ Jr., Arima K, Haruki K, Kishikawa J, Akimoto N, Ugai T, Lau MC, Gu S, Shi S, Zhao M, Da Silva AFL, Twombly TS, Nan H, Meyerhardt JA, Song M, Zhang X, et al. (2020): Tumour budding, poorly differentiated clusters, and T-cell response in colorectal cancer. EBioMedicine 57:102860. Elsevier BV. doi:10.1016/j.ebiom.2020.102860
  786. Marshall R. (2020): The Myers-Briggs Personality System and its Moderating Effects on the Relationship Between Job Characteristics and Job Satisfaction. Electronic Theses, Projects, and Dissertations 1084. https://scholarworks.lib.csusb.edu/etd/1084
  787. Wang L, Hang D, He X, Lo C, Wu K, Chan AT, Ogino S, Giovannucci EL, Song M. (2020): A prospective study of erythrocyte polyunsaturated fatty acids and risk of colorectal serrated polyps and conventional adenomas. International Journal of Cancer 148(1):57-66. Wiley. doi:10.1002/ijc.33190
  788. McLatchie NM, Warmelink L, Tkacheva D. (2020): Reply to Mac Giolla and Ly (2019): On the reporting of Bayes factors in deception research. Legal and Criminological Psychology 25(2):72-79. Wiley. doi:10.1111/lcrp.12177
  789. Kelter R. (2020): Bayesian and frequentist testing for differences between two groups with parametric and nonparametric two-sample tests. WIREs Computational Statistics 3(6). Wiley. doi:10.1002/wics.1523
  790. Fabrigar LR, Wegener DT, Petty RE. (2020): A Validity-Based Framework for Understanding Replication in Psychology. Personality and Social Psychology Review 24(4):316-344. SAGE Publications. doi:10.1177/1088868320931366
  791. Zahrai K. (2020): Either you control social media or social media controls you: a multi-paradigmatic approach to understanding excessive social media use. A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Marketing in the University of Canterbury.
  792. Groot HE, van Blokland IV, Lipsic E, Karper JC, van der Harst P. (2020): Leukocyte profiles across the cardiovascular disease continuum: A population-based cohort study. Journal of Molecular and Cellular Cardiology. doi:10.1016/j.yjmcc.2019.11.156
  793. Perneger TV, Brindel P, Combescure C, Gayet-Ageron A. (2020): Evidence of survival benefit was often ambiguous in randomized trials of cancer treatments. Journal of Clinical Epidemiology 127:1-8. Elsevier BV. doi:10.1016/j.jclinepi.2020.06.026
  794. Yazici H. (2020): The P-value crisis and the issue of causality. Rheumatology 59(7):1467-1468. Oxford University Press (OUP). doi:10.1093/rheumatology/keaa152
  795. Gade M, Paelecke M, Rey-Mermet A. (2020): Simon Says-On the influence of stimulus arrangement, stimulus material and inner speech habits on the Simon effect. Journal of Experimental Psychology: Learning, Memory, and Cognition 46(7):1349-1363. doi:10.1037/xlm0000789
  796. Szucs D, Ioannidis JPA. (2020): Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990-2012) and of latest practices (2017-2018) in high-impact journals. NeuroImage221:117164. Elsevier BV. doi:10.1016/j.neuroimage.2020.117164
  797. Alger BE. (2020): Scientific Hypothesis-Testing Strengthens Neuroscience Research. eneuro 7(4):ENEURO.0357-19.2020. Society for Neuroscience. doi:10.1523/eneuro.0357-19.2020
  798. Cockburn A, Dragicevic P, Besançon L, Gutwin C. (2020): Threats of a replication crisis in empirical computer science. Communications of the ACM 63(8):70-79. Association for Computing Machinery (ACM). doi:10.1145/3360311
  799. Gordon M, Viganola D, Bishop M, Chen Y, Dreber A, Goldfedder B, Holzmeister F, Johannesson M, Liu Y, Twardy C, Wang J, Pfeiffer T. (2020): Are replication rates the same across academic fields? Community forecasts from the DARPA SCORE programme. Royal Society Open Science 7(7):200566. The Royal Society. doi:10.1098/rsos.200566
  800. Ince RAA, Paton AT, Kay JW, Schyns PG. (2020): Bayesian inference of population prevalence. Cold Spring Harbor Laboratory. doi:10.1101/2020.07.08.191106
  801. De Longis E, Alessandri G. (2020): Temporal dependency of emotional states at work and its relationship with dynamic performance. Social Psychological Bulletin 15(2). Leibniz Institute for Psychology (ZPID). doi:10.32872/spb.2975
  802. Semenyna SW, Gómez Jiménez FR, VanderLaan DP, Vasey PL. (2020): Inter-sexual mate competition in three cultures. Sorokowski P. (Ed.), PLOS ONE 15(7):e0236549. Public Library of Science (PLoS). doi:10.1371/journal.pone.0236549
  803. Afiaz A, Biswas RK, Shamma R, Ananna N. (2020): Intimate partner violence (IPV) with miscarriages, stillbirths and abortions: Identifying vulnerable households for women in Bangladesh. R. Kabir (Ed.), PLOS ONE 15(7):e0236670. Public Library of Science (PLoS). doi:10.1371/journal.pone.0236670
  804. Xing A, Chu H, Lin L. (2020): Fragility index of network meta-analysis with application to smoking cessation data. Journal of Clinical Epidemiology 127:29-39. Elsevier BV. doi:10.1016/j.jclinepi.2020.07.003
  805. Aiken A, Clare PJ, Boland VC, Degenhardt L, Yuen WS, Hutchinson D, Najman J, McCambridge J, Slade T, McBride N, De Torres C, Wadolowski M, Bruno R, Kypri K, Mattick RP, Peacock A. (2020): Parental supply of sips and whole drinks of alcohol to adolescents and associations with binge drinking and alcohol-related harms: A prospective cohort study. Drug and Alcohol Dependence 215:108204. Elsevier BV. doi:10.1016/j.drugalcdep.2020.108204
  806. Vuillier L, Carter Z, Teixeira AR, et al. (2020): Alexithymia may explain the relationship between autistic traits and eating disorder psychopathology. Molecular Autism 11(63). doi:10.1186/s13229-020-00364-z
  807. Backhausen LL, Herting M, Tamnes CK, Vetter NC. (2020): Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Center for Open Science. doi:10.31234/osf.io/br38j
  808. Kock F. (2020): The Behavioral Ecology of Sex Tourism: The Consequences of Skewed Sex Ratios. Journal of Travel Research 60(6):1252-1264. SAGE Publications. doi: 10.1177/0047287520946106
  809. Potter GE. (2020): Dismantling the Fragility Index: A demonstration of statistical reasoning. Statistics in Medicine 39(26):3720-3731. Wiley. doi:10.1002/sim.8689
  810. Vasilaky KN, Brock JM. (2020): Power(ful) guidelines for experimental economists. J Econ Sci Assoc 6:189-212. doi:10.1007/s40881-020-00090-5
  811. Kent M, Schiavon S. (2020): Evaluation of the effect of landscape distance seen in window views on visual satisfaction. Building and Environment 183:107160. Elsevier BV. doi:10.1016/j.buildenv.2020.107160
  812. Bowman ND, Spence PR. (2020): Challenges and Best Practices Associated with Sharing Research Materials and Research Data for Communication Scholars. Communication Studies 71(4):708-716. Informa UK Limited. doi:10.1080/10510974.2020.1799488
  813. Fico M. (2020): Nástroje na zlepšenie štatistickej inferencie – analýza p-kriviek a ekvivalenčné testovanie. Sociológia – Slovak Sociological 52(4):323-353. Central Library of the Slovak Academy of Sciences. doi:10.31577/sociologia.2020.52.4.14
  814. Frias-Navarro D, Pascual-Llobell J, Pascual-Soler M, Perezgonzalez J, Berrios-Riquelme J. (2020): Replication crisis or an opportunity to improve scientific production? European Journal of Education 55(4):618-631. doi:10.1111/ejed.12417
  815. Demir İ, Çalık P. (2020): Hybrid-architectured double-promoter expression systems enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media. Appl Microbiol Biotechnol 104:8381-8397. doi:10.1007/s00253-020-10796-5
  816. Hoogeveen S, Sarafoglou A, Wagenmakers E-J. (2020): Laypeople Can Predict Which Social-Science Studies Will Be Replicated Successfully. Advances in Methods and Practices in Psychological Science 3(3):267-285. SAGE Publications. doi:10.1177/2515245920919667
  817. Kiengsiri J, Rieger C, Walsh C. (2020): Analysis of the multiple award contracting strategy on US government husbanding service provider (HSP) prices. Doctoral dissertation, Acquisition Research Program.
  818. Klement RJ, Champ CE, Kämmerer U, et al. (2020): Impact of a ketogenic diet intervention during radiotherapy on body composition: III. Final results of the KETOCOMP study for breast cancer patients. Breast Cancer Res 22:94. doi:10.1186/s13058-020-01331-5
  819. Upshur R, Goldenberg M. (2020): Countering medical nihilism by reconnecting facts and values. Studies in History and Philosophy of Science Part A. doi:10.1016/j.shpsa.2020.08.005
  820. Hong S-J, Xu T, Nikolaidis A, Smallwood J, Margulies DS, Bernhardt B, Vogelstein J, Milham MP. (2020): Toward a connectivity gradient-based framework for reproducible biomarker discovery. NeuroImage 223:117322. Elsevier BV. doi:10.1016/j.neuroimage.2020.117322
  821. Zheng A, Briley DA, Jacobucci R, Harden KP, Tucker-Drob EM. (2020): Incremental Validity of Character Measures Over the Big Five and Fluid intelligence in Predicting Academic Achievement. Center for Open Science. doi:10.31234/osf.io/652qz
  822. Calonga-Solí­s V, Amorim LM, Farias TDJ, Petzl-Erler ML, Malheiros D, Augusto DG. (2020): Variation in genes implicated in B-cell development and antibody production affects susceptibility to pemphigus. Immunology 162(1):58-67. Wiley. doi:10.1111/imm.13259
  823. NIZ-RAMOS J. (2020): The fallacies of P and statical significance. Ginecol. obstet. Mex. [online]. 88(8):536-541. doi:10.24245/gom.v88i8.4534.
  824. Rubin M. (2020): Does preregistration improve the credibility of research findings? The Quantitative Methods in Psychology 16(4):376-390. doi:10.20982/tqmp.16.4.p376
  825. Hung K, Fithian W. (2020): Statistical methods for replicability assessment. The Annals of Applied Statistics 14(3). Institute of Mathematical Statistics. doi:10.1214/20-aoas1336
  826. de Koning M-SLY, Assa S, Maagdenberg CG, van Veldhuisen DJ, Pasch A, van Goor H, Lipsic E, van der Harst P. (2020): Safety and Tolerability of Sodium Thiosulfate in Patients with an Acute Coronary Syndrome Undergoing Coronary Angiography: A Dose-Escalation Safety Pilot Study (SAFE-ACS). Journal of Interventional Cardiology 2020:1-8. Hindawi Limited. doi:10.1155/2020/6014915
  827. Kekecs Z, Szaszi B, Aczel B. (2020): ECO, an expert consensus procedure for developing robust scientific outputs. PsyArXiv. September, 25.
  828. Yuen WS, Chan G, Bruno R, Clare P, Mattick R, Aiken A, Boland V, McBride N, McCambridge J, Slade T, Kypri K, Horwood J, Hutchinson D, Najman J, De Torres C, Peacock A. (2020): Adolescent Alcohol Use Trajectories: Risk Factors and Adult Outcomes. Pediatrics 146(4). American Academy of Pediatrics (AAP). doi:10.1542/peds.2020-0440
  829. VanderWeele TJ, Mathur MB, Chen Y. (2020): Outcome-Wide Longitudinal Designs for Causal Inference: A New Template for Empirical Studies. Statist Sci 35(3):437-466. doi:10.1214/19-sts728
  830. Powell L. (2020): Robust and automated motion correction for real infant fNIRS data.
  831. Arroyo-Barriguete JL, Tirado G, Mahillo-Fernandez I, Ramirez PJ. (2020): Predictors of performance in business administration degrees: The effect of the high-school specialty. Revista de Educacion 2020(390):129-154.
  832. Kcomt L, Evans-Polce RJ, Engstrom CW, West BT, McCabe SE. (2020): Discrimination, Sexual Orientation Discrimination, and Severity of Tobacco Use Disorder in the United States: Results From the National Epidemiologic Survey on Alcohol and Related Conditions-III. Nicotine & Tobacco Research 23(6):920-930. doi:10.1093/ntr/ntaa197
  833. Chabert S, Sénéchal C, Fougeroux A, Pousse J, Richard F, Nozières E, Geist O, Guillemard V, Leylavergne S, Malard C, Benoist A, Carré G, Caumes É, Cenier C, Treil A, Danflous S, Vaissière BE. (2020): Effect of environmental conditions and genotype on nectar secretion in sunflower (Helianthus annuus L.). OCL 27(51). doi:10.1051/ocl/2020040
  834. Smillie LD, Katic M, Laham SM. (2020): Personality and moral judgment: Curious consequentialists and polite deontologists. J Pers. 89(3):549-564. doi:10.1111/jopy.12598
  835. Mansour NM, Balas EA, Yang FM, Vernon MM. (2020): Prevalence and Prevention of Reproducibility Deficiencies in Life Sciences Research: Large-Scale Meta-Analyses. Medical science monitor: international medical journal of experimental and clinical research 26:e922016. doi:10.12659/MSM.922016
  836. Pandolfi JM, Staples TL, Kiessling W. (2020): Increased extinction in the emergence of novel ecological communities. Science 370(6513):220-222. doi:10.1126/science.abb3996
  837. Wang L, He X, Ugai T, Haruki K, Lo C-H, Hang D, Akimoto N, Fujiyoshi K, Wang M, Fuchs CS, Meyerhardt JA, Zhang X, Wu K, Chan AT, Giovannucci EL, Ogino S, Song M. (2020): Risk Factors and Incidence of Colorectal Cancer According to Major Molecular Subtypes. JNCI Cancer Spectrum 5(1). doi:10.1093/jncics/pkaa089
  838. Moore S. (2020): The Road to Hell: How Race Paternalism Shapes Political Behavior. Doctoral dissertation, University of Michigan.
  839. Chen Z. (2020): Statistical Methods for Aggregation of Sequence Data and Multiple Testing Correction in Common and Rare Variant Analysis. Doctoral dissertation, University of Michigan.
  840. Karch J. (2020): Improving on Adjusted R-Squared. Collabra: Psychology 6(1):45. doi:10.1525/collabra.343
  841. Zhang C, Mei Z, Pei J, Abe M, Zeng X, Huang Q, Nishiyama K, Akimoto N, Haruki K, Nan H, Meyerhardt JA, Zhang R, Li X, Ogino S, Ugai T. (2020): A Modified Tumor-Node-Metastasis Classification for Primary Operable Colorectal Cancer. JNCI Cancer Spectrum 5(1). doi:10.1093/jncics/pkaa093
  842. Gaievskyi S. (2020): Risk factors associated with mortality during ems care: a case-control study (in Vinnytsia region). Master thesis, MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE, National University of Kyiv-Mohyla Academy.
  843. Bickel DR. (2020):  Null Hypothesis Significance Testing Interpreted and Calibrated by Estimating Probabilities of Sign Errors: A Bayes-Frequentist Continuum. The American Statistician 75(1). doi:10.1080/00031305.2020.1816214
  844. Fink J, Palan S, Theissen E. (2020): Earnings Autocorrelation and the Post-Earnings-Announcement Drift – Experimental Evidence. SSRN Journal. doi:10.2139/ssrn.3713106
  845. McAskill W. (2020): Are we Living at the Hinge of History? GPI Working Paper, 12.
  846. Kuzovkin I. (2020): Understanding Information Processing in Human Brain by Interpreting Machine Learning Models. doi:10.48550/ARXIV.2010.08715
  847. Marasini D, Quatto P, Ripamonti E. (2020): Dopo l’era del p-value < 0.05. Giornale italiano di psicologia 2:639-652. doi:10.1421/97890
  848. Held L, Pawel S. (2020): Comment on “The Role of p-Values in Judging the Strength of Evidence and Realistic Replication Expectations” Statistics in Biopharmaceutical Research 13(1). doi:10.1080/19466315.2020.1828161
  849. Tschantret J. (2020): Essays on Categorical Violence. The University of Iowa‚ProQuest Dissertations Publishing.
  850. Ulrich R, Miller J. (2020): Questionable research practices may have little effect on replicability. eLife 9:e58237. doi:10.7554/elife.58237
  851. Mohseni A (2020): HARKing: From Misdiagnosis to Mispescription.  [Preprint]. http://philsci-archive.pitt.edu/id/eprint/18523
  852. Lee EM. (2020): A Statistical Analysis of Long-term trends in UK Effective Rainfall: Implications for Deep-seated Landsliding. Quarterly Journal of Engineering Geology and Hydrogeology 53:587-597. doi:10.1144/qjegh2019-169
  853. Cortés-Gómez AA, Romero D, Santos J, Rivera-Hernández JR, Girondot M. (2020): Inorganic elements in live vs dead nesting olive ridley marine turtles in the Mexican Pacific: Introducing a new statistical methodology in ecotoxicology. Science of The Total Environment 143249. doi:10.1016/j.scitotenv.2020.143249
  854. Walczak EJ. (2020): Assessing brain activity related to speech production and perception using tonal stimuli. Doctoral dissertation, UCL (University College London).
  855. de la Vega C, Mahaffey C, Tuerena RE, Yurkowski DJ, Ferguson SH, Stenson GB, Nordøy ES, Haug T, Biuw M, Smout S, Hopkins J, Tagliabue A, Jeffreys RM. (2020): Arctic seals as tracers of environmental and ecological change. Limnol Oceanogr Letters 6:24-32. doi:10.1002/lol2.10176
  856. Wenzel M, Staab D, Rowland Z, van Scheppingen MA. (2020): Relationship Satisfaction Can Help to Maintain the Positive Effect of Childbirth on Parental Self-Esteem. Social Psychological and Personality Science. doi:10.1177/1948550620971532
  857. Grawitch MJ, Lavigne K, Cornelius A, Gill R, Winton S. (2020): Resilience and Adaptivity Were Strong Correlates of Wellbeing in the Early Stages of the Covid-19 Pandemic. PsyArXiv. doi:10.31234/osf.io/ce84n
  858. Schimmack U. (2020): A meta-psychological perspective on the decade of replication failures in social psychology. Canadian Psychology/Psychologie canadienne 61(4):364-376. doi:10.1037/cap0000246
  859. Somo A, Sadler M, Devos T. (2020): Implicit black-weapon associations weakened over time in increasingly multiethnic metropolitan areas. Analyses of Social Issues and Public Policy. doi:10.1111/asap.12228
  860. Klement RJ, Koebrunner PS, Krage K, Sweeney RA. (2020): Low Vitamin D Status in a Cancer Patient Population from Franconia, Germany. Complement Med Res doi:10.1159/000511993
  861. Sonon P, Brito Ferreira ML, Santos Almeida R, Saloum Deghaide NH, Henrique Willcox G, Guimarães EL, da Purificação Júnior AF, Cordeiro MT, Antunes de Brito CA, de Albuquerque M de FM, Lins RD, Donadi EA, Lucena-Silva N. (2020): Differential Frequencies of HLA-DRB1, DQA1, and DQB1 Alleles and Haplotypes Are Observed in the Arbovirus-Related Neurological Syndromes. The Journal of Infectious Diseases 224(3):517-525. doi:10.1093/infdis/jiaa764
  862. Lin X. (2020): Learning Lessons on Reproducibility and Replicability in Large Scale Genome-Wide Association Studies. Harvard Data Science Review 2(4). doi:10.1162/99608f92.33703976
  863. Krpan D. (2020): Beyond a Dream: The Practical Foundations of Disconnected Psychology. PsyArXiv.
  864. Mahmud MMB. (2020): Implementing Environmental Management: The Impact of Organisational Internal/External Factors and the Outcome on Product Innovation Among Manufacturing Firms. Doctoral dissertation, Lancaster University.
  865. Finkel AM, Gray GM. (2020): The Pebble Remains in the Master‘s Hand: Two Careers Spent Learning (Still) from John Evans. Risk Analysis 41(4):678-693. doi:10.1111/risa.13649
  866. Grünwald P, de Heide R, Koolen WM. (2020): Safe Testing. 2020 Information Theory and Applications Workshop (ITA) 1-54. doi:10.1109/ITA50056.2020.9244948.
  867. Romanov V, Silvani G, Zhu H, Cox CD, Martinac B. (2020): An Acoustic Platform for Single-Cell, High-Throughput Measurements of the Viscoelastic Properties of Cells. Small 17(3):2005759. doi:10.1002/smll.202005759
  868. Passon O, von der Twer T. (2020): Evidenz, Signifikanz und das kleine p. Zeitschrift für Bildungsforschung. 10:377-395. doi:10.1007/s35834-020-00282-3
  869. Cerdá Alberich L, Sangüesa Nebot C, Alberich-Bayarri A, Carot Sierra JM, Martínez de las Heras B, Veiga Canuto D, Cañete A, Martí­-Bonmatí­ L. (2020): A Confidence Habitats Methodology in MR Quantitative Diffusion for the Classification of Neuroblastic Tumors. Cancers 12:3858. doi:10.3390/cancers12123858
  870. Sun J, Rhemtulla M, Vazire S. (2020): Eavesdropping on Missing Data: What Are University Students Doing When They Miss Experience Sampling Reports? Pers Soc Psychol Bull. doi:10.1177/0146167220964639
  871. Laccourreye O, Jankowski R, Lisan Q. (2020): Mastering the descriptive statistics used in otorhinolaryngology. European Annals of Otorhinolaryngology. Head and Neck Diseases 138(5):387-390. doi:10.1016/j.anorl.2020.12.004
  872. Dempsey W, Mukherjee B. (2020): Reflecting on “Statistician in Medicine” in 2020. Statistics in Medicine. doi:10.1002/sim.8830
  873. Hartman E. (2020): Equivalence Testing for Regression Discontinuity Designs. Polit Anal. doi:10.1017/pan.2020.43
  874. Caron BR. (2020): Open Scientist Handbook. doi:10.21428/8bbb7f85.35a0e14b
  875. Said MA, van de Vegte YJ, Verweij N, van der Harst P. (2020): Associations of Observational and Genetically Determined Caffeine Intake With Coronary Artery Disease and Diabetes Mellitus. JAHA 9(24). doi:10.1161/jaha.120.016808
  876. Burns C, Thomason J, Tansey W. (2020): Interpreting Black Box Models via Hypothesis Testing. Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference 47-57. doi:10.1145/3412815.3416889
  877. Björk Gunnarsdottir F, Auoja N, Bendahl P-O, Rydén L, Fernö M, Leandersson K. (2020): Co-localization of CD169+ macrophages and cancer cells in lymph node metastases of breast cancer patients is linked to improved prognosis and PDL1 expression. OncoImmunology 9(1). doi:10.1080/2162402x.2020.1848067
  878. Green EJ, Finley AO, Strawderman WE. (2020): Hypothesis Testing and Model Choice. In: Introduction to Bayesian Methods in Ecology and Natural Resources. Springer, Cham. doi:10.1007/978-3-030-60750-0_5
  879. Hyatt CS, Hallowell ES, Owens MM, Weiss BM, Sweet LH, and Miller JD. (2020): An fMRI investigation of the relations between Extraversion, internalizing psychopathology, and neural activation following reward receipt in the Human Connectome Project sample. Personality Neuroscience Vol 3(e13):1-15. doi:10.1017/pen.2020.11
  880. Nio AQX. (2020): The effects of the menopause on left ventricular mechanics. Doctoral dissertation, Cardiff Metropolitan University.
  881. Held L, Pawel S, Schwab S. (2020): Replication power and regression to the mean. Significance 17(6):10-11. doi:10.1111/1740-9713.01462
  882. Feldt M, Menard J, Rosendahl AH, et al. (2020): The effect of statin treatment on intratumoral cholesterol levels and LDL receptor expression: a window-of-opportunity breast cancer trial. Cancer Metab8:25. doi:10.1186/s40170-020-00231-8
  883. Montgomery III, LA. (2020): An Examination of the Relationship Between HRM Bundles and Employee Engagement Among Hospitality Workers. Doctoral dissertation, Northcentral University.
  884. Väyrynen JP, Haruki K, Lau MC, Väyrynen SA, Zhong R, Dias Costa A, Borowsky J, Zhao M, Fujiyoshi K, Arima K, Twombly TS, Kishikawa J, Gu S, Aminmozaffari S, Shi S, Baba Y, Akimoto N, Ugai T, Da Silva A, Guerriero JL, Song M, Wu K, Chan AT, Nishihara R, Fuchs CS, Meyerhardt JA, Giannakis M, Ogino S, Nowak JA. (2020): The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol Res 9(1):8-19. doi:10.1158/2326-6066.cir-20-0527
  885. Kirkegaard EO, Karlin A. (2020): National Intelligence Is More Important for Explaining Country Well-Being than Time Preference and Other Measured Non-Cognitive Traits. The Mankind Quarterly 61(2):339-370.
  886. Dai M, Hu X, Gu F. (2020): Citizen Characteristics, Neighbourhood Conditions, and Prior Contacts with the Police: A Comparative Study of Public Satisfaction with the Police. Canadian Journal of Criminology and Criminal Justice 62(4):77-101. doi:10.3138/cjccj.2020-0026
  887. Park J, Lee J, Shin K. (2020): Expansion of job demands-resources model by applying the circumplex model of affect: The role of dominant promotion-focus and LMX on the effects of job demands to two-dimensional view of work-related subjective well-being. Korean Journal of Industrial and Organizational Psychology 33(4):501-543. doi:10.24230/kjiop.v33i4.501-543
  888. Marcotte S. (2020): Des stratégies pédagogiques utilisées en classe de français pour développer la compétence scripturale des élèves. Doctoral dissertation, Université de Montréal.
  889. Ye Y, Shrestha S, Burkholder G, Bansal A, Erdmann N, Wiener H, Tang J. (2020): Rates and Correlates of Incident Type 2 Diabetes Mellitus Among Persons Living With HIV-1 Infection. Front Endocrinol. doi:10.3389/fendo.2020.555401
  890. Squazzoni F, Bravo G, Grimaldo F, García-Costa D, Farjam M, Mehmani B. (2020): No Tickets for Women in the COVID-19 Race? A Study on Manuscript Submissions and Reviews in 2347 Elsevier Journals during the Pandemic. DOI: 10.2139/ssrn.3712813
  891. Khamesi AR, Musmeci R, Silvestri S, Baker DA. (2020): Reproducibility of Survey Results: A New Method to Quantify Similarity of Human Subject Pools. GLOBECOM 2020 – 2020 IEEE Global Communications Conference 1-7. doi:10.1109/GLOBECOM42002.2020.9348076.
  892. Dora J. (2020): A motivational perspective on smartphone behavior. Doctoral dissertation, Radboud University.
  893. Marqués G, Pengo T, Sanders MA. (2020): Imaging methods are vastly underreported in biomedical research. eLife 9. eLife Sciences Publications, Ltd. doi:10.7554/elife.55133
  894. Väyrynen JP, Lau MC, Haruki K, Väyrynen SA, Dias Costa A, Borowsky J, Zhao M, Fujiyoshi K, Arima K, Twombly TS, Kishikawa J, Gu S, Aminmozaffari S, Shi S, Baba Y, Akimoto N, Ugai T, Da Silva A, Song M, et al. (2020): Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin-Stained Sections. Clinical Cancer Research 26(16):4326-4338. American Association for Cancer Research (AACR). doi:10.1158/1078-0432.ccr-20-0071
  895. Kong X, Francks C, Kong X, et al. (2020): Reproducibility in the absence of selective reporting: An illustration from large-scale brain asymmetry research. Human Brain Mapping 43(1):244-254. Wiley. doi:10.1002/hbm.25154
  896. Gureje O, Appiah-Poku J, Bello T, Kola L, Araya R, Chisholm D, Esan O, Harris B, Makanjuola V, Othieno C, Price L, Seedat S. (2020): Effect of collaborative care between traditional and faith healers and primary health-care workers on psychosis outcomes in Nigeria and Ghana (COSIMPO): a cluster randomised controlled trial. The Lancet 396(10251):612-622. Elsevier BV. doi:10.1016/s0140-6736(20)30634-6
  897. Choi YM, Chong SC. (2020): Effects of Selective Attention on Mean-Size Computation: Weighted Averaging and Perceptual Enlargement. Psychological Science 31(10):1261-1271. SAGE Publications. doi:10.1177/0956797620943834
  898. Pino G, Zhang CX, Wang Z. (2020): “(S)he’s so hearty”: Gender cues, stereotypes, and expectations of warmth in peer-to-peer accommodation services. International Journal of Hospitality Management 91:102650. Elsevier BV. doi:10.1016/j.ijhm.2020.102650
  899. Kai M, Elmassry M, Farag MA. (2020): Sampling, Detection, Identification, and Analysis of Bacterial Volatile Organic Compounds (VOCs). In: Ryu CM, Weisskopf L, Piechulla B, (eds). Bacterial Volatile Compounds as Mediators of Airborne Interactions. Springer, Singapore. doi:10.1007/978-981-15-7293-7_12
  900. Alos-Ferrer C, Yechiam E. (2020): At the eve of the 40th anniversary of the Journal of Economic Psychology: standards, practices, and challenges. Elsevier. doi:10.5167/UZH-190248
  901. Vilgis TA. (2020): Zurück zum Genuss. Biophysik der Ernährung 419-485. Springer Berlin Heidelberg. doi:10.1007/978-3-662-61151-7_6
  902. Vilgis TA. (2020): Fazit – oder: Was bleibt? Biophysik der Ernährung 487-497. Springer Berlin Heidelberg. doi:10.1007/978-3-662-61151-7_7
  903. De Comite A, Crevecoeur F, Lefèvre P. (2020): Online modification of goal-directed control in human reaching movements. Cold Spring Harbor Laboratory. doi:10.1101/2020.09.03.280784
  904. Segerstrom SC. (2020): Statistical Guideline . Indicate magnitude and precision in your estimation and use “new statistics”. Int.J. Behav. Med. 27:487-489. doi:10.1007/s12529-020-09929-x
  905. Bendtsen M. (2020): The P Value Line Dance: When Does the Music Stop? J Med Internet Res 22(8):e21345. doi:10.2196/21345
  906. Leongómez JD. (2020): Análisis de poder estadístico y cálculo de tamaño de muestra en R: Guía práctica (Version 3). Zenodo. doi:10.5281/ZENODO.3988776
  907. Kelter R. (2020): New perspectives on statistical data analysis: challenges and possibilities of digitalization for hypothesis testing in quantitative research. Universitätsbibliothek Siegen. doi:10.25819/UBSI/2961
  908. Bethlehem RAI, Seidlitz J, Romero-Garcia R, et al. (2020): A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder. Commun Biol 3:486. doi:10.1038/s42003-020-01212-9
  909. Felgenhauer M, Xu F. (2020): THE FACE VALUE OF ARGUMENTS WITH AND WITHOUT MANIPULATION. International Economic Review 62(1):277-293. Wiley. doi:10.1111/iere.12479
  910. Dunleavy DJ. (2020): Appraising contemporary social work research: Meta-research on statistical reporting, statistical power, and evidential value. Doctoral dissertation, The Florida State University.
  911. Munkholm K, Faurholt-Jepsen M, Ioannidis JPA, Hemkens LG. (2020): Consideration of confounding was suboptimal in the reporting of observational studies in psychiatry: a meta-epidemiological study. Journal of Clinical Epidemiology. doi:10.1016/j.jclinepi.2019.12.002
  912. Rougier M, Muller D, Courset R, Smeding A, Devos T, Batailler C. (2020): Toward the use of approach/avoidance tendencies as attitude measures: Individual- and group-level variability of the ingroup bias. Eur J Soc Psychol. doi:10.1002/ejsp.2653
  913. Noble S, Scheinost D, Constable RT. (2020): Cluster failure or power failure? Evaluating sensitivity in cluster-level inference. NeuroImage. doi:10.1016/j.neuroimage.2019.116468
  914. Andreoletti M. (2020): Replicability Crisis and Scientific Reforms: Overlooked Issues and Unmet Challenges. International Studies in the Philosophy of Science 33(3). doi:10.1080/02698595.2021.1943292
  915. Asanov I, Bühren C, Zacharodimou P. (2020): The power of experiments: How big is your n? MAGKS Joint Discussion Paper Series in Economics 32. Philipps-University Marburg, School of Business and Economics, Marburg. http://hdl.handle.net/10419/234837
  916. Haruki K, Kosumi K, Hamada T, Twombly TS, Väyrynen JP, Kim SA, Masugi Y, Qian ZR, Mima K, Baba Y, Silva A, Borowsky J, Arima K, Fujiyoshi K, Lau MC, Li P, Guo C, Chen Y, Song M, Nowak JA, Nishihara R, Yanaga K, Zhang X, Wu K, Bullman S, Garrett WS, Huttenhower C, Meyerhardt JA, Giannakis M, Chan AT, Fuchs CS, Ogino S. (2020): Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer. J Pathol. doi:10.1002/path.5381
  917. Myte R, Gylling B, Häggström J, Häggström C, Zingmark C, Löfgren Burström A, Palmqvist R, Van Guelpen B. (2019): Metabolic factors and the risk of colorectal cancer by KRAS and BRAF mutation status. International Journal of Cancer, 145(2), pp. 327-337. Wiley. doi:10.1002/ijc.32104
  918. Czibor E, Jimenez-Gomez D, List JA. (2019): The Dozen Things Experimental Economists Should Do (More of). Southern Economic Journal. doi:10.1002/soej.12392
  919. Dragicevic P, Jansen Y, Sarma A, Kay M, Chevalier F. (2019): Increasing the Transparency of Research Papers with Explorable Multiverse Analyses. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3290605.3300295
  920. Tsoi KKF, Ho JMW, Chan FCH, Sung JJY. (2019): Long-term use of low-dose aspirin for cancer prevention: A 10-year population cohort study in Hong Kong. Int J Cancer. doi:10.1002/ijc.32083
  921. Liebst L. (2019): Exploring the Sources of Collective Effervescence: A Multilevel Study. SocScience. doi:10.15195/v6.a2
  922. Huber DE, Potter KW, Huszar LD. (2019): Less “story” and more “reliability” in cognitive neuroscience. Cortex. doi:10.1016/j.cortex.2018.10.030
  923. Roden-Foreman JW, Foreman ML, Funk GA, Powers MB. (2019): Driver see, driver crash: Associations between televised stock car races´ audience size and the incidence of speed-related motor vehicle collisions in the United States. Baylor University Medical Center Proceedings. doi:10.1080/08998280.2018.1512275
  924. Pincez T, Neven B, Le Pointe HD, Varlet P, Fernandes H, Gareton A, Leverger G, Leblanc T, Chambost H, Michel G, Pasquet M, Millot F, Hermine O, Mathian A, Hully M, Zephir H, Hamidou M, Durand J-M, Perel Y, Landman-Parker J, Rieux-Laucat F, Aladjidi N. (2019): Neurological Involvement in Childhood Evans Syndrome. J Clin Immunol. doi:10.1007/s10875-019-0594-3
  925. Slavenko A, Feldman A, Allison A, Bauer AM, Böhm M, Chirio L, Colli GR, Das I, Doan TM, LeBreton M, Martins M, Meirte D, Nagy ZT, Nogueira C de C, Pauwels OSG, Pincheira-Donoso D, Roll U, Wagner P, Wang Y, Meiri S. (2019): Global patterns of body size evolution in squamate reptiles are not driven by climate. Global Ecol Biogeogr. doi:10.1111/geb.12868
  926. Kshirsagar A, Dreyfuss B, Ishai G, Heffetz O, Hoffman G. (2019): Monetary-Incentive Competition Between Humans and Robots: Experimental Results. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). doi:10.1109/hri.2019.8673201
  927. Bartell SM. (2019): Understanding and Mitigating the Replication Crisis, for Environmental Epidemiologists. Curr Envir Health Rpt. doi:10.1007/s40572-019-0225-4
  928. Bravo G, Grimaldo F, López-Iñesta E, Mehmani B, Squazzoni F. (2019): The effect of publishing peer review reports on referee behavior in five scholarly journals. Nat Commun. doi:10.1038/s41467-018-08250-2
  929. Du Bois SN, Legate N, Kendall AD. (2019): Examining Partnership-Health Associations Among Lesbian Women and Gay Men Using Population-Level Data. LGBT Health. doi:10.1089/lgbt.2018.0158
  930. Shao S, Chan Y, Kao Yang Y, Lin S, Hung M, Chien R, Lai C, Lai EC. (2019): The Chang Gung Research Database-A multiinstitutional electronic medical records database for real-world epidemiological studies in Taiwan. Pharmacoepidemiol Drug Saf. doi:10.1002/pds.4713
  931. Vilas MG, Santilli M, Mikulan E, Adolfi F, Martorell Caro M, Manes F, Herrera E, Sedeño L, Ibàñez A, García AM. (2019): Reading Shakespearean tropes in a foreign tongue: Age of L2 acquisition modulates neural responses to functional shifts. Neuropsychologia. doi:10.1016/j.neuropsychologia.2019.01.007
  932. König IR. (2019): Presidential address: Six open questions to genetic epidemiologists. Genet Epidemiol. doi:10.1002/gepi.22191
  933. Watson M, Christoforou P, Herrera P, Preece D, Carrell J, Harmon M, Krier P, Lewis S, Maiti R, Skipper W, Taylor E, Walsh J, Zalzalah M, Alhadeff L, Kempka R, Lanigan J, Lee ZS, White B, Ishizaka K, Lewis R, Slatter T, Dwyer-Joyce R, Marshall M. (2019): An analysis of the quality of experimental design and reliability of results in tribology research. Wear. doi:10.1016/j.wear.2018.12.028
  934. Krepel N, Rush AJ, Iseger TA, Sack AT, Arns M. (2019): Can psychological features predict antidepressant response to rTMS? A Discovery-Replication approach. Psychol Med. doi:10.1017/s0033291718004191
  935. Heinrich H, Gevensleben H, Becker A, Rothenberger A. (2019): Effects of neurofeedback on the dysregulation profile in children with ADHD: SCP NF meets SDQ-DP – a retrospective analysis. Psychol Med. doi:10.1017/s0033291718004130
  936. Veronese N, Demurtas J, Pesolillo G, Celotto S, Barnini T, Calusi G, Caruso MG, Notarnicola M, Reddavide R, Stubbs B, Solmi M, Maggi S, Vaona A, Firth J, Smith L, Koyanagi A, Dominguez L, Barbagallo M. (2019): Magnesium and health outcomes: an umbrella review of systematic reviews and meta-analyses of observational and intervention studies. Eur J Nutr. doi:10.1007/s00394-019-01905-w
  937. Laccourreye O, Marret G, Rubin F, Fabre E, Badoual C, Oudard S, Bonfils P, Lisan Q. (2019): Ten-year outcome of curative “exclusive” chemotherapy in N0M0 squamous cell carcinoma of the larynx and pharynx with complete clinical response. Head & Neck. doi:10.1002/hed.25674
  938. NOROUZIAN R, MIRANDA MD, PLONSKY L. (2019): A Bayesian Approach to Measuring Evidence in L2 Research: An Empirical Investigation. The Modern Language Journal. doi:10.1111/modl.12543
  939. Ahtiainen M, Wirta E-V, Kuopio T, Seppälä T, Rantala J, Mecklin J-P, Böhm J. (2019): Combined prognostic value of CD274 (PD-L1)/PDCDI (PD-1) expression and immune cell infiltration in colorectal cancer as per mismatch repair status. Mod Pathol. doi:10.1038/s41379-019-0219-7
  940. Kennedy H, Baker BJ, Jordan JS, Funk DC. (2019): Running Recession: A Trend Analysis of Running Involvement and Runner Characteristics to Understand Declining Participation. Journal of Sport Management. doi:10.1123/jsm.2018-0261
  941. Kosmidou V, Ahuja MK. (2019): A Configurational Approach to Family Firm Innovation. Family Business Review. doi:10.1177/0894486519827738
  942. Byrd N. 2019: What we can (and can’t) infer about implicit bias from debiasing experiments. Synthese. doi:10.1007/s11229-019-02128-6
  943. Schott E, Rhemtulla M, Byers-Heinlein K. (2019): Should I test more babies? Solutions for transparent data peeking. Infant Behavior and Development. doi:10.1016/j.infbeh.2018.09.010 
  944. Gu Y, Li W, Evans M, Englert B-G. (2019): Very strong evidence in favor of quantum mechanics and against local hidden variables from a Bayesian analysis. Phys Rev A 99. doi:10.1103/physreva.99.022112
  945. Ranney RM, Behar E, Bartoszek G. (2019): Individuals Intolerant of Uncertainty: The Maintenance of Worry and Distress Despite Reduced Uncertainty. Behavior Therapy 50:489-503. doi:10.1016/j.beth.2018.08.006
  946. Lederer DJ, Bell SC, Branson RD, Chalmers JD, Marshall R, Maslove DM, Ost DE, Punjabi NM, Schatz M, Smyth AR, Stewart PW, Suissa S, Adjei AA, Akdis CA, Azoulay É, Bakker J, Ballas ZK, Bardin PG, Barreiro E, Bellomo R, Bernstein JA, Brusasco V, Buchman TG, Chokroverty S, Collop NA, Crapo JD, Fitzgerald DA, Hale L, Hart N, Herth FJ, Iwashyna TJ, Jenkins G, Kolb M, Marks GB, Mazzone P, Moorman JR, Murphy TM, Noah TL, Reynolds P, Riemann D, Russell RE, Sheikh A, Sotgiu G, Swenson ER, Szczesniak R, Szymusiak R, Teboul J-L, Vincent J-L. (2019): Control of Confounding and Reporting of Results in Causal Inference Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Annals ATS. doi:10.1513/annalsats.201808-564ps
  947. Mulcahy AW, Doyle MB, Malsberger R, Kapinos KA. (2019): Access to Medical Treatment for Injured Workers in California: Year 1 Annual Report. Rand health quarterly, 8(3), p.1.
  948. Franck CT, Gramacy RB. (2019): Assessing Bayes Factor Surfaces Using Interactive Visualization and Computer Surrogate Modeling. The American Statistician. doi:10.1080/00031305.2019.1671219
  949. Krueger JI, Heck PR. (2019): Putting the P-value in its place. The American Statistician, 73(1): 122–128. https://doi.org/10.1080/00031305.2018.1470033
  950. Dushoff J, Kain MP, Bolker BM. (2019): I can see clearly now: Reinterpreting statistical significance. Methods Ecol Evol. doi:10.1111/2041-210x.13159
  951. Forsell E, Viganola D, Pfeiffer T, Almenberg J, Wilson B, Chen Y, Nosek BA, Johannesson M, Dreber A. (2019): Predicting replication outcomes in the Many Labs 2 study. Journal of Economic Psychology.doi:10.1016/j.joep.2018.10.009
  952. Fronczyk K. (2019): Congruence and measurement invariance of self-report and informant-ratings of the Big Five dimensions. Personality and Individual Differences. doi:10.1016/j.paid.2018.10.036
  953. Skippen P, Matzke D, Heathcote A, Fulham WR, Michie P, Karayanidis F. (2019): Reliability of triggering inhibitory process is a better predictor of impulsivity than SSRT. Acta Psychologica. doi:10.1016/j.actpsy.2018.10.016
  954. Skylark W, Carr J, McComas C. (2019): Who says “larger” and who says “smaller”? Individual differences in the language of comparison. Apollo – University of Cambridge Repository. doi:10.17863/CAM.35346
  955. Gnambs T, Appel M. (2019): Are robots becoming unpopular? Changes in attitudes towards autonomous robotic systems in Europe. Computers in Human Behavior. doi:10.1016/j.chb.2018.11.045
  956. Meyer C, Padmala S, Pessoa L. (2019): Dynamic Threat Processing. Journal of Cognitive Neuroscience. doi:10.1162/jocn_a_01363
  957. van Dongen NNN, van Doorn JB, Gronau QF, van Ravenzwaaij D, Hoekstra R, Haucke MN, Lakens D, Hennig C, Morey RD, Homer S, Gelman A, Sprenger J, Wagenmakers E-J. (2019): Multiple Perspectives on Inference for Two Simple Statistical Scenarios. The American Statistician. doi:10.1080/00031305.2019.1565553
  958. Chabris CF, Heck PR, Mandart J, Benjamin DJ, Simons DJ. (2019): No Evidence That Experiencing Physical Warmth Promotes Interpersonal Warmth. Social Psychology. doi:10.1027/1864-9335/a000361
  959. Robertson RM, Cease AJ, Simpson SJ. (2019): Anoxia tolerance of the adult Australian Plague Locust (Chortoicetes terminifera). In Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 229:81-92. Elsevier BV. doi:10.1016/j.cbpa.2018.12.005
  960. van Ravenzwaaij D, Ioannidis JPA. (2019): True and false positive rates for different criteria of evaluating statistical evidence from clinical trials. BMC Medical Research Methodology, 19(1). Springer Science and Business Media LLC. doi:10.1186/s12874-019-0865-y
  961. Chopik WJ, Lucas RE. (2019): Actor, partner, and similarity effects of personality on global and experienced well-being. Journal of Research in Personality,78, pp. 249-261. Elsevier BV. doi:10.1016/j.jrp.2018.12.008
  962. Miller J, Ulrich R. (2019): The quest for an optimal alpha. Y. Li (Ed.), PLOS ONE, 14(1), p. e0208631. Public Library of Science (PLoS). doi:10.1371/journal.pone.0208631
  963. Stockley RA, Halpin DMG, Celli BR, Singh D. (2019): Chronic Obstructive Pulmonary Disease Biomarkers and Their Interpretation. American Journal of Respiratory and Critical Care Medicine, 199(10), pp. 1195-1204. American Thoracic Society. doi:10.1164/rccm.201810-1860so
  964. Hietajärvi L, Salmela-Aro K, Tuominen H, Hakkarainen K, Lonka K. (2019): Beyond screen time: Multidimensionality of socio-digital participation and relations to academic well-being in three educational phases. Computers in Human Behavior, 93:13-24. Elsevier BV. doi:10.1016/j.chb.2018.11.049
  965. Zhang Y, Wen C-K. (2019): Statistics as Part of Scientific Reasoning in Plant Sciences: Overlooked Issues and Recommended Solutions. Molecular Plant, 12(1), pp. 7-9. Elsevier BV. doi:10.1016/j.molp.2018.11.001
  966. VanderWeele TJ, Mathur MB, Ding P. (2019): Correcting Misinterpretations of the E-Value. Annals of Internal Medicine, 170(2):131. American College of Physicians. doi:10.7326/m18-3112
  967. Amon MJ, Holden JG. (2019): The Mismatch of Intrinsic Fluctuations and the Static Assumptions of Linear Statistics. Review of Philosophy and Psychology, 12(1), pp. 149-173. Springer Science and Business Media LLC. doi:10.1007/s13164-018-0428-x
  968. McCabe SE, Hughes TL, West BT, Veliz P, Boyd CJ. (2019): DSM-5 Alcohol Use Disorder Severity as a Function of Sexual Orientation Discrimination: A National Study. Alcohol Clin Exp Re. doi:10.1111/acer.13960
  969. Sperling EA, Tecklenburg S, Duncan LE. (2019): Statistical inference and reproducibility in geobiology. Geobiology. doi:10.1111/gbi.12333
  970. Răƒdoi A, Poca MA, Gándara D, Castro L, Cevallos M, Pacios ME, Sahuquillo J. (2019): The Sport Concussion Assessment Tool (SCAT2) for evaluating civilian mild traumatic brain injury. A pilot normative study. PLoS ONE. doi:10.1371/journal.pone.0212541
  971. Rigat F, Bartolini E, Dalsass M, Kumar N, Marchi S, Speziale P, Maione D, Chen L, Romano MR, Alegre M-L, Bagnoli F, Daum RS, David MZ. (2019): Retrospective Identification of a Broad IgG Repertoire Differentiating Patients With S. aureus Skin and Soft Tissue Infections From Controls. Front Immunol. doi:10.3389/fimmu.2019.00114
  972. Lodder P, Ong HH, Grasman RPPP, Wicherts JM. (2019): A comprehensive meta-analysis of money priming. Journal of Experimental Psychology: General. doi:10.1037/xge0000570
  973. Shen C, Li X. (2019): Towards More Flexible False Positive Control in Phase III Randomized Clinical Trials. doi:10.48550/ARXIV.1902.08229
  974. Martin R. (2019): False confidence, non-additive beliefs, and valid statistical inference. International Journal of Approximate Reasoning. doi:10.1016/j.ijar.2019.06.005
  975. Olsson-Collentine A, van Assen MALM, Hartgerink CHJ. (2019): The Prevalence of Marginally Significant Results in Psychology Over Time. Psychol Sci. doi:10.1177/0956797619830326
  976. Buxbaum JD, Baron-Cohen S, Anagnostou E, Ashwin C, Betancur C, Chakrabarti B, Crawley JN, Hoekstra RA, Hof PR, Lai M-C, Lombardo MV, Schumann CM. (2019): Rigor in science and science reporting: updated guidelines for submissions to Molecular Autism. Molecular Autism. doi:10.1186/s13229-018-0249-x
  977. Ammitzbøll C, Börnsen L, Petersen ER, Oturai AB, Søndergaard HB, Grandjean P, Sellebjerg F. (2019): Perfluorinated substances, risk factors for multiple sclerosis and cellular immune activation. Journal of Neuroimmunology. doi:10.1016/j.jneuroim.2019.03.002
  978. Mullane K, Williams M. (2019): Preclinical Models of Alzheimer’s Disease: Relevance and Translational Validity. Current Protocols in Pharmacology. doi:10.1002/cpph.57
  979. Ramí­rez-Hassan A. (2019): Dynamic variable selection in dynamic logistic regression: an application to Internet subscription. Empir Econ. doi:10.1007/s00181-019-01644-1
  980. Baselmans BML, van de Weijer MP, Abdellaoui A, Vink JM, Hottenga JJ, Willemsen G, Nivard MG, de Geus EJC, Boomsma DI, Bartels M. (2019): A Genetic Investigation of the Well-Being Spectrum. Behav Genet. doi:10.1007/s10519-019-09951-0
  981. Kosumi K, Hamada T, Zhang S, Liu L, da Silva A, Koh H, Twombly TS, Mima K, Morikawa T, Song M, Nowak JA, Nishihara R, Saltz LB, Niedzwiecki D, Ou F-S, Zemla T, Mayer RJ, Baba H, Ng K, Giannakis M, Zhang X, Wu K, Giovannucci EL, Chan AT, Fuchs CS, Meyerhardt JA, Ogino S. (2019): Prognostic association of PTGS2 (COX-2) over-expression according to BRAF mutation status in colorectal cancer: Results from two prospective cohorts and CALGB 89803 (Alliance) trial. European Journal of Cancer. doi:10.1016/j.ejca.2019.01.022
  982. Llewelyn H. (2019): Replacing P-values with frequentist posterior probabilities of replication – When possible parameter values must have uniform marginal prior probabilities. PLoS ONE. doi:10.1371/journal.pone.0212302
  983. Chen D, Dai L, Li D. (2019): A Delicate Balance for Innovation: Competition and Collaboration in R&D Consortia. Manag Organ Rev. doi:10.1017/mor.2018.49
  984. Chopik WJ, Weaver JR. (2019): Old dog, new tricks: Age differences in dog personality traits, associations with human personality traits, and links to important outcomes. Journal of Research in Personality. doi:10.1016/j.jrp.2019.01.005
  985. Batterham AM, Hopkins WG. (2019): The Problems with “The Problem with ‘Magnitude-Based Inference’”. Medicine & Science in Sports & Exercise. doi:10.1249/mss.0000000000001823
  986. Isakov A, Fowler J, Airoldi E, Christakis N. (2019): The Structure of Negative Social Ties in Rural Village Networks. SocScience. doi:10.15195/v6.a8
  987. Chén OY, Cao H, Reinen JM, Qian T, Gou J, Phan H, De Vos M, Cannon TD. (2019): Resting-state brain information flow predicts cognitive flexibility in humans. Sci Rep. doi:10.1038/s41598-019-40345-8
  988. Valentine KD, Buchanan EM, Scofield JE, Beauchamp MT. (2019): Beyond p values: utilizing multiple methods to evaluate evidence. Behaviormetrika, 46(1):121-144. doi:10.1007/s41237-019-00078-4
  989. Lugtig P, Toepoel V, Haan M, Zandvliet R, Klein Kranenburg L. (2019): Recruiting Young and Urban Groups into a Probability-Based Online Panel by Promoting Smartphone Use. methods data No 2. doi:10.12758/MDA.2019.04
  990. Tanniou J, Smid SC, Tweel I, Teerenstra S, Roes KCB. (2019): Level of evidence for promising subgroup findings: The case of trends and multiple subgroups. Statistics in Medicine. doi:10.1002/sim.8133
  991. Rosinger AY, Ice G. (2019): Secondary data analysis to answer questions in human biology. Am J Hum Biol. doi:10.1002/ajhb.23232
  992. Gorman DM. (2019): Use of publication procedures to improve research integrity by addiction journals. Addiction. doi:10.1111/add.14604
  993. Lakens D, Carlsson R, Witt J, Mühlmeister T. (2019): MP.2018.871.Witt. Open Science Framework. doi:10.17605/OSF.IO/69XMG
  994. Besançon L, Dragicevic P. (2019): The Continued Prevalence of Dichotomous Inferences at CHI. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3290607.3310432
  995. Held L. (2019): The assessment of intrinsic credibility and a new argument for p < 0.005. R Soc open sci. doi:10.1098/rsos.181534
  996. McPhetres J. (2019): Commentary: Acetaminophen Enhances the Reflective Learning Process. Front Psychol. doi:10.3389/fpsyg.2019.00705
  997. Van Patten R, Greif T, Britton K, Tremont G. (2019): Single-photon emission computed tomography (SPECT) perfusion and neuropsychological performance in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology. doi:10.1080/13803395.2019.1586838
  998. Webb C, Linn S, Lebo M. (2019): A Bounds Approach to Inference Using the Long Run Multiplier. Polit Anal. doi:10.1017/pan.2019.3
  999. Gómez P, Semmler M, Schützenberger A, Bohr C, Döllinger M. (2019): Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network. Med Biol Eng Comput. doi:10.1007/s11517-019-01965-4
  1000. König IR. (2019): Presidential address: Six open questions to genetic epidemiologists. Genet Epidemiol. doi:10.1002/gepi.22191
  1001. Benjamin DJ, Berger JO. (2019): Three Recommendations for Improving the Use of p-Values. The American Statistician. doi:10.1080/00031305.2018.1543135
  1002. Campbell H, Gustafson P. (2019): The World of Research Has Gone Berserk: Modeling the Consequences of Requiring “Greater Statistical Stringency” for Scientific Publication. The American Statistician. doi:10.1080/00031305.2018.1555101
  1003. Calin-Jageman RJ, Cumming G. (2019): The New Statistics for Better Science: Ask How Much, How Uncertain, and What Else Is Known. The American Statistician. doi:10.1080/00031305.2018.1518266
  1004. Ishikawa N, Ohishi Y, Maeda K. (2019): Nulls in the Air: Passive and Low-Complexity QoS Estimation Method for a Large-Scale Wi-Fi Network Based on Null Function Data Frames. IEEE Access. doi:10.1109/access.2019.2902182
  1005. Hu Y, Hoffman G. (2019): Using Skin Texture Change to Design Emotion Expression in Social Robots. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). doi:10.1109/hri.2019.8673012
  1006. McCabe SE, Veliz P, Wilens TE, West BT, Schepis TS, Ford JA, Pomykacz C, Boyd CJ. (2019): Sources of Nonmedical Prescription Drug Misuse Among US High School Seniors: Differences in Motives and Substance Use Behaviors. Journal of the American Academy of Child & Adolescent Psychiatry. doi:10.1016/j.jaac.2018.11.018
  1007. Palmer CS, Cameron PA, Gabbe BJ. (2019): Comparison of revised Functional Capacity Index scores with Abbreviated Injury Scale 2008 scores in predicting 12-month severe trauma outcomes. Inj Prev. doi:10.1136/injuryprev-2018-043085
  1008. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. (2019): NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research. doi:10.1093/nar/gkz240
  1009. Betensky RA. (2019): The p-Value Requires Context, Not a Threshold. The American Statistician. doi:10.1080/00031305.2018.1529624
  1010. Billheimer D. (2019): Predictive Inference and Scientific Reproducibility. The American Statistician. doi:10.1080/00031305.2018.1518270
  1011. Blume JD, Greevy RA, Welty VF, Smith JR, Dupont WD. (2019): An Introduction to Second-Generation p-Values. The American Statistician. doi:10.1080/00031305.2018.1537893
  1012. Gannon MA, de Bragança Pereira CA, Polpo A. (2019): Blending Bayesian and Classical Tools to Define Optimal Sample-Size-Dependent Significance Levels. The American Statistician. doi:10.1080/00031305.2018.1518268
  1013. Ioannidis JPA. (2019): What Have We (Not) Learnt from Millions of Scientific Papers with P Values? The American Statistician. doi:10.1080/00031305.2018.1447512
  1014. Johnson VE. (2019): Evidence From Marginally Significant t Statistics. The American Statistician. doi:10.1080/00031305.2018.1518788
  1015. Kennedy-Shaffer L. (2019): Before p<0.05 to Beyond p<0.05: Using History to Contextualize p-Values and Significance Testing. The American Statistician. doi:10.1080/00031305.2018.1537891
  1016. Kurashige H, Yamashita Y, Hanakawa T, Honda M. (2019): Effective Augmentation of Creativity-Involving Productivity Consequent to Spontaneous Selectivity in Knowledge Acquisition. Front Psychol. doi:10.3389/fpsyg.2019.00600
  1017. Matthews RAJ. (2019): Moving Towards the Post p<0.05 Era via the Analysis of Credibility. The American Statistician. doi:10.1080/00031305.2018.1543136
  1018. McShane BB, Gal D, Gelman A, Robert C, Tackett JL. (2019): Abandon Statistical Significance. The American Statistician. doi:10.1080/00031305.2018.1527253
  1019. Rougier J. (2019): p-Values, Bayes Factors, and Sufficiency. The American Statistician. doi:10.1080/00031305.2018.1502684
  1020. Steel EA, Liermann M, Guttorp P. (2019): Beyond Calculations: A Course in Statistical Thinking. The American Statistician. doi:10.1080/00031305.2018.1505657
  1021. Johannes N, Dora J, Rusz D. (2019): Social Smartphone Apps Do Not Capture Attention Despite Their Perceived High Reward Value. Collabra: Psychology. doi:10.1525/collabra.207
  1022. Syriopoulos T, Bakos G. (2019): Investor herding behaviour in globally listed shipping stocks. Maritime Policy & Management. doi:10.1080/03088839.2019.1597288
  1023. Atari M, Afhami R, Swami V. (2019): Psychometric assessments of Persian translations of three measures of conspiracist beliefs. PLoS ONE. doi:10.1371/journal.pone.0215202
  1024. Vlisides PE, Thompson A, Kunkler BS, Maybrier HR, Avidan MS, Mashour GA. (2019): Perioperative Epidural Use and Risk of Delirium in Surgical Patients. Anesthesia & Analgesia. doi:10.1213/ane.0000000000004038
  1025. Hutchinson JB, Barrett LF. (2019): The Power of Predictions: An Emerging Paradigm for Psychological Research. Curr Dir Psychol Sci. doi:10.1177/0963721419831992
  1026. van Doorn J, Matzke D, Wagenmakers E-J. (2019): An In-Class Demonstration of Bayesian Inference. Psychology Learning & Teaching. doi:10.1177/1475725719848574
  1027. Harms P. (2019): Automated Usability Evaluation of Virtual Reality Applications. ACM Trans Comput-Hum Interact. doi:10.1145/3301423
  1028. Schubring D, Schupp HT. (2019): Affective picture processing: Alpha- and lower beta- band desynchronization reflects emotional arousal. Psychophysiology. doi:10.1111/psyp.13386
  1029. Albers C. (2019): The problem with unadjusted multiple and sequential statistical testing. Nat Commun. doi:10.1038/s41467-019-09941-0
  1030. Stevens J. (2019): Mind your methods: obesity trials and the consort guidelines. Int J Obes. doi:10.1038/s41366-019-0369-1
  1031. Wayant C, Meyer C, Gupton R, Som M, Baker D, Vassar M. (2019): The Fragility Index in a Cohort of HIV/AIDS Randomized Controlled Trials. J GEN INTERN MED. doi:10.1007/s11606-019-04928-5
  1032. Flouris AD, Friesen BJ, Herry CL, Seely AJE, Notley SR, Kenny GP. (2019): Heart rate variability dynamics during treatment for exertional heat strain when immediate response is not possible. Exp Physiol. doi:10.1113/ep087297
  1033. Biswas RK, Kabir E, Khan HTA. (2019): Causes of Urban Migration in Bangladesh: Evidence from the Urban Health Survey. Popul Res Policy Rev. doi:10.1007/s11113-019-09532-3
  1034. Sakaluk JK. (2019): Expanding Statistical Frontiers in Sexual Science: Taxometric, Invariance, and Equivalence Testing. The Journal of Sex Research. doi:10.1080/00224499.2019.1568377
  1035. Richter S, Stevenson S, Newman T, Wilson L, Menon DK, Maas AIR, Nieboer D, Lingsma H, Steyerberg EW, Newcombe VFJ. (2019): Handling of Missing Outcome Data in Traumatic Brain Injury Research: A Systematic Review. Journal of Neurotrauma. doi:10.1089/neu.2018.6216
  1036. Funder DC, Ozer DJ. (2019): Evaluating Effect Size in Psychological Research: Sense and Nonsense. Advances in Methods and Practices in Psychological Science. doi:10.1177/2515245919847202
  1037. Kardes FR, Herr PM, Schwarz N, editors. (2019): Handbook of Research Methods in Consumer Psychology. Routledge. doi:10.4324/9781351137713f
  1038. Peters SJ, Rambo-Hernandez K, Makel MC, Matthews MS, Plucker JA. (2019): Effect of Local Norms on Racial and Ethnic Representation in Gifted Education. AERA Open. doi:10.1177/2332858419848446
  1039. Williams CR. (2019): How redefining statistical significance can worsen the replication crisis. Economics Letters. doi:10.1016/j.econlet.2019.05.007
  1040. Gorges M, Müller H-P, Liepelt-Scarfone I, Storch A, Dodel R, Hilker-Roggendorf R, Berg D, Kunz MS, Kalbe E, Baudrexel S, Kassubek J. (2019): Structural brain signature of cognitive decline in Parkinson‘s disease: DTI-based evidence from the LANDSCAPE study. Ther Adv Neurol Disord. doi:10.1177/1756286419843447
  1041. Trafimow D. (2019): Why successful replications across contexts and Operationalizations might not be good for theory building or testing. J Theory Soc Behav. doi:10.1111/jtsb.12211
  1042. Furia CA, Feldt R, Torkar R. (2019): Bayesian data analysis in empirical software engineering research. IEEE Transactions on Software Engineering, 1–1. https://doi.org/10.1109/tse.2019.2935974
  1043. Yang X, Wu W, Peng M, Shen Q, Feng J, Lai W, Zhu H, Tu C, Quan X, Chen Y, Qin L, Li D, He L, Zhang Y. (2019): Identity-by-Descent Analysis Reveals Susceptibility Loci for Severe Acne in Chinese Han Cohort. Journal of Investigative Dermatology. doi:10.1016/j.jid.2019.03.1132
  1044. Nunkoo R, Seetanah B, Jaffur ZRK, Moraghen PGW, Sannassee RV. (2019): Tourism and Economic Growth: A Meta-regression Analysis. Journal of Travel Research. doi:10.1177/0047287519844833
  1045. Roettger TB. (2019): Researcher degrees of freedom in phonetic research. Laboratory Phonology: Journal of the Association for Laboratory Phonology. doi:10.5334/labphon.147
  1046. Pollard DA, Pollard TD, Pollard KS. (2019): Empowering statistical methods for cellular and molecular biologists. MBoC. doi:10.1091/mbc.e15-02-0076
  1047. Machery E. (2019): The Alpha War. RevPhilPsych. doi:10.1007/s13164-019-00440-1
  1048. Manno FAM, Fernandez-Ruiz J, Manno SHC, Cheng SH, Lau C, Barrios FA. (2019): Sparse Sampling of Silence Type I Errors With an Emphasis on Primary Auditory Cortex. Front Neurosci. doi:10.3389/fnins.2019.00516
  1049. Kim JH, Rahman ML, Shamsuddin A. (2019): Can energy prices predict stock returns? An extreme bounds analysis. Energy Economics. doi:10.1016/j.eneco.2019.05.029
  1050. Väyrynen JP, Väyrynen SA, Sirniö P, Minkkinen I, Klintrup K, Karhu T, Mäkelä J, Herzig K-H, Karttunen TJ, Tuomisto A, Mäkinen MJ. (2019): Platelet count, aspirin use, and characteristics of host inflammatory responses in colorectal cancer. J Transl Med. doi:10.1186/s12967-019-1950-z
  1051. Bailey M, Thomas A, Francis O, Stokes C, Smidt H. (2019): The dark side of technological advances in analysis of microbial ecosystems. J Animal Sci Biotechnol. doi:10.1186/s40104-019-0357-2
  1052. Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. (2019): Moving beyond P values: data analysis with estimation graphics. Nat Methods. doi:10.1038/s41592-019-0470-3
  1053. Christie NC, Hsu E, Iskiwitch C, Iyer R, Graham J, Schwartz B, Monterosso JR. (2019): The Moral Foundations of Needle Exchange Attitudes. Social Cognition. doi:10.1521/soco.2019.37.3.229
  1054. Heck PR, Meyer MN. (2019): Information Avoidance in Genetic Health: Perceptions, Norms, and Preferences. Social Cognition. doi:10.1521/soco.2019.37.3.266
  1055. Chen O, Yang Z, Tan X, Gu Z, Chen J. (2019): Powerful postures do not lead to risky behaviors. Journal of Pacific Rim Psychology. doi:10.1017/prp.2019.17
  1056. Coleman RB, Aguirre K, Spiegel HP, Pecos C, Carr JA, Harris BN. (2019): The plus maze and scototaxis test are not valid behavioral assays for anxiety assessment in the South African clawed frog. J Comp Physiol A. doi:10.1007/s00359-019-01351-3
  1057. Tendeiro JN, Kiers HAL. (2019): A review of issues about null hypothesis Bayesian testing. Psychological Methods. doi:10.1037/met0000221
  1058. Trafimow D. (2019): A Frequentist Alternative to Significance Testing, p-Values, and Confidence Intervals. Econometrics. doi:10.3390/econometrics7020026
  1059. Bailey LD, Ens BJ, Both C, Heg D, Oosterbeek K, van de Pol M. (2019): Habitat selection can reduce effects of extreme climatic events in a long-lived shorebird. J Anim Ecol. doi:10.1111/1365-2656.13041
  1060. Constantinidis TS. (2019): Randomized Controlled Trials: The case of Multiple Sclerosis – Refining the constraints of a treasure, a short outline. Dialogues in Clinical Neuroscience & Mental Health 2:93-103. doi:10.26386/obrela.v2i2.115
  1061. Goulet M-A, Cousineau D. (2019): The Power of Replicated Measures to Increase Statistical Power. Advances in Methods and Practices in Psychological Science. doi:10.1177/2515245919849434
  1062. Larivée S, Sénéchal C, St-Onge Z, Sauvé M-R. (2019): Le biais de confirmation en recherche. psyedu. doi:10.7202/1060013ar
  1063. Buhelt S, Søndergaard HB, Oturai A, Ullum H, von Essen MR, Sellebjerg F. (2019): Relationship between Multiple Sclerosis-Associated IL2RA Risk Allele Variants and Circulating T Cell Phenotypes in Healthy Genotype-Selected Controls. Cells. doi:10.3390/cells8060634
  1064. Brand CO, Ounsley JP, Van der Post DJ, Morgan TJH. (2019): Cumulative Science via Bayesian Posterior Passing. MP. doi:10.15626/mp.2017.840
  1065. Ciasca G, Mazzini A, Sassun TE, Nardini M, Minelli E, Papi M, Palmieri V, de Spirito M. (2019): Efficient Spatial Sampling for AFM-Based Cancer Diagnostics: A Comparison between Neural Networks and Conventional Data Analysis. Condensed Matter. doi:10.3390/condmat4020058
  1066. Papatheodorou S. (2019): Author Reply: A critical reflection on the grading of the certainty of evidence in umbrella reviews. Eur J Epidemiol. doi:10.1007/s10654-019-00535-0
  1067. Gunter U, Önder I, Smeral E. (2019): Scientific value of econometric tourism demand studies. Annals of Tourism Research. doi:10.1016/j.annals.2019.06.005
  1068. Petker T, Owens MM, Amlung MT, Oshri A, Sweet LH, MacKillop J. (2019): Cannabis involvement and neuropsychological performance: findings from the Human Connectome Project. JPN. doi:10.1503/jpn.180115
  1069. Kwiatkowska MM, Rogoza R. (2019): A modest proposal to link shyness and modesty: Investigating the relation within the framework of Big Five personality traits. Personality and Individual Differences. doi:10.1016/j.paid.2019.05.026
  1070. Biswas RK, Sarker EB, Kabir E, Senserrick T. (2019): Presence of Books for Children in the Households of Bangladesh: A District-wise Distribution. Reading & Writing Quarterly. doi:10.1080/10573569.2019.1624665
  1071. Gana R, Vasudevan S. (2019): Ridge regression estimated linear probability model predictions of O-glycosylation in proteins with structural and sequence data. BMC Mol and Cell Biol. doi:10.1186/s12860-019-0200-9
  1072. Lubold N, Walker E, Pon-Barry H, Ogan A. (2019): Comfort with Robots Influences Rapport with a Social, Entraining Teachable Robot. Lecture Notes in Computer Science. doi:10.1007/978-3-030-23204-7_20
  1073. Koster TM, Wetterslev J, Gluud C, Jakobsen JC, Kaufmann T, Eck RJ, Koster G, Hiemstra B, van der Horst ICC, Keus E. (2019): Apparently conclusive meta-analyses on interventions in critical care may be inconclusive – a meta-epidemiological study. Journal of Clinical Epidemiology. doi:10.1016/j.jclinepi.2019.05.011
  1074. Uttley J. (2019): Power Analysis, Sample Size, and Assessment of Statistical Assumptions – Improving the Evidential Value of Lighting Research. LEUKOS. doi:10.1080/15502724.2018.1533851
  1075. Geerards D, Pusic A, Hoogbergen M, van der Hulst R, Sidey-Gibbons C. (2019): Computerized Quality of Life Assessment: A Randomized Experiment to Determine the Impact of Individualized Feedback on Assessment Experience. J Med Internet Res. doi:10.2196/12212
  1076. Schram A, Ule A. (2019): Handbook of Research Methods and Applications in Experimental Economics. Edward Elgar Publishing. doi:10.4337/9781788110563
  1077. Gaber M, Garas S, Lusk EJ. (2019): Evidence on the Impact of Internal Control over Financial Reporting on Audit Fees. ijafr. doi:10.5296/ijafr.v9i3.15001
  1078. Pearl RL, Himmelstein MS, Puhl RM, Wadden TA, Wojtanowski AC, Foster GD. (2019): Weight bias internalization in a commercial weight management sample: prevalence and correlates. Obesity Science & Practice. doi:10.1002/osp4.354
  1079. Quatto P, Ripamonti E, Marasini D. (2019): Best uses of p-values and complementary measures in medical research: Recent developments in the frequentist and Bayesian frameworks. Journal of Biopharmaceutical Statistics. doi:10.1080/10543406.2019.1632874
  1080. Infanger D, Schmidt-Trucksäss A. (2019): P value functions: An underused method to present research results and to promote quantitative reasoning. Statistics in Medicine. doi:10.1002/sim.8293
  1081. Mitra S, Mehta UM, Binukumar B, Venkatasubramanian G, Thirthalli J. (2019): Statistical power estimation in non-invasive brain stimulation studies and its clinical implications: An exploratory study of the meta-analyses. Asian Journal of Psychiatry. doi:10.1016/j.ajp.2019.07.006
  1082. de Oliveira Neto FG, Torkar R, Feldt R, Gren L, Furia CA, Huang Z. (2019): Evolution of statistical analysis in empirical software engineering research: Current state and steps forward. Journal of Systems and Software. doi:10.1016/j.jss.2019.07.002
  1083. Sarafoglou A, Hoogeveen S, Matzke D, Wagenmakers E-J. (2019): Teaching Good Research Practices: Protocol of a Research Master Course. Psychology Learning & Teaching. doi:10.1177/1475725719858807
  1084. Pastore M, Lionetti F, Calcagnì A, Altoè G. (2019): La Potenza è nulla senza controllo. Giornale italiano di psicologia 359-378. doi:10.1421/93796
  1085. Yoshikazu G, Funada A, Maeda T, Okada H, Yumiko G. (2019): Sex-specific differences in survival after out-of-hospital cardiac arrest: a nationwide, population-based observational study. Crit Care. doi:10.1186/s13054-019-2547-x
  1086. Chambers C. (2019): The registered reports revolution Lessons in cultural reform. Significance. doi:10.1111/j.1740-9713.2019.01299.x
  1087. Costello MJ, Li Y, Remers S, MacKillop J, Sousa S, Ropp C, Roth D, Weiss M, Rush B. (2019): Effects of 12-step mutual support and professional outpatient services on short-term substance use outcomes among adults who received inpatient treatment. Addictive Behaviors. doi:10.1016/j.addbeh.2019.106055
  1088. Andreoletti M, Rescigno M. (2019): Microbiota-gut-brain research: A plea for an interdisciplinary approach and standardization. Behav Brain Sci. doi:10.1017/s0140525x18002868
  1089. Lynch SM. (2019): Towards Systematic Methods in an Era of Big Data: Neighborhood Wide Association Studies. Energy Balance and Cancer. doi:10.1007/978-3-030-18408-7_5
  1090. Matland RE, Murray GR. (2019): A second look at partisanship’s effect on receptivity to social pressure to vote. Social Influence. doi:10.1080/15534510.2019.1572536
  1091. Shafi A, Nguyen T, Peyvandipour A, Draghici S. (2019): GSMA: an approach to identify robust global and test Gene Signatures using Meta-Analysis. Bioinformatics. doi:10.1093/bioinformatics/btz561
  1092. Briggs WM, Hanekamp J. (2019): Uncertainty in the MAN Data Calibration &amp; Trend Estimates. doi:10.48550/ARXIV.1907.10173
  1093. Stoddard MC, Sheard C, Akkaynak D, Yong EH, Mahadevan L, Tobias JA. (2019): Evolution of avian egg shape: underlying mechanisms and the importance of taxonomic scale. Ibis. doi:10.1111/ibi.12755
  1094. Rickard M, Lorenzo AJ, Hannick JH, Blais A-S, Koyle MA, Bägli DJ. (2019): Over-reliance on P Values in Urology: Fragility of Findings in the Hydronephrosis Literature Calls for Systematic Reporting of Robustness Indicators. Urology. doi:10.1016/j.urology.2019.03.045
  1095. Xiong G, Dong D, Cheng C, Jiang Y, Sun X, He J, Li C, Gao Y, Zhong X, Zhao H, Wang X, Yao S. (2019): State-independent and -dependent structural alterations in limbic-cortical regions in patients with current and remitted depression. Journal of Affective Disorders. doi:10.1016/j.jad.2019.07.065
  1096. Brysbaert M. (2019): How Many Participants Do We Have to Include in Properly Powered Experiments? A Tutorial of Power Analysis with Reference Tables. Journal of Cognition. doi:10.5334/joc.72
  1097. Whitney DG. (2019): Racial differences in skeletal fragility but not osteoarthritis among women and men with cerebral palsy. Bone Reports. doi:10.1016/j.bonr.2019.100219
  1098. Dreber A, Johannesson M. (2019): Statistical Significance and the Replication Crisis in the Social Sciences. Oxford Research Encyclopedia of Economics and Finance. doi:10.1093/acrefore/9780190625979.013.461
  1099. Holtzman NS, Tackman AM, Carey AL, Brucks MS, Küfner ACP, Deters FG, Back MD, Donnellan MB, Pennebaker JW, Sherman RA, Mehl MR. (2019): Linguistic Markers of Grandiose Narcissism: A LIWC Analysis of 15 Samples. Journal of Language and Social Psychology. doi:10.1177/0261927×19871084
  1100. Berry KJ, Johnston JE, Mielke PW Jr. (2019): One-Sample Tests. A Primer of Permutation Statistical Methods. doi:10.1007/978-3-030-20933-9_5
  1101. Dirnagl U. (2019): The p value wars (again). Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-019-04467-5
  1102. Ellinidi VN, Khromov-Borisov NN, Feoktistov AA, Lyamina AV, Kalinina NM. (2019): CD20+B LYMPHOCYTES, A HIGHLY INFORMATIVE BIOMARKER FOR EARLY DIAGNOSIS OF CHRONIC ENDOMETRITIS. Med immunol. doi:10.15789/1563-0625-2019-3-451-456
  1103. Hooks KB, Konsman JP, O‘Malley MA. (2019): Causal clarity and deeper dimensions in microbiota-gut-brain research. Behav Brain Sci. doi:10.1017/s0140525x19000050
  1104. Conradie B, Piesse J, Stephens J. (2019): The changing environment: Efficiency, vulnerability and changes in land use in the South African Karoo, 2012-2014. Environmental Development. doi:10.1016/j.envdev.2019.07.003
  1105. Xu Y, Norton S, Rahman Q. (2019): A longitudinal birth cohort study of early life conditions, psychosocial factors, and emerging adolescent sexual orientation. Dev Psychobiol. doi:10.1002/dev.21894
  1106. King KM, Pullmann MD, Lyon AR, Dorsey S, Lewis CC. (2019): Using implementation science to close the gap between the optimal and typical practice of quantitative methods in clinical science. Journal of Abnormal Psychology. doi:10.1037/abn0000417
  1107. Zheng Z, Li C, Ha P, Chang GX, Yang P, Zhang X, Kim JK, Jiang W, Pang X, Berthiaume EA, Mills Z, Haveles CS, Chen E, Ting K, Soo C. (2019): CDKN2B upregulation prevents teratoma formation in multipotent fibromodulin-reprogrammed cells. Journal of Clinical Investigation. doi:10.1172/jci125015
  1108. Lawler I, Zimmermann G. (2019): Misalignment Between Research Hypotheses and Statistical Hypotheses: A Threat to Evidence-Based Medicine? Topoi. doi:10.1007/s11245-019-09667-0
  1109. Krypotos A-M, Klugkist I, Mertens G, Engelhard IM. (2019): A step-by-step guide on preregistration and effective data sharing for psychopathology research. Journal of Abnormal Psychology. doi:10.1037/abn0000424
  1110. Sonon P, Gomes RG, Brelaz-de-Castro MCA, da Costa LAB, Pereira VRA, de Brito MEF, Dessein AJJ, Diniz GTN, Donadi EA, Lucena-Silva N. (2019): Human leukocyte antigen-G 3’ untranslated region polymorphism +3142G/C (rs1063320) and haplotypes are associated with manifestations of the American Tegumentary Leishmaniasis in a Northeastern Brazilian population. Human Immunology. doi:10.1016/j.humimm.2019.08.001
  1111. Han H, Glenn AL, Dawson KJ. (2019): Evaluating Alternative Correction Methods for Multiple Comparison in Functional Neuroimaging Research. Brain Sciences. doi:10.3390/brainsci9080198
  1112. Dutilh G, Sarafoglou A, Wagenmakers E-J. (2019): Flexible yet fair: blinding analyses in experimental psychology. Synthese. doi:10.1007/s11229-019-02456-7
  1113. Turna J, Grosman Kaplan K, Patterson B, Bercik P, Anglin R, Soreni N, Van Ameringen M. (2019): Higher prevalence of irritable bowel syndrome and greater gastrointestinal symptoms in obsessive-compulsive disorder. Journal of Psychiatric Research. doi:10.1016/j.jpsychires.2019.08.004
  1114. Johnson AL, Evans S, Checketts JX, Scott JT, Wayant C, Johnson M, Norris B, Vassar M. (2019): Effects of a proposal to alter the statistical significance threshold on previously published orthopaedic trauma randomized controlled trials. Injury. doi:10.1016/j.injury.2019.08.012
  1115. Gelman A. (2019): When we make recommendations for scientific practice, we are (at best) acting as social scientists. Eur J Clin Invest. doi:10.1111/eci.13165
  1116. Forscher PS, Lai CK, Axt JR, Ebersole CR, Herman M, Devine PG, Nosek BA. (2019): A meta-analysis of procedures to change implicit measures. Journal of Personality and Social Psychology. doi:10.1037/pspa0000160
  1117. Bal VH, Fok M, Lord C, Smith IM, Mirenda P, Szatmari P, Vaillancourt T, Volden J, Waddell C, Zwaigenbaum L, Bennett T, Duku E, Elsabbagh M, Georgiades S, Ungar WJ, Zaidman-Zait A. (2019): Predictors of longer-term development of expressive language in two independent longitudinal cohorts of language-delayed preschoolers with Autism Spectrum Disorder. J Child Psychol Psychiatr. doi:10.1111/jcpp.13117
  1118. Kuhn J-T, Schwenk C, Souvignier E, Holling H. (2019): Arithmetische Kompetenz und Rechenschwäche am Ende der Grundschulzeit. Die Rolle statusdiagnostischer und lernverlaufsbezogener Prädiktoren. Pabst Science Publishers. doi:10.25656/01:17773
  1119. Kramer M, Barkmin M, Brinda T. (2019): Identifying Predictors for Code Highlighting Skills. Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education. doi:10.1145/3304221.3319745
  1120. Martin AK, Su P, Meinzer M. (2019): Common and unique effects of HD-tDCS to the social brain across cultural groups. Neuropsychologia. doi:10.1016/j.neuropsychologia.2019.107170
  1121. Luo Y, Liang J, Zeng G, Li X, Chen M, Jiang L, Xing W, Tang N. (2019): Responses of seeds of typical Brassica crops to tetracycline stress: Sensitivity difference and source analysis. Ecotoxicology and Environmental Safety. doi:10.1016/j.ecoenv.2019.109597
  1122. French ZP, Caird MS, Whitney DG. (2019): Osteoporosis Epidemiology Among Adults With Cerebral Palsy: Findings From Private and Public Administrative Claims Data. JBMR Plus. doi:10.1002/jbm4.10231
  1123. Roden-Foreman JW, Rapier NR, Foreman ML, Zagel AL, Sexton KW, Beck WC, McGraw C, Coniglio RA, Blackmore AR, Holzmacher J, Sarani B, Hess JC, Greenwell C, Adams CA, Lueckel SN, Weaver M, Agrawal V, Amos JD, Workman CF, Milia DJ, Bertelson A, Dorlac W, Warne MJ, Cull J, Lyell CA, Regner JL, McGonigal MD, Flohr SD, Steen S, Nance ML, Campbell M, Putty B, Sherar D, Schroeppel TJ. (2019): Rethinking the definition of major trauma: The need for trauma intervention outperforms Injury Severity Score and Revised Trauma Score in 38 adult and pediatric trauma centers. J Trauma Acute Care Surg. doi:10.1097/ta.0000000000002402
  1124. Bickel DR, Rahal A. (2019): Model fusion and multiple testing in the likelihood paradigm: shrinkage and evidence supporting a point null hypothesis. Statistics. doi:10.1080/02331888.2019.1660342
  1125. Harms P. (2019): VR Interaction Modalities for the Evaluation of Technical Device Prototypes. Human-Computer Interaction – INTERACT 2019. doi:10.1007/978-3-030-29390-1_23
  1126. Clare PJ, Aiken A, Yuen WS, Peacock A, Boland V, Wadolowski M, Hutchinson D, Najman J, Slade T, Bruno R, McBride N, Degenhardt L, Kypri K, Mattick RP. (2019): Parental supply of alcohol as a predictor of adolescent alcohol consumption patterns: A prospective cohort. Drug and Alcohol Dependence. doi:10.1016/j.drugalcdep.2019.06.031
  1127. Lamas D, Loizides F, Nacke L, Petrie H, Winckler M, Zaphiris P, editors. (2019): Human-Computer Interaction – INTERACT 2019. Lecture Notes in Computer Science. Springer International Publishing. doi:10.1007/978-3-030-29387-1
  1128. Luan Z, Bleidorn W. (2019): Self-other personality agreement and internalizing problems in adolescence. J Pers. doi:10.1111/jopy.12511
  1129. Talvio M, Hietajärvi L, Matischek-Jauk M, Lonka K. (2019): Do Lions Quest (LQ) workshops have systematic impact on teachers’ social and emotional learning (SEL)? Samples from nine different countries. EJREP. doi:10.25115/ejrep.v17i48.2166
  1130. French Z, Torres R, Whitney D. (2019): Increased prevalence of osteoarthritis in adults with cerebral palsy. J Rehabil Med. doi:10.2340/16501977-2582
  1131. Belbasis L, Bellou V, Evangelou E, Tzoulaki I. (2019): Environmental factors and risk of multiple sclerosis: Findings from meta-analyses and Mendelian randomization studies. Mult Scler. doi:10.1177/1352458519872664
  1132. Domellöf E, Bäckström A, Johansson A, Rönnqvist L, Hofsten C, Rosander K. (2019): Kinematic characteristics of second-order motor planning and performance in 6- and 10-year-old children and adults: Effects of age and task constraints. Dev Psychobiol. doi:10.1002/dev.21911
  1133. Voelkl B. (2019): Multiple testing: correcting for alpha error inflation with false discovery rate (FDR) or family-wise error rate? Animal Behaviour. doi:10.1016/j.anbehav.2019.07.001
  1134. Dufwenberg M, Martinsson P. (2019): Sealed Envelope Submissions foster Research Integrity. Revue Économique 70(6):919-926. doi:10.3917/reco.706.0919
  1135. Oberauer K, Lewandowsky S. (2019): Addressing the theory crisis in psychology. Psychon Bull Rev. doi:10.3758/s13423-019-01645-2
  1136. Ni Q, Yang G, Brandt WN, Alexander DM, Chen C-TJ, Luo B, Vito F, Xue YQ. (2019): Does black hole growth depend fundamentally on host-galaxy compactness? Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/stz2623
  1137. Charlesworth J, Weinert LA, Araujo EV Jr, Welch JJ. (2019): Wolbachia, Cardinium and climate: an analysis of global data. Biol Lett. doi:10.1098/rsbl.2019.0273
  1138. Koplenig A. (2019): A non-parametric significance test to compare corpora. PLoS ONE. doi:10.1371/journal.pone.0222703
  1139. Whitney DG, Warschausky SA, Whibley D, Kratz A, Murphy SL, Hurvitz EA, Peterson MD. (2019): Clinical factors associated with mood affective disorders among adults with cerebral palsy. Neurol Clin Pract. doi:10.1212/cpj.0000000000000721
  1140. Landy DC, Utset-Ward TJ, Lee MJ. (2019): What Are the Implications of Alternative Alpha Thresholds for Hypothesis Testing in Orthopaedics? Clin Orthop Relat Res. doi:10.1097/corr.0000000000000843
  1141. Chen F, Ye K, Wang M. (2019): The minimum Bayes factor hypothesis test for correlations and partial correlations. Communications in Statistics – Theory and Methods. doi:10.1080/03610926.2019.1667397
  1142. Parsons N, Carey-Smith R, Dritsaki M, Griffin X, Metcalfe D, Perry D, Stengel D, Costa M. (2019): Statistical significance and p-values. The Bone & Joint Journal. doi:10.1302/0301-620x.101b10.bjj-2019-0890
  1143. Wiggins BJ, Christopherson CD. (2019): The replication crisis in psychology: An overview for theoretical and philosophical psychology. Journal of Theoretical and Philosophical Psychology. doi:10.1037/teo0000137
  1144. Nørgaard M, Ganz M, Svarer C, Frokjaer VG, Greve DN, Strother SC, Knudsen GM. (2019): Different preprocessing strategies lead to different conclusions: A [11C]DASB-PET reproducibility study. J Cereb Blood Flow Metab. doi:10.1177/0271678×19880450
  1145. Houck ZM, Asken BM, Bauer RM, Caccese JB, Buckley TA, McCrea MA, McAllister TW, Broglio SP, Clugston JR. (2019): Academic aptitude mediates the relationship between socioeconomic status and race in predicting ImPACT scores in college athletes. The Clinical Neuropsychologist. doi:10.1080/13854046.2019.1666923
  1146. Podlogar MC, Gutierrez PM, Joiner TE. (2019): Improving Our Understanding of the Death/Life Implicit Association Test. Journal of Personality Assessment. doi:10.1080/00223891.2019.1663357
  1147. Lew MJ. (2019): A reckless guide to P-values: local evidence, global errors. doi:10.48550/ARXIV.1910.02042
  1148. Tawfik DS, Scheid A, Profit J, Shanafelt T, Trockel M, Adair KC, Sexton JB, Ioannidis JPA. (2019): Evidence Relating Health Care Provider Burnout and Quality of Care. Ann Intern Med. doi:10.7326/m19-1152
  1149. Makin TR, Orban de Xivry J-J. (2019): Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife. doi:10.7554/elife.48175
  1150. Lilburn SD, Little DR, Osth AF, Smith PL. (2019): Cultural Problems Cannot Be Solved with Technical Solutions Alone. Comput Brain Behav. doi:10.1007/s42113-019-00036-z
  1151. Kahle EM, Veliz P, McCabe SE, Boyd CJ. (2019): Functional and structural social support, substance use and sexual orientation from a nationally representative sample of US adults. Addiction. doi:10.1111/add.14819
  1152. Atari M, Chaudhary N, Al-Shawaf L. (2019): Mate Preferences in Three Muslim-Majority Countries: Sex Differences and Personality Correlates. Social Psychological and Personality Science. doi:10.1177/1948550619866187
  1153. Campitelli G. (2019): Retiring Statistical Significance from Psychology and Expertise Research. Journal of Expertise 2(4):21-223.
  1154. Viera JMF. (2019): Análise de Modelos de Regressão Binária com Eventos Raros. Doctoral dissertation, Universidade de Lisboa (Portugal).
  1155. DelosReyes JM. (2019): Estimation of Correlation Confidence Intervals via the Bootstrap: Non-Normal Distributions. Master Thesis, Psychology, Old Dominion University. doi:10.25777/d313-ya78. https://digitalcommons.odu.edu/psychology_etds/336
  1156. Marienko M, Institute of Information Technologies and Learning Tools of NAES of Ukraine. (2019):Наукові платформи та хмарні сервіси, їх місце у системі наукової освіти вчителя. Physical and Mathematical Education, 22(4), 93–99. https://doi.org/10.31110/2413-1571-2019-022-4-015
  1157. Wahlsten D. (2019): Genes, Brain Function, and Behavior: What Genes Do, how They Malfunction, and Ways to Repair Damage. Academic Press.
  1158. Crevecoeur F, Scott SH, Cluff T. (2019): Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances. J Neurosci. doi:10.1523/jneurosci.0770-19.2019
  1159. Maekawa K, Ri M, Nakajima M, Sekine A, Ueda R, Tohkin M, Miyata N, Saito Y, Iida S. (2019): Serum lipidomics for exploring biomarkers of bortezomib therapy in patients with multiple myeloma. Cancer Sci. doi:10.1111/cas.14178
  1160. Hoijtink H, Mulder J, van Lissa C, Gu X. (2019): A tutorial on testing hypotheses using the Bayes factor. Psychological Methods. doi:10.1037/met0000201
  1161. Pek J, Park J. (2019): Complexities in power analysis: Quantifying uncertainties with a Bayesian-classical hybrid approach. Psychological Methods. doi:10.1037/met0000208
  1162. Rubin M. (2019): What type of Type I error? Contrasting the Nezman-Pearson and Fisherian approaches in the context of exact and direct replications. Synthese. doi:10.1007/s11229-019-02433-0
  1163. Joffe AR, Brin G, Farrow S. (2019): Unreliable Early Neuroprognostication After Severe Carbon Monoxide Poisoning Is Likely Due to Cytopathic Hypoxia: A Case Report and Discussion. J Child Neurol. doi:10.1177/0883073819879833
  1164. Bickel DR. (2019): Genomics Data Analysis. Chapman and Hall/CRC. doi:10.1201/9780429299308
  1165. Byrne B, Jones DBA, Strong K, Polavarapu SM, Harper AB, Baker DF, Maksyutov S. (2019): On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems? Atmos Chem Phys. doi:10.5194/acp-19-13017-2019
  1166. Goldenholz D, Sun H, Westover B. (2019).:Commentary on “Predicting seizure freedom after epilepsy surgery, a challenge in clinical practice”. Epilepsy & Behavior. doi:10.1016/j.yebeh.2019.07.009
  1167. Bumiller-Bini V, Cipolla GA, Spadoni MB, Augusto DG, Petzl-Erler ML, Beltrame MH, Boldt ABW. (2019): Condemned or Not to Die? Gene Polymorphisms Associated With Cell Death in Pemphigus Foliaceus. Front Immunol. doi:10.3389/fimmu.2019.02416
  1168. Bate A, Trifirò G, Avillach P, Evans SJW. (2019): Data Mining and Other Informatics Approaches to Pharmacoepidemiology. Pharmacoepidemiology. doi:10.1002/9781119413431.ch27
  1169. Price R, Bethune R, Massey L. (2019): Problem with p values: why p values do not tell you if your treatment is likely to work. Postgrad Med J. doi:10.1136/postgradmedj-2019-137079
  1170. Sullivan D. (2019): Social Psychological Theory as History: Outlining the Critical-Historical Approach to Theory. Pers Soc Psychol Rev. doi:10.1177/1088868319883174
  1171. Thalmayer AG, Saucier G, Flournoy JC, Srivastava S. (2019): Ethics-Relevant Values as Antecedents of Personality Change: Longitudinal Findings from the Life and Time Study. Collabra: Psychology. doi:10.1525/collabra.244
  1172. Guillen Gonzalez D, Bittlinger M, Erk S, Müller S. (2019): Neuroscientific and Genetic Evidence in Criminal Cases: A Double-Edged Sword in Germany but Not in the United States? Front Psychol. doi:10.3389/fpsyg.2019.02343
  1173. Rice K, Bonnett T, Krakauer C. (2019): Knowing the signs: a direct and generalizable motivation of two-sided tests. J R Stat Soc A. doi:10.1111/rssa.12496
  1174. Itescu Y, Foufopoulos J, Pafilis P, Meiri S. (2019): The diverse nature of island isolation and its effect on land bridge insular faunas. Global Ecol Biogeogr. doi:10.1111/geb.13024
  1175. Linde M, van Ravenzwaaij D. (2019): baymedr: An R Package for the Calculation of Bayes Factors for Equivalence, Non-Inferiority, and Superiority Designs. doi:10.48550/ARXIV.1910.11616
  1176. Joosse SA, Beyer B, Gasch C, Nastały P, Kuske A, Isbarn H, Horst LJ, Hille C, Gorges TM, Cayrefourcq L, Alix-Panabiéres C, Tennstedt P, Riethdorf S, Schlomm T, Pantel K. (2019): Tumor-Associated Release of Prostatic Cells into the Blood after Transrectal Ultrasound-Guided Biopsy in Patients with Histologically Confirmed Prostate Cancer. Clinical Chemistry 66(1):161-168. doi:10.1373/clinchem.2019.310912
  1177. Wevers M, Gao J, Nielbo KL. (2019): Tracking the Consumption Junction: Temporal Dependencies between Articles and Advertisements in Dutch Newspapers. doi:10.48550/ARXIV.1903.11461
  1178. Bonnier E, Dreber A, Hederos K, Sandberg A. (2019): Exposure to half-dressed women and economic behavior. Journal of Economic Behavior & Organization. doi:10.1016/j.jebo.2019.10.017
  1179. Parslow E, Ranehill E, Zethraeus N, Blomberg L, von Schoultz B, Hirschberg AL, Johannesson M, Dreber A. (2019): The digit ratio (2D:4D) and economic preferences: no robust associations in a sample of 330 women. J Econ Sci Assoc. doi:10.1007/s40881-019-00076-y
  1180. Adedeji JA, Fadamiro JA, Odeyale TO. (2019): Design toolkits for campus open spaces from post-occupancy evaluations of federal universities in South-west Nigeria. BEPAM. doi:10.1108/bepam-11-2018-0138
  1181. Chin JM, Ribeiro G, Rairden A. (2019): Open forensic science*. Journal of Law and the Biosciences. doi:10.1093/jlb/lsz009
  1182. Liu Y, Sun J, Wu T, Lu X, Du Y, Duan H, Yu W, Su D, Lu J, Tian J. (2019): Effects of serum from breast cancer surgery patients receiving perioperative dexmedetomidine on breast cancer cell malignancy: A prospective randomized controlled trial. Cancer Med. doi:10.1002/cam4.2654
  1183. Puhl RM, Himmelstein MS, Pearl RL, Wojtanowski AC, Foster GD. (2019): Weight Stigma Among Sexual Minority Adults: Findings from a Matched Sample of Adults Engaged in Weight Management. Obesity. doi:10.1002/oby.22633
  1184. Bendtsen M. (2019): Electronic Screening for Alcohol Use and Brief Intervention by Email for University Students: Reanalysis of Findings From a Randomized Controlled Trial Using a Bayesian Framework. J Med Internet Res. doi:10.2196/14419
  1185. Steenbergen MR. (2019): What Is In a (Non-) Significant Finding? Moving Beyond False Dichotomies. Swiss Polit Sci Rev. doi:10.1111/spsr.12373
  1186. Shikano S. (2019): Hypothesis Testing in the Bayesian Framework. Swiss Polit Sci Rev. doi:10.1111/spsr.12375
  1187. Hug S. (2019): Just Say No to p < x (∀x ∊  (0, 1]), *s and Other Evil Things. Swiss Polit Sci Rev. doi:10.1111/spsr.12374
  1188. Hannikainen IR, Machery E, Rose D, Stich S, Olivola CY, Sousa P, Cova F, Buchtel EE, Alai M, Angelucci A, Berniûnas R, Chatterjee A, Cheon H, Cho I-R, Cohnitz D, Dranseika V, Eraña Lagos Á, Ghadakpour L, Grinberg M, Hashimoto T, Horowitz A, Hristova E, Jraissati Y, Kadreva V, Karasawa K, Kim H, Kim Y, Lee M, Mauro C, Mizumoto M, Moruzzi S, Ornelas J, Osimani B, Romero C, Rosas López A, Sangoi M, Sereni A, Songhorian S, Struchiner N, Tripodi V, Usui N, Vázquez del Mercado A, Vosgerichian HA, Zhang X, Zhu J. (2019): For Whom Does Determinism Undermine Moral Responsibility? Surveying the Conditions for Free Will Across Cultures. Front Psychol. doi:10.3389/fpsyg.2019.02428
  1189. Aguinis H, Vassar M, Wayant C. (2019): On reporting and interpreting statistical significance and p values in medical research. BMJ EBM. doi:10.1136/bmjebm-2019-111264
  1190. Rahman MA, Shoaib SM, Amin MA, Toma RN, Moni MA, Awal MA. (2019): A Bayesian Optimization Framework for the Prediction of Diabetes Mellitus. 5th International Conference on Advances in Electrical Engineering (ICAEE) 2019:357-362. doi:10.1109/ICAEE48663.2019.8975480
  1191. Lovric MM. (2019): On the Authentic Notion, Relevance, and Solution of the Jeffreys-Lindley Paradox in the Zettabyte Era. Journal of Modern Applied Statistical Methods 18(1):eP3249. doi:10.22237/jmasm/1556670180
  1192. Rubanovich AV. (2019): Redefining the Critical Value of Significance Level (0.005 instead of 0.05): The Bayes Trace. Biology Bulletin 46(11):1449-1457. Pleiades Publishing Ltd. doi:10.1134/s1062359019110086
  1193. Englert B. (2019): Evidence in quantum data. Rochester Conference on Coherence and Quantum Optics (CQO-11). Conference on Coherence and Quantum Optics. OSA. doi:10.1364/cqo.2019.w2a.1
  1194. Li Q, Long W, Xiao X, Chen N. (2019): Evolution and Innovation of the National Attributes of Juvenile Dance in Western Hunan. CONVIVIUM (38):573-582.
  1195. Liu Y-S, Yan W-J, Tan C-C, Li J-Q, Xu W, Cao X-P, Tan L, Yu J-T. (2019): Common Variant in TREM1 Influencing Brain Amyloid Deposition in Mild Cognitive Impairment and Alzheimer’s Disease. Neurotox Res. doi:10.1007/s12640-019-00105-y
  1196. Bischof D, Velden M. (2019): The Use and Usefulness of p-Values in Political Science: Introduction. Swiss Polit Sci Rev. doi:10.1111/spsr.12376
  1197. Duffy K, Jacquier C, Hampton A. (2019): Trends in Food Consumption Patterns of US Infants and Toddlers from Feeding Infants and Toddlers Studies (FITS) in 2002, 2008, 2016. Nutrients. doi:10.3390/nu11112807
  1198. Maringe C, Belot A, Rubio FJ, Rachet B. (2019): Comparison of model-building strategies for excess hazard regression models in the context of cancer epidemiology. BMC Med Res Methodol. doi:10.1186/s12874-019-0830-9
  1199. Gehrke M, Müller R, Braun T. (2019): Taming Reasoning in Temporal Probabilistic Relational Models. doi:10.48550/ARXIV.1911.07040
  1200. Mulder J, Gu X, Olsson-Collentine A, Tomarken A, Böing-Messing F, Hoijtink H, Meijerink M, Williams DR, Menke J, Fox J-P, Rosseel Y, Wagenmakers E-J, van Lissa C. (2019): BFpack: Flexible Bayes Factor Testing of Scientific Theories in R. doi:10.48550/ARXIV.1911.07728
  1201. Xu Y, Li Y, Liang Y, Cai L. (2019): Topic-sentiment evolution over time: a manifold learning-based model for online news. J Intell Inf Syst. doi:10.1007/s10844-019-00586-5
  1202. Quiggin J. (2019): The Replication Crisis as Market Failure. Econometrics. doi:10.3390/econometrics7040044
  1203. Devos T, Sadler M, Perry D, Yogeeswaran K. (2019): Temporal fluctuations in context ethnic diversity over three decades predict implicit national inclusion of Asian Americans. Group Processes &amp; Intergroup Relations. doi:10.1177/1368430219887440
  1204. Koletsi D, Solmi M, Pandis N, Fleming PS, Correll CU, Ioannidis JPA. (2019): Most recommended medical interventions reach P < 0.005 for their primary outcomes in meta-analyses. International Journal of Epidemiology. doi:10.1093/ije/dyz241
  1205. Romero F. (2019): Philosophy of science and the replicability crisis. Philosophy Compass. doi:10.1111/phc3.12633
  1206. Norouzian R, de Miranda MA, Plonsky L. (2019): A Bayesian approach to measuring evidence in L2 research: An empirical investigation. Modern Language Journal 103:248-261. doi:10.1111/modl.12543
  1207. van der Lee C, Gatt A, van Miltenburg E, Wubben S, Krahmer E. (2019): Best practices for the human evaluation of automatically generated text. Proceedings of the 12th International Conference on Natural Language Generation. Proceedings of the 12th International Conference on Natural Language Generation. Association for Computational Linguistics. doi:10.18653/v1/w19-8643
  1208. Lechner S. (2019): Second Language Acquisition of Demonstratives: A cross-linguistic, multi-directional study of L1 English, L1 German and L1 Japanese learners of L2 German, L2 English and L2 Japanese. Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
  1209. Noble S. (2019): Reliability and Validity of fMRI Mapping Methods. Doctoral dissertation, Yale University.
  1210. Beranek CT. (2019): Increased house mouse (Mus musculus) abundance in wetlands in response to Typha sp. flowering: implications for understanding wetland occupancy patterns of the eastern grass owl (Tyto longimembris). Australian Journal of Zoology 67(4):210-214. doi:10.1071/ZO20063
  1211. Sercy E, Carrick MM, Orlando A, Bar-Or D. (2019): Factors to Consider When Evaluating Rates of Pharmacologic Venous Thromboembolism Prophylaxis Administration Among Trauma Patients. Journal for Healthcare Quality 1. doi:10.1097/jhq.0000000000000230
  1212. Pace L, Salvan A. (2019): Likelihood, Replicability and Robbins’ Confidence Sequences. International Statistical Review. doi:10.1111/insr.12355
  1213. Leppink J. (2019): Statistical Methods for Experimental Research in Education and Psychology, Springer Texts in Education. Springer International Publishing. doi:10.1007/978-3-030-21241-4
  1214. Kooijman L, Happee R, de Winter J. (2019): How Do eHMIs Affect Pedestrians’ Crossing Behavior? A Study Using a Head-Mounted Display Combined with a Motion Suit. Information. doi:10.3390/info10120386
  1215. Wright DB. (2019): Research Methods for Education With Technology: Four Concerns, Examples, and Recommendations. Front Educ. doi:10.3389/feduc.2019.00147
  1216. Born RT. (2019): Banishing “Black/White Thinking”: A Trio of Teaching Tricks. eNeuro. doi:10.1523/eneuro.0456-19.2019
  1217. Asken BM, Thomas KR, Lee A, Davis JD, Malloy PF, Salloway SP. (2019): Discrepancy-Based Evidence for Loss of Thinking Abilities (DELTA): Development and Validation of a Novel Approach to Identifying Cognitive Changes. J Int Neuropsychol Soc. doi:10.1017/s1355617719001346
  1218. Rubinstein SM, Sigworth EA, Etemad S, Martin RL, Chen Q, Warner JL. (2019): Indication of Measures of Uncertainty for Statistical Significance in Abstracts of Published Oncology Trials. JAMA Netw Open. doi:10.1001/jamanetworkopen.2019.17530
  1219. Lewitzki V, Klement RJ, Kosmala R, Lisowski D, Flentje M, Polat B. (2019): Accelerated hyperfractionated radiochemotherapy with temozolomide is equivalent to normofractionated radiochemotherapy in a retrospective analysis of patients with glioblastoma. Radiat Oncol. doi:10.1186/s13014-019-1427-5
  1220. Joffe AR, Wong K, Bond GY, Khodayari Moez E, Acton BV, Dinu IA, Yap JYK, Robertson CMT. (2019): Kindergarten-age neurocognitive, functional, and quality-of-life outcomes after liver transplantation at under 6 years of age. Pediatr Transplant. doi:10.1111/petr.13624
  1221. Bendtsen M. (2019): An Electronic Screening and Brief Intervention for Hazardous and Harmful Drinking Among Swedish University Students: Reanalysis of Findings From a Randomized Controlled Trial Using a Bayesian Framework. J Med Internet Res. doi:10.2196/14420
  1222. Lakic S. (2019): BAYESOV FAKTOR: OPIS I RAZLOZI ZA UPOTREBU U PSIHOLOÅ KIM ISTRAZIVANJIMA. gpsi. doi:10.46630/gpsi.18.2019.03
  1223. Vaillancourt S, Coulombe-Lévêque A, Fradette J, Martel S, Naour W, da Silva RA, Léonard G. (2019): Combining transcutaneous electrical nerve stimulation with therapeutic exercise to reduce pain in an elderly population: a pilot study. Disability and Rehabilitation. doi:10.1080/09638288.2019.1693639
  1224. Kvarven A, Strømland E, Johannesson M. (2019): Comparing meta-analyses and preregistered multiple-laboratory replication projects. Nat Hum Behav. doi:10.1038/s41562-019-0787-z
  1225. Liu H, Koch C, Haller A, Joosse SA, Kumar R, Vellekoop MJ, Horst LJ, Keller L, Babayan A, Failla AV, Jensen J, Peine S, Keplinger F, Fuchs H, Pantel K, Hirtz M. (2019): Evaluation of Microfluidic Ceiling Designs for the Capture of Circulating Tumor Cells on a Microarray Platform. Adv Biosys. doi:10.1002/adbi.201900162
  1226. Michel MC, Murphy TJ, Motulsky HJ. (2019): New Author Guidelines for Displaying Data and Reporting Data Analysis and Statistical Methods in Experimental Biology. Drug Metab Dispos. doi:10.1124/dmd.119.090027
  1227. MIMA K, KURASHIGE J, MIYANARI N, MORITO A, YUMOTO S, MATSUMOTO T, KOSUMI K, INOUE M, MIZUMOTO T, KUBOTA T, BABA H. (2019): Advanced Age Is a Risk Factor for Recurrence After Resection in Stage II Colorectal Cancer. In Vivo. doi:10.21873/invivo.11779
  1228. Canavari M, Drichoutis AC, Lusk JL, Nayga RM Jr. (2019): How to run an experimental auction: a review of recent advances. European Review of Agricultural Economics. doi:10.1093/erae/jbz038
  1229. Zazulia E. (2019): Out of Proportion. Journal of Musicology. doi:10.1525/jm.2019.36.2.131
  1230. Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D. (2019): Indices of Effect Existence and Significance in the Bayesian Framework. Front Psychol. doi:10.3389/fpsyg.2019.02767
  1231. Lew MJ. (2019): A Reckless Guide to P-values. Good Research Practice in Non-Clinical Pharmacology and Biomedicine. doi:10.1007/164_2019_286
  1232. Held L. (2019): A new standard for the analysis and design of replication studies. J R Stat Soc A. doi:10.1111/rssa.12493 
  1233. Hutton J, Diggle P, Bird S, Hennig C, Longford N, Mathur MB, VanderWeel T, Ioannidis J, Chai C, Dowe D, Ferguson J, Fitz-Simon N, Friede T, Rover C, Grieve A, Kumar K, Ly A, Mansmann U, Mateu J, Matthews R, Neuenschwander B, Zwahlen M, Pericchi L, Roes K, Senn S, Wagenmakers E, Rice K, Krakauer C, Bonnett T, Held L. (2019): Discussion on the meeting on ‚Signs and sizes: understanding and replicating statistical findings‘. J R Stat Soc A. doi:10.1111/rssa.12544
  1234. Jiménez Arenas JM. (2018): Una aproximación al uso de la estadística inferencial en investigación para la paz. Revista de Paz y Conflictos. doi:10.30827/revpaz.v11i2.8389
  1235. Yan X, Dvir N, Jacques M, Cavalcante L, Papadimitriou ID, Munson F, Kuang J, Garnham A, Landen S, Li J, O´Keefe L, Tirosh O, Bishop DJ, Voisin S, Eynon N. (2018): ACE I/D gene variant predicts ACE enzyme content in blood but not the ACE, UCP2, and UCP3 protein content in human skeletal muscle in the Gene SMART study. Journal of Applied Physiology. doi:10.1152/japplphysiol.00344.2018
  1236. Kelter R, Kramer M, Brinda T. (2018): Statistical Frequency-Analysis of Misconceptions In Object-Oriented-Programming. Proceedings of the 18th Koli Calling International Conference on Computing Education Research. doi:10.1145/3279720.3279727
  1237. Guerin AJ, Clare AS. (2018): Mini-review: effect sizes and meta-analysis for antifouling research. Biofouling. doi:10.1080/08927014.2018.1550196
  1238. Berlemont K, Nadal J-P. (2018): Perceptual Decision-Making: Biases in Post-Error Reaction Times Explained by Attractor Network Dynamics. J Neurosci. doi:10.1523/jneurosci.1015-18.2018
  1239. Klein RA, Vianello M, Hasselman F, Adams BG, Adams RB, Jr, Alper S, et al. (2018): Many labs 2: Investigating variation in replicability across samples and settings. Advances in Methods and Practices in Psychological Science1(4):443–490. https://doi.org/10.1177/2515245918810225
  1240. Moaniba IM, Su H-N, Lee P-C. (2018): Knowledge recombination and technological innovation: the important role of cross-disciplinary knowledge. Innovation. doi:10.1080/14479338.2018.1478735
  1241. DOMENECH RJ. (2018): Artículo de Revisión. Rev méd Chile. doi:10.4067/s0034-98872018001001184
  1242. Vijayakumar R, Cheung MW-L. (2018): Replicability of Machine Learning Models in the Social Sciences. Zeitschrift für Psychologie. doi:10.1027/2151-2604/a000344
  1243. Martin I, Nations J. (2018): Taxation and Citizen Voice in School District Parcel Tax Elections. SocScience. doi:10.15195/v5.a27
  1244. Haushofer J, Reisinger J. (2018): Atheist primes reduce religiosity and subjective wellbeing. Religion, Brain & Behavior. doi:10.1080/2153599x.2018.1436585
  1245. Albers CJ, Kiers HAL, van Ravenzwaaij D. (2018): Credible Confidence: A Pragmatic View on the Frequentist vs Bayesian Debate. Collabra: Psychology. doi:10.1525/collabra.149
  1246. Heino MTJ, Vuorre M, Hankonen N. (2018): Bayesian evaluation of behavior change interventions: a brief introduction and a practical example. Health Psychology and Behavioral Medicine.doi:10.1080/21642850.2018.1428102
  1247. Axt JR, Casola G, Nosek BA. (2018): Reducing Social Judgment Biases May Require Identifying the Potential Source of Bias. Pers Soc Psychol Bull. doi:10.1177/0146167218814003
  1248. Parent K. (2018): What English Verb Errors do Korean University Students Make? A Corpus Examination of Learner-Produced Verb Phrases. Korean Journal of English Language and Linguistics 18:423-441. doi:10.15738/KJELL.18.4.201812.423
  1249. Wilson BM, Wixted JT. (2018): The Prior Odds of Testing a True Effect in Cognitive and Social Psychology. Advances in Methods and Practices in Psychological Science 1:186-197. doi:10.1177/2515245918767122
  1250. Krueger JI, Heck PR. (2018): Testing Significance Testing. Collabra: Psychology 4. doi:10.1525/collabra.108
  1251. Salo PP. (2018): Studies on the Genetics of Heart Faliure. Dissertation, University of Helsinki.
  1252. Durand WM, Peters JL, Eltorai AEM, Kalagara S, Osband AJ, Daniels AH. (2018): Medical crowdfunding for organ transplantation. Clin Transplant 32:e13267. doi:10.1111/ctr.13267
  1253. Marigorta UM, Rodríguez JA, Gibson G, Navarro A. (2018): Replicability and Prediction: Lessons and Challenges from GWAS. Trends in Genetics 34:504-517. doi:10.1016/j.tig.2018.03.005
  1254. Bello NM, Renter DG. (2018): Invited review: Reproducible research from noisy data: Revisiting key statistical principles for the animal sciences. Journal of Dairy Science 101:5679-5701. doi:10.3168/jds.2017-13978
  1255. Hu CP, Kong XZ, Eric-Jan W, Alexander L, Peng K. (2018): The Bayes factor and its implementation in JASP: A practical primer. Advances in Psychological Science 26:951. doi:10.3724/sp.j.1042.2018.00951
  1256. Taraldsen G, Berger JO, Druilhet P, Hannig J, Lindqvist BH, Tufto J. (2018): Deep Neural Learning with Objective Beliefs.
  1257. Wong VC, Steiner PM. (2018): Replication Designs for Casual Interference. University of Virginia.
  1258. Cristea IA, Ioannidis JPA. (2018): P values in display items are ubiquitous and almost invariably significant: A survey of top science journals. PLoS ONE 13:e0197440. doi:10.1371/journal.pone.0197440
  1259. Wieten, SE. (2018): What Counts as ‘What Works’: Expertise, Mechanisms and Values in Evidence-Based Medicine. Durham theses, Durham University. http://etheses.dur.ac.uk/12606/
  1260. Totomoch-Serra A, Muñoz M de L, Burgueño J, Revilla-Monsalve MC, Perez-Muñoz A, Diaz-Badillo Á. (2018): The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based case-control study from Mexico City. Gene 669:28-34. doi:10.1016/j.gene.2018.05.078
  1261. Parker TH, Griffith SC, Bronstein JL, Fidler F, Foster S, Fraser H, Forstmeier W, Gurevitch J, Koricheva J, Seppelt R, Tingley MW, Nakagawa S. (2018): Empowering peer reviewers with a checklist to improve transparency. Nat Ecol Evol 2:929-935. doi:10.1038/s41559-018-0545-z
  1262. Trafimow D, Amrhein V, Areshenkoff CN, Barrera-Causil CJ, Beh EJ, Bilgiç YK, Bono R, Bradley MT, Briggs WM, Cepeda-Freyre HA, et al. (2018): Manipulating the Alpha Level Cannot Cure Significance Testing. Front Psychol 9. doi:10.3389/fpsyg.2018.00699
  1263. Banks GC, Field JG, Oswald FL, O´Boyle EH, Landis RS, Rupp DE, Rogelberg SG. (2018): Answers to 18 Questions About Open Science Practices. J Bus Psychol 34:257-270. doi:10.1007/s10869-018-9547-8
  1264. Durand WM, Ruddell JH, Eltorai AEM, DePasse JM, Daniels AH. (2018): Ileus Following Adult Spinal Deformity Surgery. World Neurosurgery 116:e806-e813. doi:10.1016/j.wneu.2018.05.099
  1265. Schuette D, Moore LM, Robert ME, Taddei TH, Ehrlich BE. (2018): Hepatocellular Carcinoma Outcome Is Predicted by Expression of Neuronal Calcium Sensor 1. Cancer Epidemiol Biomarkers Prev27:1091-1100. doi:10.1158/1055-9965.epi-18-0167
  1266. Camerer CF, Dreber A, Holzmeister F, Ho T-H, Huber J, Johannesson M, Kirchler M, Nave G, Nosek BA, Pfeiffer T, et al. (2018): Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat Hum Behav 2:637-644. doi:10.1038/s41562-018-0399-z
  1267. Bukorov BM. (2018): QUALITY OF LIFE ASSESMENT IN PERSONS WITH CHRONIC ACTIVE OTITIS MEDIA. Dissertation, University of Belgrad.
  1268. Ioannidis JPA. (2018): Discussion of Why Most Published Research Findings Are False. IPRI Journal Club.
  1269. Schroeder J, Karkar R, Fogarty J, Kientz JA, Munson SA, Kay M. (2018): A Patient-Centered Proposal for Bayesian Analysis of Self-Experiments for Health. J Healthc Inform Res 3:124-155. doi:10.1007/s41666-018-0033-x
  1270. Olivetti E, Benozzo D, Bím J, Panzeri S, Avesani P. (2018): Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model. Front Comput Neurosci 12. doi:10.3389/fncom.2018.00038
  1271. Reed WR. (2018): A Primer on the ´Reproducibility Crisis´ and Ways to Fix It. Australian Economic Review 51:286-300. doi:10.1111/1467-8462.12262
  1272. De Boeck P, Jeon M. (2018): Perceived crisis and reforms: Issues, explanations, and remedies. Psychological Bulletin 144:757-777. doi:10.1037/bul0000154
  1273. Kirsch SF, Meryash DL, González-Arévalo B. (2018): Determinants of Parent Satisfaction with Emergency or Urgent Care When the Patient Has Autism. J Dev Behav Pediatr 39:365-375. doi:10.1097/dbp.0000000000000573
  1274. Gigerenzer G. (2018): Statistical Rituals: The Replication Delusion and How We Got There. Advances in Methods and Practices in Psychological Science 1:198-218. doi:10.1177/2515245918771329
  1275. Lorca-Puls DL, Gajardo-Vidal A, White J, Seghier ML, Leff AP, Green DW, Crinion JT, Ludersdorfer P, Hope TMH, Bowman H, Price CJ. (2018): The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings. Neuropsychologia 115:101-111. doi:10.1016/j.neuropsychologia.2018.03.014
  1276. Solmi M, Köhler CA, Stubbs B, Koyanagi A, Bortolato B, Monaco F, Vancampfort D, Machado MO, Maes M, Tzoulaki I, Firth J, Ioannidis JPA, Carvalho AF. (2018): Environmental risk factors and nonpharmacological and nonsurgical interventions for obesity: An umbrella review of meta-analyses of cohort studies and randomized controlled trials. Eur J Clin Invest 48:e12982. doi:10.1111/eci.12982
  1277. Mankin JL. (2018): The psycholinguistics of synaesthesia. PhD Thesis, University of Sussex. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.751862
  1278. Baselmans BML, Willems YE, van Beijsterveldt CEM, Ligthart L, Willemsen G, Dolan CV, Boomsma DI, Bartels M. (2018): Unraveling the Genetic and Environmental Relationship Between Well-Being and Depressive Symptoms Throughout the Lifespan. Front Psychiatry 9. doi:10.3389/fpsyt.2018.00261
  1279. Said MA, Verweij N, van der Harst P. (2018): Associations of Combined Genetic and Lifestyle Risks With Incident Cardiovascular Disease and Diabetes in the UK Biobank Study. JAMA Cardiol 3:693. doi:10.1001/jamacardio.2018.1717
  1280. Danielson L. (2018): Fundamentals of clinical research. 2: Designing a research study. Anaesth Pain & Intensive Care 2018;22(1):131-138.
  1281. Bartelink C, Knorth EJ, López López M, Koopmans C, ten Berge IJ, Witteman CLM, van Yperen TA. (2018): Reasons for placement decisions in a case of suspected child abuse: The role of reasoning, work experience and attitudes in decision-making. Child Abuse & Neglect 83:129-141. doi:10.1016/j.chiabu.2018.06.013
  1282. Krasnienkov DS, Khalangot MD, Kravchenko VI, Kovtun VA, Guryanov VG, Chizhova VP, Korkushko OV, Shatilo VB, Kukharsky VM, Vaiserman AM. (2018): Hyperglycemia attenuates the association between telomere length and age in Ukrainian population. Experimental Gerontology 110:247-252. doi:10.1016/j.exger.2018.06.027
  1283. Pfeiler TM, Egloff B. (2018): Personality and meat consumption: The importance of differentiating between type of meat. Appetite 130:11-19. doi:10.1016/j.appet.2018.07.007
  1284. Nuijten, M. (2018): Research on research: A meta-scientific study of problems and solutions in psychological science. Gildeprint. ISBN: 978-94-6233-928-6
  1285. Perugini M, Gallucci M, Costantini G. (2018): A Practical Primer To Power Analysis for Simple Experimental Designs. International Review of Social Psychology 31. doi:10.5334/irsp.181
  1286. Bol D. (2018): Putting Politics in the Lab: A Review of Lab Experiments in Political Science. Gov & oppos 54:167-190. doi:10.1017/gov.2018.14
  1287. Winship C, Zhuo X. (2018): Interpreting t-Statistics Under Publication Bias: Rough Rules of Thumb. J Quant Criminol 36:329-346. doi:10.1007/s10940-018-9387-8
  1288. Könen T, Karbach J. (2018): Self-Reported Cognitive Failures in Everyday Life: A Closer Look at Their Relation to Personality and Cognitive Performance. Assessment 27:982-995. doi:10.1177/1073191118786800
  1289. Tal-Or L, Zechmeister M, Reiners A, Jeffers SV, Schöfer P, Quirrenbach A, Amado PJ, Ribas I, Caballero JA, Aceituno J, Bauer FF, Béjar VJS, Czesla S, Dreizler S, Fuhrmeister B, Hatzes AP, Johnson EN, Kürster M, Lafarga M, Montes D, Morales JC, Reffert S, Sadegi S, Seifert W, Shulyak D. (2018): The CARMENES search for exoplanets around M dwarfs. A&A 614:A122. doi:10.1051/0004-6361/201732362
  1290. Schoch J, Noser E, Ehlert U. (2018): Do Implicit Motives Influence Perceived Chronic Stress and Vital Exhaustion? Front Psychol 9. doi:10.3389/fpsyg.2018.01149
  1291. Oldehinkel AJ. (2018): The importance of taking no for an answer. Nat Hum Behav 2:533-534. doi:10.1038/s41562-018-0393-5
  1292. Han H, Park J, Thoma SJ. (2018): Why do we need to employ Bayesian statistics and how can we employ it in studies of moral education?: With practical guidelines to use JASP for educators and researchers. Journal of Moral Education 1-19. doi:10.1080/03057240.2018.1463204
  1293. Bruce JR. (2018): Getting Ahead by Staying Put? Specialization and Social Capital in U.S. Civil Service Careers. Proceedings 2018:14515. doi:10.5465/ambpp.2018.22
  1294. Vazire S. (2018): Implications of the Credibility Revolution for Productivity, Creativity, and Progress. Perspect Psychol Sci 13:411-417. doi:10.1177/1745691617751884
  1295. Ioannidis JPA. (2018): Why replication has more scientific value than original discovery. Behav Brain Sci 41. doi:10.1017/s0140525x18000729
  1296. Grant S, Spears A, Pedersen ER. (2018): Video Games as a Potential Modality for Behavioral Health Services for Young Adult Veterans: Exploratory Analysis. JMIR Serious Games 6:e15. doi:10.2196/games.9327
  1297. Holm Hansen R, Højsgaard Chow H, Sellebjerg F, Rode von Essen M. (2018): Dimethyl fumarate therapy suppresses B cell responses and follicular helper T cells in relapsing-remitting multiple sclerosis. Mult Scler 25:1289-1297. doi:10.1177/1352458518790417
  1298. Espinoza Q, Eugenia M, Parra R, Emmanuel O. (2018): Modelamiento de la precipitación en la zona urbana de la ciudad de Cuenca. Universidad Politécnica Salesianahttps://dspace.ups.edu.ec/handle/123456789/15799
  1299. Polonioli A, Vega-Mendoza M, Blankinship B, Carmel D. (2018): Reporting in Experimental Philosophy: Current Standards and Recommendations for Future Practice. RevPhilPsych 12:49-73. doi:10.1007/s13164-018-0414-3
  1300. Pineda S, Sirota M. (2018): Determining Significance in the New Era for P Values. Journal of Pediatric Gastroenterology & Nutrition 67:547-548. doi:10.1097/mpg.0000000000002120
  1301. Otárola-Castillo E, Torquato MG. (2018): Bayesian Statistics in Archaeology. Annu Rev Anthropol 47:435-453. doi:10.1146/annurev-anthro-102317-045834
  1302. Ma L, Christensen T. (2018): Government Trust, Social Trust, and Citizens’ Risk Concerns: Evidence from Crisis Management in China. Public Performance & Management Review 42:383-404. doi:10.1080/15309576.2018.1464478
  1303. Ostwald D, Schneider S, Bruckner R, Horvath L. (2018): Random field theory-based p-values: A review of the SPM implementation. doi:10.48550/ARXIV.1808.04075
  1304. Govindaswami B, Jegatheesan P, Nudelman M, Narasimhan SR. (2018): Prevention of Prematurity. Clinics in Perinatology 45:579-595. doi:10.1016/j.clp.2018.05.013
  1305. Camerer CF, Dreber A, Holzmeister F. et al. (2018): Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat Hum Behav 2, 637-644. doi:10.1038/s41562-018-0399-z
  1306. Belbasis L, Dosis V, Evangelou E. (2018): Elucidating the environmental risk factors for rheumatic diseases: An umbrella review of meta-analyses. Int J Rheum Dis 21:1514-1524. doi:10.1111/1756-185x.13356
  1307. Stark G, Meiri S. (2018): Cold and dark captivity: Drivers of amphibian longevity. Global Ecol Biogeogr 27:1384-1397. doi:10.1111/geb.12804
  1308. Sedaghat F, Cheraghpour M, Hosseini SA, Pourvali K, Teimoori-Toolabi L, Mehrtash A, Talaei R, Zand H. (2018): Hypomethylation of NANOG promoter in colonic mucosal cells of obese patients: a possible role of NF-κB. Br J Nutr 122:499-508. doi:10.1017/s000711451800212x
  1309. Kim M, Kim C. (2018): Personality Basis for Partisan News Media Use: Openness to Experience and Consumption of Liberal News Media. Mass Communication and Society. doi:10.1080/15205436.2018.1506035
  1310. Wei Y, Chen F. (2018): Lowering the P Value Threshold. JAMA. doi:10.1001/jama.2018.8721
  1311. Christen M. (2018): Comparing cultural differences with domain-specific differences of appreciating and understanding values. Journal of Moral Education. doi:10.1080/03057240.2018.1469477
  1312. Kim JH, Schulz W, Zimmermann T, Hahlweg K. (2018): Parent-child interactions and child outcomes: Evidence from randomized intervention. Labour Economics. doi:10.1016/j.labeco.2018.08.003
  1313. Kosumi K, Hamada T, Koh H, Borowsky J, Bullman S, Twombly TS, Nevo D, Masugi Y, Liu L, da Silva A, Chen Y, Du C, Gu M, Li C, Li W, Liu H, Shi Y, Mima K, Song M, Nosho K, Nowak JA, Nishihara R, Baba H, Zhang X, Wu K, Wang M, Huttenhower C, Garrett WS, Meyerson ML, Lennerz JK, Giannakis M, Chan AT, Meyerhardt JA, Fuchs CS, Ogino S. (2018): The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. The American Journal of Pathology. doi:10.1016/j.ajpath.2018.08.015
  1314. Hamada T, Liu L, Nowak JA, Mima K, Cao Y, Ng K, Twombly TS, Song M, Jung S, Dou R, Masugi Y, Kosumi K, Shi Y, da Silva A, Gu M, Li W, Keum N, Wu K, Nosho K, Inamura K, Meyerharddet JA, Nevo D, Wang M, Giannakis M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. (2018): Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. European Journal of Cancer. doi:10.1016/j.ejca.2018.07.130
  1315. Steinfath M, Vogl S, Violet N, Schwarz F, Mielke H, Selhorst T, Greiner M, Schönfelder G. (2018): Simple changes of individual studies can improve the reproducibility of the biomedical scientific process as a whole. PLoS ONE. doi:10.1371/journal.pone.0202762
  1316. Echodu R, Edema H, Malinga GM, Hendy A, Colebunders R, Moriku Kaducu J, Ovuga E, Haesaert G. (2018): Is nodding syndrome in northern Uganda linked to consumption of mycotoxin contaminated food grains? BMC Res Notes. doi:10.1186/s13104-018-3774-y
  1317. Sprenger J. (2018): The objectivity of Subjective Bayesianism. Euro Jnl Phil Sci. doi:10.1007/s13194-018-0200-1
  1318. Anselin L. (2018): A Local Indicator of Multivariate Spatial Association: Extending Geary´s c. Geogr Anal. doi:10.1111/gean.12164
  1319. Mayer M. (2018): Research integrity and the law that never was. BMJ EBM. doi:10.1136/bmjebm-2018-110993
  1320. Stewart A, Cotton J. (2018): Does “Evaluating Journal Quality and the Association for Information Systems Senior Scholars Journal Basket…” Support the Basket with Bibliometric Measures? AIS TRR. doi:10.17705/1atrr.00032
  1321. de Ruiter J. (2018): Redefine or justify? Comments on the alpha debate. Psychon Bull Rev. doi:10.3758/s13423-018-1523-9
  1322. Grzybowski A, Mianowany M. (2018): Statistics in ophthalmology revisited: the (effect) size matters. Acta Ophthalmol. doi:10.1111/aos.13756
  1323. Brownstein NC. (2018): Perspective from the Literature on the Role of Expert Judgment in Scientific and Statistical Research and Practice. doi:10.48550/ARXIV.1809.04721
  1324. Freese J, Peterson D. (2018): The Emergence of Statistical Objectivity: Changing Ideas of Epistemic Vice and Virtue in Science. Sociological Theory. doi:10.1177/0735275118794987
  1325. McWilliam O, Sellebjerg F, Marquart HV, von Essen MR. (2018): B cells from patients with multiple sclerosis have a pathogenic phenotype and increased LTα and TGFβ1 response. Journal of Neuroimmunology. doi:10.1016/j.jneuroim.2018.09.001
  1326. Dingledine R. (2018): Why Is It so Hard to Do Good Science? eNeuro. doi:10.1523/eneuro.0188-18.2018
  1327. van Hees VT, Sabia S, Jones SE, Wood AR, Anderson KN, Kivimäki M, Frayling TM, Pack AI, Bucan M, Trenell MI, Mazzotti DR, Gehrman PR, Singh-Manoux BA, Weedon MN. (2018): Estimating sleep parameters using an accelerometer without sleep diary. Sci Rep. doi:10.1038/s41598-018-31266-z
  1328. Cabrall CDD, Janssen NM, de Winter JCF. (2018): Adaptive automation: automatically (dis)engaging automation during visually distracted driving. PeerJ Computer Science. doi:10.7717/peerj-cs.166
  1329. Loesche F, Goslin J, Bugmann G. (2018): Paving the Way to Eureka-Introducing “Dira” as an Experimental Paradigm to Observe the Process of Creative Problem Solving. Front Psychol. doi:10.3389/fpsyg.2018.01773
  1330. Mallard TT, Harden KP, Fromme K. (2018): Genetic risk for schizophrenia is associated with substance use in emerging adulthood: an event-level polygenic prediction model. Psychol Med. doi:10.1017/s0033291718002817
  1331. Cardoso LM, Gomes GVA, Vieira TS. (2018): Validity Evidence of the Zulliger-SC Test to children´s assessment. Psico-USF. doi:10.1590/1413-82712018230305
  1332. Gillingham K, Keyes A, Palmer K. (2018): Advances in Evaluating Energy Efficiency Policies and Programs. Annu Rev Resour Econ. doi:10.1146/annurev-resource-100517-023028
  1333. Koch M. (2018): Probiotics and Evidence-based Medicine. Journal of Clinical Gastroenterology. doi:10.1097/mcg.0000000000001106
  1334. Li C, Wang X-Q, Wen C-H, Tan H. (2018): Association of degree of loss aversion and grey matter volume in superior frontal gyrus by voxel-based morphometry. Brain Imaging and Behavior. doi:10.1007/s11682-018-9962-5
  1335. Silva Aycaguer LC. (2018): Frequent methodological errors in clinical research. Medicina Intensiva (English Edition). doi:10.1016/j.medine.2018.10.001
  1336. Sapra RL, Nundy S. (2018): Why the p-value is under fire? Current Medicine Research and Practice. doi:10.1016/j.cmrp.2018.10.003
  1337. Kavish N, Fu QJ, Vaughn MG, Qian Z, Boutwell BB. (2018): Resting Heart Rate and Psychopathy Revisited: Findings From the Add Health Survey. Int J Offender Ther Comp Criminol. doi:10.1177/0306624×18806748
  1338. Huang C-Y, Chiang S-F, Ke T-W, Chen T-W, You Y-S, Chen WT-L, Chao KSC. (2018): Clinical significance of programmed death 1 ligand-1 (CD274/PD-L1) and intra-tumoral CD8+ T-cell infiltration in stage II-III colorectal cancer. Sci Rep. doi:10.1038/s41598-018-33927-5
  1339. Song N, Kim K, Shin A, Park JW, Chang HJ, Shi J, Cai Q, Kim DY, Zheng W, Oh JH. (2018): Colorectal cancer susceptibility loci and influence on survival. Genes Chromosomes Cancer. doi:10.1002/gcc.22674
  1340. Teixeira da Silva JA, Tsigaris P. (2018): What Value Do Journal Whitelists and Blacklists Have in Academia? The Journal of Academic Librarianship. doi:10.1016/j.acalib.2018.09.017
  1341. Ripamonti E, Frustaci M, Zonca G, Aggujaro S, Molteni F, Luzzatti C. (2018): Disentangling phonological and articulatory processing: A neuroanatomical study in aphasia. Neuropsychologia. doi:10.1016/j.neuropsychologia.2018.10.015
  1342. Groot HE, Al Ali L, van der Horst ICC, Schurer RAJ, van der Werf HW, Lipsic E, van Veldhuisen DJ, Karper JC, van der Harst P. (2018): Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. doi:10.1007/s00392-018-1387-z
  1343. Stark G, Tamar K, Itescu Y, Feldman A, Meiri S. (2018): Cold and isolated ectotherms: drivers of reptilian longevity. Biological Journal of the Linnean Society. doi:10.1093/biolinnean/bly153
  1344. Metze K. (2018): Lowering the p-value from 0.05 to 0.005 conflicts with the 3R rules – an advocacy for alternatives to hypothesis testing with the p-value approach. ALTEX. doi:10.14573/altex.1807091
  1345. Hoijtink H, Gu X, Mulder J. (2018): Bayesian evaluation of informative hypotheses for multiple populations. Br J Math Stat Psychol. doi:10.1111/bmsp.12145
  1346. Crane H. (2018): The Impact of P-hacking on “Redefine Statistical Significance”. Basic and Applied Social Psychology. doi:10.1080/01973533.2018.1474111
  1347. Sienicki K. (2018): COMMENTS ON “AN EXCEPTIONAL SUMMER DURING THE SOUTH POLE RACE OF 1911/12.” Bulletin of the American Meteorological Society. doi:10.1175/bams-d-17-0282.1
  1348. Solebo AL, Cumberland P, Rahi JS. (2018): 5-year outcomes after primary intraocular lens implantation in children aged 2 years or younger with congenital or infantile cataract: findings from the IoLunder2 prospective inception cohort study. The Lancet Child & Adolescent Health. doi:10.1016/s2352-4642(18)30317-1
  1349. Fourati S, Talla A, Mahmoudian M, Burkhart JG, Klén R, Henao R, Yu T, Aydin Z, Yeung KY, Ahsen ME, Almugbel R, Jahandideh S, Liang X, Nordling TEM, Shiga M, Stanescu A, Vogel R, Pandey G, Chiu C, McClain MT, Woods CW, Ginsburg GS, Elo LL, Tsalik EL, Mangravite LM, Sieberts SK. (2018): A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection. Nat Commun. doi:10.1038/s41467-018-06735-8
  1350. Schultheiss OC, Mehta PH, editors. (2018): Routledge International Handbook of Social Neuroendocrinology. Routledge. chapter 22. doi:10.4324/9781315200439
  1351. Davis WE, Giner-Sorolla R, Lindsay DS, Lougheed JP, Makel MC, Meier ME, Sun J, Vaughn LA, Zelenski JM. (2018): Peer-Review Guidelines Promoting Replicability and Transparency in Psychological Science. Advances in Methods and Practices in Psychological Science. doi:10.1177/2515245918806489
  1352. Otárola-Castillo E, Torquato MG. (2018): Bayesian Statistics in Archaeology. Annu Rev Anthropol. doi:10.1146/annurev-anthro-102317-045834
  1353. Gallo LC, Cristallini EO, Svarc M. (2018): A Nonparametric Approach for Assessing Precision in Georeferenced Point Clouds Best Fit Planes: Toward More Reliable Thresholds. J Geophys Res Solid Earth. doi:10.1029/2018jb016319
  1354. Wright JD, Esses VM. (2018): It´s security, stupid! Voters´ perceptions of immigrants as a security risk predicted support for Donald Trump in the 2016 US presidential election. J Appl Soc Psychol. doi:10.1111/jasp.12563
  1355. Sweedler JV. (2018): Science Research – Looking in the Mirror. Anal Chem. doi:10.1021/acs.analchem.8b04786
  1356. Ioannidis JPA, Kim BYS, Trounson A. (2018): How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat Biomed Eng. doi:10.1038/s41551-018-0314-y
  1357. Ørmen J. (2018): From Consumer Demand to User Engagement: Comparing the Popularity and Virality of Election Coverage on the Internet. The International Journal of Press/Politics. doi:10.1177/1940161218809160
  1358. Smith KL Jr, Ruhl HA, Huffard CL, Messié M, Kahru M. (2018): Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc Natl Acad Sci USA. doi:10.1073/pnas.1814559115
  1359. Spence JR, Stanley DJ. (2018): Concise, Simple, and Not Wrong: In Search of a Short-Hand Interpretation of Statistical Significance. Front Psychol. doi:10.3389/fpsyg.2018.02185
  1360. Mustillo SA, Lizardo OA, McVeigh RM. (2018): Editors´ Comment: A Few Guidelines for Quantitative Submissions. Am Sociol Rev. doi:10.1177/0003122418806282
  1361. Tal-Or L, Trifonov T, Zucker S, Mazeh T, Zechmeister M. (2018): Correcting HIRES/Keck radial velocities for small systematic errors. Monthly Notices of the Royal Astronomical Society: Letters. doi:10.1093/mnrasl/sly227
  1362. Yzerbyt V, Muller D, Batailler C, Judd CM. (2018): New recommendations for testing indirect effects in mediational models: The need to report and test component paths. Journal of Personality and Social Psychology. doi:10.1037/pspa0000132
  1363. Buller DB, Walkosz BJ, Buller MK, Wallis A, Andersen PA, Scott MD, Meenan RT, Cutter GR. (2018): Implementation of Occupational Sun Safety at a 2-Year Follow-Up in a Randomized Trial: Comparison of Sun Safe Workplaces Policy Intervention to Attention Control. Am J Health Promot. doi:10.1177/0890117118814398
  1364. Colling LJ, Szűcs D. (2018): Statistical Inference and the Replication Crisis. RevPhilPsych. doi:10.1007/s13164-018-0421-4
  1365. Briggs WM. (2018): Everything Wrong with P-Values Under One Roof. Beyond Traditional Probabilistic Methods in Economics. doi:10.1007/978-3-030-04200-4_2
  1366. Van Le C. (2018): Detection of Structural Changes Without Using P Values. Beyond Traditional Probabilistic Methods in Economics. doi:10.1007/978-3-030-04200-4_41
  1367. Breunig C, Hoderlein S. (2018): Specification testing in random coefficient models. Quantitative Economics. doi:10.3982/qe757
  1368. Hanazuka Y, Shimizu M, Takaoka H, Midorikawa A. (2018): Orangutans (Pongo pygmaeus) recognize their own past actions. Royal Society Open Science, 5(12), p. 181497. The Royal Society. doi:10.1098/rsos.181497
  1369. Ziermans T, de Bruijn Y, Dijkhuis R, Staal W, Swaab H. (2018): Impairments in cognitive empathy and alexithymia occur independently of executive functioning in college students with autism. Autism, 23(6), pp. 1519-1530. SAGE Publications. doi:10.1177/1362361318817716
  1370. Possatto Junior O, Bertagna FAB, Peterlini E, Baleroni AG, Rossi RM , Zeni Neto H. (2018): Survey of statistical methods applied in articles published in Acta Scientiarum. Agronomy from 1998 to 2016. Acta Scientiarum. Agronomy, 41(1), p. 42641. Universidade Estadual de Maringa. doi:10.4025/actasciagron.v41i1.42641
  1371. Thompson WB. (2018): Alpha Is Not the False Alarm Rate: An Activity to Dispel a Common Statistical Misconception. Teaching of Psychology, 46(1), pp. 72-79. SAGE Publications. doi:10.1177/0098628318816156
  1372. Sekine T, Hirata T, Ishikawa S, Ito S, Ishimori K, Matsumura K, Muraki K. (2018): Regulation of NRF2, AP-1 and NF-κB by cigarette smoke exposure in three-dimensional human bronchial epithelial cells. Journal of Applied Toxicology, 39(5), pp. 717-725. Wiley. doi:10.1002/jat.3761
  1373. Qian C, Zhang X, Li Z. (2018): Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics. Climate Dynamics, 53(1-2), pp. 533-550. Springer Science and Business Media LLC. doi:10.1007/s00382-018-4600-x
  1374. Davidson IJ. (2018): The Ouroboros of Psychological Methodology: The Case of Effect Sizes (Mechanical Objectivity vs. Expertise). Review of General Psychology, 22(4), pp. 469-476. SAGE Publications. doi: 10.1037/gpr0000154
  1375. Skulmowski A, Rey GD. (2018): Adjusting Sample Sizes for Different Categories of Embodied Cognition Research. In Frontiers in Psychology (Vol. 9). Frontiers Media SA. doi:10.3389/fpsyg.2018.02384
  1376. Johnstone D. (2018): Accounting Theory as a Bayesian Discipline. Foundations and Trends® in Accounting, 13(1-2), pp. 1-266. Now Publishers. doi:10.1561/1400000056
  1377. Kim JH. (2018): TACKLING FALSE POSITIVES IN BUSINESS RESEARCH: A STATISTICAL TOOLBOX WITH APPLICATIONS. Journal of Economic Surveys, 33(3), pp. 862-895. Wiley. doi:10.1111/joes.12303
  1378. Bethlehem RAI, Seidlitz J, Romero-Garcia R, Dumas G, Lombardo MV. (2018): Normative age modelling of cortical thickness in autistic males. Cold Spring Harbor Laboratory. doi:10.1101/252593
  1379. Polanin JR, Nuijten MB. (2018): Verifying the accuracy of statistical significance testing in Campbell Collaboration systematic reviews through the use of the R package statcheck. Campbell Systematic Reviews, 14(1), pp. 1-36. Wiley. doi:10.4073/csrm.2018.1
  1380. Elliott D. (2018): Adversarial Evaluation of Multimodal Machine Translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. doi:10.18653/v1/d18-1329
  1381. Koch M, Capurso L. (2018): Per la rinascita della evidence-based medicine in gastroenterologia. Recenti Progressi in Medicina. doi:10.1701/3082.30739
  1382. Lebis A, Lefevre M, Luengo V, Guin N (2018): Capitalisation of analysis processes. Proceedings of the 8th International Conference on Learning Analytics and Knowledge – LAK ’18. Presented at the the 8th International Conference, ACM Press. DOI: 10.1145/3170358.3170408
  1383. Ioannidis JPA (2018): The Proposal to Lower P Value Thresholds to .005. JAMA. 319(4):1429-1430. DOI: 10.1001/jama.2018.1536.
  1384. Itescu Y, Schwarz R, Donihue CM, Slavenko A, Roussos SA, Sagonas K, Valakos ED, et al. (2018): Inconsistent patterns of body size evolution in co-occurring island reptiles. In: McGill B (Ed.): Global Ecology and Biogeography. Wiley-Blackwell. DOI: 10.1111/geb.12716
  1385. Krueger J, Heck P (2018): Putting the P Value in its Place. PsyArXiv. https://psyarxiv.com/y49mp/
  1386. Holbert RL, Hardy BW, Park E, Robinson NW, Jung H, Zeng C, Drouin E, et al. (2018): Addressing a statistical power-alpha level blind spot in political- and health-related media research: discontinuous criterion power analyses. Annals of the International Communication Association, 1–18. DOI: 10.1080/23808985.2018.1459198
  1387. Lazic SE (2018): Four simple ways to increase power without increasing the sample size. Laboratory Animals, 2367721876747. DOI: 10.1177/0023677218767478
  1388. Segal BD (2018): Exceedance probability for parameter estimates. arXiv:1803.03356. https://arxiv.org/abs/1803.03356
  1389. Rouder J, Haaf JM, Snyder HK (2018): Minimizing Mistakes In Psychological Science. PsyArXiv. https://psyarxiv.com/gxcy5/
  1390. De la Guardia FH, Grant S, Miguel E (2018): Why We Need Open Policy Analysis. Open Science Framework. https://osf.io/jquwz/
  1391. Dragos D, Gilca M (2018): Taste of Phytocompounds: A Better Predictor for Ethnopharmacological Activities of Medicinal Plants Than The Phytochemical Class? Journal of Ethnopharmacology. DOI: 10.1016/j.jep.2018.03.034
  1392. Lorca-Puls DL, Gajardo-Vidal A, White J, Seghier ML, Leff AP, Green DW, Crinion JT, et al. (2018): The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings. Neuropsychologia. DOI: 10.1016/j.neuropsychologia.2018.03.014
  1393. Fowlie A (2018): DAMPE squib? Significance of the 1.4 TeV DAMPE excess. Physics Letters B. 780: 181–184. DOI: 10.1016/j.physletb.2018.03.006
  1394. Shadbolt RP, Ellis AW (2018): 1000 Differential Temperature Trends across Elevation within the „Warming Hole“ of the Southeast United States. Presented at the 98th American Meteorological Society Annual Meeting, https://ams.confex.com/ams/98Annual/webprogram/Paper328864.html
  1395. Plavén-Sigray P, Matheson GJ, Gustavsson P, Stenkrona P, Halldin C, Farde L, Cervenka S (2018): Is dopamine D1 receptor availability related to social behavior? A positron emission tomography replication study. PLOS ONE. 13(3):e0193770. DOI: 10.1371/journal.pone.0193770
  1396. Nosek BA, Ebersole CR, DeHaven AC, Mellor DT (2018): The preregistration revolution. Proceedings of the National Academy of Sciences. 115(11):2600–2606. DOI: 10.1073/pnas.1708274114
  1397. Brown MJ (2018): Science and Moral Imagination: A new Ideal for Values in Science. https://www.matthewjbrown.net/research/science-and-moral-imagination/
  1398. Abadie A (2018): On Statistical Non-Significance. arXiv:1803.00609. https://arxiv.org/abs/1803.00609
  1399. Gannon M, Pereira CADB (2018): Letter to the Editor: Abandon fixed significance levels, not P-values! Unpublished. DOI: 10.13140/RG.2.2.20178.86725
  1400. Voelkl B, Vogt L, Sena ES, Würbel H (2018): Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLOS Biology. 16(2): e2003693. DOI: 10.1371/journal.pbio.2003693
  1401. Distefano A, Jackson F, Levinson AR, Infantolino ZP, Jarcho JM, Nelson BD (2018): A comparison of the electrocortical response to monetary and social reward. Social Cognitive and Affective Neuroscience. 13(3): 247–255. DOI: 10.1093/scan/nsy006
  1402. Abadie A (2018): Statistical Non-Significance in Empirical Economics. NBER Working Paper No. 24403. https://ssrn.com/abstract=3138353
  1403. Van Calster B, Steyerberg EW, Collins GS, Smits T (2018): Consequences of relying on statistical significance: Some illustrations. European Journal of Clinical Investigation. e DOI: 10.1111/eci.12912
  1404. Ruiz-Ruano AM, López J (2018): Deciding on Null Hypotheses using P-values or Bayesian alternatives: A simulation study. Psicothema. 30(1):110–115. DOI: 10.7334/psicothema2017.308
  1405. Lakens D, Adolfi FG, Albers CJ, Anvari F, Apps MAJ, Argamon SE, Baguley T, et al. (2018): Justify your alpha. Nature Human Behaviour. 2(3):168–171. DOI: 10.1038/s41562-018-0311-x
  1406. Perezgonzalez JD, Frías-Navarro MD (2018): Retract p < 0.005 and propose using JASP, instead. F1000Research. 6:2122. DOI: 10.12688/f1000research.13389.2
  1407. Schirmer A, Ng T, Ebstein RP (2018): Vicarious Social Touch Biases Gazing at Faces and Facial Emotions. Emotion. American Psychological Association. DOI: 10.1037/emo0000393
  1408. Matthews RAJ (2018): Beyond “significance”: principles and practice of the Analysis of Credibility. Royal Society Open Science. 5(1):171047. DOI: 10.1098/rsos.171047
  1409. Kruschke J (2018): Rejecting or accepting parameter values in Bayesian estimation. Open Science Framework. DOI: 17605/OSF.IO/S5VDY
  1410. Van Der Ende MY, Hendriks T, Van Veldhuisen DJ, Snieder H, Verweij N, Van Der Harst P (2018): Causal Pathways from Blood Pressure to Larger Qrs Amplitudes a Mendelian Randomization Study. Scientific Reports. 8. DOI: 10.1038/s41598-018-24002-0
  1411. Cova F, Strickland B, Abatista A, Allard A, Andow J, Attie M, Beebe J, Berniūnas R, Boudesseul J, Colombo M, et al. (2018): Estimating the Reproducibility of Experimental Philosophy. PsyArXiv. DOI: 17605/OSF.IO/SXDAH
  1412. Cox NJ, Below JE (2018): Critical Evaluation of Data Requires Rigorous but Broadly Based Statistical Inference Response by Lem Moyé and Michelle Cohen. Circulation Research. 122:1049–1051. DOI: 10.1161/CIRCRESAHA.118.312530
  1413. Heino MTJ, Vuorre M, Hankonen N (2018): Bayesian evaluation of behavior change interventions: a brief introduction and a practical example. Health Psychology and Behavioral Medicine. 6:49–78. DOI: 10.1080/21642850.2018.1428102
  1414. Krefeld-Schwalb A, Witte EH, Zenker F (2018): Hypothesis-Testing Demands Trustworthy Data—A Simulation Approach to Inferential Statistics Advocating the Research Program Strategy. Frontiers in Psychology. 9. DOI: 10.3389/fpsyg.2018.00460
  1415. Cursan A (2018): Un chercheur sachant chercher: de l’importance scientifique des résultats « nuls » et négatifs en psychologie. Pratiques Psychologiques. DOI: 10.1016/j.prps.2018.03.001
  1416. Fang L, Gao P, Bao H, Tang X, Wang B, Feng Y, Cong S, Juan J, Fan J, Lu K, et al. (2018): Chronic obstructive pulmonary disease in China: a nationwide prevalence study. The Lancet Respiratory Medicine. DOI: 10.1016/S2213-2600(18)30103-6
  1417. Consonni G, Fouskakis D, Liseo B, Ntzoufras I (2018): Prior Distributions for Objective Bayesian Analysis. Bayesian Analysis. DOI: 10.1214/18-BA1103
  1418. Trafimow D, Amrhein V, Areshenkoff CN, et. al. (2018): Manipulating the Alpha Level Cannot Cure Significance Testing. Unpublished. DOI: 7287/peerj.preprints.3411v2
  1419. Jäncke L, Leipold S, Burkhard A (2018): The neural underpinnings of music listening under different attention conditions. NeuroReport . 29: 594–604. DOI: 10.1097/WNR.0000000000001019
  1420. Moyé L, Cohen M (2018): Liberation From thePValue’s Tyranny. Circulation Research. 122:1046–1048. DOI: 10.1161/CIRCRESAHA.117.312227
  1421. Lash TL, Collin LJ, Van Dyke ME (2018): The Replication Crisis in Epidemiology: Snowball, Snow Job, or Winter Solstice? Current Epidemiology Reports. DOI: 10.1007/s40471-018-0148-x
  1422. Bradley MT, Brand A (2017): Out with .05, in with Replication and Measurement: Isolating and Working with the Particular Effect Sizes that are Troublesome for Inferential Statistics. The Journal of General Psychology. 144(4):309–316. DOI: 10.1080/00221309.2017.1381496
  1423. Pereira C, Nakano E, Fossaluza V, Esteves L, Gannon M, Polpo A (2017): Hypothesis Tests for Bernoulli Experiments: Ordering the Sample Space by Bayes Factors and Using Adaptive Significance Levels for Decisions. Entropy. 19(12):696. DOI: 10.3390/e19120696
  1424. Tracy DK, Joyce DW, Shergill SS (2017): Kaleidoscope. British Journal of Psychiatry. 211(4):256–257. DOI: 10.1192/bjp.211.4.256
  1425. Liu D, Jiang X, Zheng HJ, Xie B, Wang H, He T, Hu X (2017): The modularity of microbial interaction network in healthy human saliva: Stability and specificity. Presented at the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE. DOI: 10.1109/BIBM.2017.8217976
  1426. Liu Fm Yang J, Han L, Guo S (2017): Biocontrol Activity of Three Endolichenic Fungi from Peltigera. Advances in Microbiology. 6(4): 91–97. DOI: 10.12677/amb.2017.64012
  1427. Meade BJ, DeVries PMR, Faller J, Viegas F, Wattenberg M (2017): What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs. Geophysical Research Letters. 44(22):11,409-11,416. DOI: 10.1002/2017GL075875
  1428. Han H, Dawson KJ, Thoma SJ, Glenn AL. (2019): Developmental Level of Moral Judgment Influences Behavioral Patterns During Moral Decision-Making. The Journal of Experimental Education, 88(4), pp. 660-675. Informa UK Limited. doi:10.1080/00220973.2019.1574701
  1429. Rodgers JL, Shrout PE. (2017): Psychology´s Replication Crisis as Scientific Opportunity: A Précis for Policymakers. Policy Insights from the Behavioral and Brain Sciences.doi:10.1177/2372732217749254
  1430. Hemez PF. (2017): Military service and entry into marriage: Comparing service members to civilians. Master Thesis, Bowling Green State University.
  1431. Chen G, Xiao Y, Taylor PA, Rajendra JK, Riggins T, Geng F, Redcay E, Cox RW. (2017): Handling Multiplicity in Neuroimaging through Bayesian Lenses with Multilevel Modeling. Cold Spring Harbor Laboratory. doi:10.1101/238998
  1432. Van Houtte C, Ktenidou O-J, Larkin T, Holden C. (2017): A continuous map of near-surface S-wave attenuation in New Zealand. Geophysical Journal International 213:408-425. doi:10.1093/gji/ggx559
  1433. Pernet C (2017): Null hypothesis significance testing: a guide to commonly misunderstood concepts and recommendations for good practice. F1000Research. 4:621. DOI: 10.12688/f1000research.6963.4

Brembs B. (2017): Genetic analysis of behavior in Drosophila. Byrne JH (ed.) The Oxford Handbook of Invertebrate Neurobiology. Oxford University Press. doi:10.1093/oxfordhb/9780190456757.013.37

  1. Chang O, Zhinin-Vera L. (2021): A Wise Up Visual Robot Driven by a Self-taught Neural Agent. In: Arai K, Kapoor S, Bhatia R, (eds.): Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1. FTC 2020. Advances in Intelligent Systems and Computing 1288. Springer, Cham. doi:10.1007/978-3-030-63128-4_47
  2. Chang O. (2018): Autonomous Robots and Behavior Initiators. Human-Robot Interaction – Theory and Application. doi:10.5772/intechopen.71958
  3. Chang O. (2018): Self-programming Robots Boosted by Neural Agents. Brain Informatics. doi:10.1007/978-3-030-05587-5_42

Brembs B (2017): Operant Behavior in Model Systems. In: Learning and Memory: A Comprehensive Reference. Elsevier, 505–516. DOI: 10.1016/b978-0-12-809324-5.21032-8.
Citations:

  1. Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. (2020): Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol. doi:10.1111/jne.12911
  2. Godfrey-Smith P. (2019): Evolving Across the Explanatory Gap. Philosophy, Theory, and Practice in Biology. doi:10.3998/ptpbio.16039257.0011.001
  3. Edelman S, Moyal R (2017): Fundamental computational constraints on the time course of perception and action. In: Progress in Brain Research. Elsevier, 121–141. DOI: 10.1016/bs.pbr.2017.05.006.
  4. Verasztó C, Ueda N, Bezares-Calderón LA, Panzera A, Williams EA, Shahidi R & Jékely G (2017): Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva. eLife. 6. DOI: 10.7554/eLife.26000

Gorostiza EA, Colomb J, Brembs B (2016): A decision underlies phototaxis in an insect. Open Biology
Citations:

  1. Alicea B, Gordon R, Parent J. (2023): The Psychophysical World of the Motile DiatomBacillaria paradoxa. In The Mathematical Biology of Diatoms. Wiley. https://doi.org/10.1002/9781119751939.ch9
  2. Wu F, Du Z, Zhang T, Jiang L, Zhang L, Ge S. (2023): A neurotransmitter histamine mediating phototransduction and photopreference in Callosobruchus maculatus.Pest Management Science. https://doi.org/10.1002/ps.7475
  3. Pachghare V, Chandra M, Surve A, Kulkarni A. (2023): Evaluating Toxicity of Lithium to Hydra viridissima.Proceedings of the National Academy of Sciences, India. Section B. https://doi.org/10.1007/s40011-023-01488-x
  4. Bruno JR, Udoh UG, Landen JG, Osborn PO, Asher CJ, Hunt JE, Pratt, KG. (2022): A circadian-dependent preference for light displayed by Xenopus tadpoles is modulated by serotonin.IScience, 25(11). https://doi.org/10.1016/j.isci.2022.105375
  5. Horn CJ, Wasylenko JA, Luong LT. (2022): Scared of the dark? Phototaxis as behavioural immunity in a host-parasite system. Biology Letters, 18(1), 20210531. https://doi.org/10.1098/rsbl.2021.0531
  6. Poetini MR, Musachio EAS, Araujo SM, Bortolotto VC, Meichtry LB, Silva NC, Janner DE, La Rosa Novo D, Mesko MF, Roehrs R, Ramborger BP, Prigol M. (2022): Improvement of non-motor and motor behavioral alterations associated with Parkinson-like disease in Drosophila melanogaster: Comparative effects of treatments with hesperidin and L-dopa. Neurotoxicology, 89:174–183. https://doi.org/10.1016/j.neuro.2022.02.004
  7. Shang XK, Wei JL, Liu W, Pan XH, Huang CH, Nikpay A, Goebel FR. (2022): Investigating population dynamics and sex structure of exolontha castanea Chang (Coleoptera: Melolonthidae) using light traps in sugarcane fields in China. Sugar Tech: An International Journal of Sugar Crops & Related Industries, 24(5), 1441–1448. https://doi.org/10.1007/s12355-021-01081-4
  8. Swain B, von Philipsborn AC. (2021): Sound production in Drosophila melanogaster: Behaviour and neurobiology. In Advances in Insect Physiology (pp. 141–187). Elsevier.
  9. Uda M, Fujiwara J, Seike M, Segami S, Higashimoto S, Hirai T, Nakamura Y, Fujii S. (2021): Controllable positive/negative phototaxis of millimeter-sized objects with sensing function. Langmuir: The ACS Journal of Surfaces and Colloids, 37(37):11093–11101. https://doi.org/10.1021/acs.langmuir.1c01833
  10. Devineni AV, Scaplen KM. (2021): Neural circuits underlying behavioral flexibility: Insights from Drosophila. Frontiers in Behavioral Neuroscience, 15, 821680. https://doi.org/10.3389/fnbeh.2021.821680
  11. Han R, Wei T-M, Tseng S-C, Lo C-C. (2021): Characterizing approach behavior of Drosophila melanogaster in Buridan’s paradigm. PLoS ONE. doi:10.1371/journal.pone.0245990
  12. Goulard R, Buehlmann C, Niven JE, Graham P, Webb B. (2021): A unified mechanism to support innate and learned use of visual landmark guidance in insects. bioRxiv. doi:10.1101/2021.01.28.428620
  13. Hu Y, Yang L, Yan Q, Ji Q, Chang L, Zhang C, et al. (2021): Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti3C2Tx MXene Film Driven by Natural Sunlight Fluctuation. ACS Nano15(3):5294-5306. doi:10.1021/acsnano.0c10797
  14. Grob R, el Jundi B, Fleischmann PN. (2021): Towards a common terminology for arthropod spatial orientation. Ethology Ecology & Evolution 33(3). doi:10.1080/03949370.2021.1905075
  15. Chen AB, Deb D, Bahl A, Engert F. (2021): Algorithms underlying flexible phototaxis in larval zebrafish. Journal of Experimental Biology 224(10). doi:10.1242/jeb.238386
  16. Clute S, Muller O, Hunneman L. (2021): Summer (blackflies and other bugs). NIME 2021. doi:10.21428/92fbeb44.cdddc154
  17. Hu Y, Ji Q, Huang M, Chang L, Zhang C, Wu G, et al. (2021): Light-Driven Self-Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angewandte Chemie International Edition 60(37):20511-20517.
  18. Caipo L, González-Ramárez MC, Guzmán-Palma P, Contreras EG, Palominos T, Fuenzalida-Uribe N, Hassan BA, Campusano JM, Sierralta J, Oliva C. (2020): Slit neuronal secretion coordinates optic lobe morphogenesis in Drosophila. Developmental Biology. doi:10.1016/j.ydbio.2019.10.004
  19. Katrin Vogt (2020): Towards a functional connectome in Drosophila. Journal of Neurogenetics 34(1):156-161. doi:10.1080/01677063.2020.1712598
  20. Yang L, Chang L, Hu Y, Huang M, Ji Q, Lu P, Liu J, Chen W, Wu Y. (2020): An Autonomous Soft Actuator with Light-Driven Self-Sustained Wavelike Oscillation for Phototactic Self-Locomotion and Power Generation. Adv Funct Mater 30(15):1908842. doi:10.1002/adfm.201908842
  21. Sawada Y, Sasaki T, Nishio K, Kurata M, Honryo T, Agawa Y. (2020): Positive phototaxis as the cause of jaw malformations in larval greater amberjack, Seriola dumerili (Risso, 1810): Mitigation by rearing in tanks with low-brightness walls. Aquaculture Research 51(6):2261-2274. Wiley. doi:10.1111/are.14571
  22. Melnattur K, Zhang B, Shaw PJ. (2020): Disrupting flight increases sleep and identifies a novel sleep-promoting pathway in Drosophila. Science Advances 6(19). American Association for the Advancement of Science (AAAS). doi:10.1126/sciadv.aaz2166
  23. Dimitriadou A, Chatzianastasi N, Zacharaki PI, O‘Connor M, Goldsmith SL, O‘Connor MB, Consoulas C, Newfeld SJ. (2020): Adult Movement Defects Associated with a CORL Mutation in Drosophila Display Behavioral Plasticity. G3 Genes|Genomes|Genetics 10(5):1697-1706. Oxford University Press (OUP). doi:10.1534/g3.120.400648
  24. Nouvian M, Galizia CG. (2020): Complexity and plasticity in honey bee phototactic behaviour. Sci Rep 10:7872. doi:10.1038/s41598-020-64782-y
  25. Cossovich R, Virgint S, Khakhar D, Garg Y, Lu L. (2020): Robotario. Proceedings of the 2020 3rd International Conference on Robot Systems and Applications. ICRSA 2020: 2020 3rd International Conference on Robot Systems and Applications. ACM. doi:10.1145/3402597.3402598 
  26. Spierer AN, Rand DM. (2020): The Genetic Architecture of Robustness for Flight Performance in Drosophila. bioRxiv. doi:10.1101/2020.12.04.412395
  27. Triches FF. (2020): Avaliação dos comportamentos de fêmeas e machos da mosca da fruta (Drosophila melanogaster) após o isolamento social. UNIVERSIDADE FEDERAL DE SANTA CATARINA.
  28. Budaev S, Kristiansen TS, Giske J, Eliassen S. (2020): Computational animal welfare: towards cognitive architecture models of animal sentience, emotion and wellbeing. R. Soc. Open Sci. 7:201886. doi:10.1098/rsos.201886
  29. Perry CJ, Chittka L. (2019): How foresight might support the behavioral flexibility of arthropods. Current Opinion in Neurobiology. doi:10.1016/j.conb.2018.10.014
  30. Zhao Y, Xuan C, Qian X, Alsaid Y, Hua M, Jin L, He X. (2019): Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci Robot. doi:10.1126/scirobotics.aax7112
  31. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  32. Sancer G, Kind E, Uhlhorn J, Volkmann J, Hammacher J, Pham T, Plazaola-Sasieta H, Wernet MF. (2019): Cellular and synaptic adaptations of neural circuits processing skylight polarization in the fly. J Comp Physiol A. doi:10.1007/s00359-019-01389-3
  33. Dhar G, Mukherjee S, Nayak N, Sahu S, Bag J, Rout R, Mishra M. (2019): Various Behavioural Assays to Detect the Neuronal Abnormality in Flies. Springer Protocols Handbooks. doi:10.1007/978-1-4939-9756-5_18
  34. Edelman S. (2018): Damasio, Antonio, 2018. The strange order of things: Life, feeling, and the making of cultures. New York: Pantheon. 336 pages.Evolutionary Studies in Imaginative Culture, 2(2): 119–124. https://doi.org/10.26613/esic.2.2.98
  35. Borycz J, Ziegler A, Borycz JA, Uhlenbrock G, Tapken D, Caceres L, Hollmann M, Hovemann BT, Meinertzhagen IA. (2018): Location and functions of Inebriated in the Drosophila eye. Biology Open 7. doi:10.1242/bio.034926
  36. Gorostiza EA. (2018): Does Cognition Have a Role in Plasticity of “Innate Behavior”? A Perspective From Drosophila. Front Psychol. doi:10.3389/fpsyg.2018.01502
  37. Budaev S, Giske J, Eliassen S. (2018): AHA: A general cognitive architecture for Darwinian agents. Biologically Inspired Cognitive Architectures 25:51-57. doi:10.1016/j.bica.2018.07.009
  38. Alexandre NM, Humphrey PT, Gloss AD, Lee J, Frazier J, Affeldt HA III, Whiteman NK. (2018): Habitat preference of an herbivore shapes the habitat distribution of its host plant. Ecosphere. doi:10.1002/ecs2.2372
  39. Yuan Y, Yuan J, Tan H, Song X, Tu Y, Zhang T, Han H, Huang W, Huang X, Zhang L. (2018): A Highly Stretchable Tough Polymer Actuator Driven by Acetone Vapors. Macromol Mater Eng. doi:10.1002/mame.201800501
  40. Bhattarai M, Bhattarai U, Feng J, Wang D. (2018): Effect of Different Light Spectrum in Helicoverpa armigera Larvae during HearNPV Induced Tree-Top Disease. Insects. doi:10.3390/insects9040183
  41. Grabowska MJ, Steeves J, Alpay J, van de Poll M, Ertekin D, van Swinderen B. (2018): Innate visual preferences and behavioral flexibility in Drosophila. Journal of Experimental Biology. doi:10.1242/jeb.185918
  42. Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, Vincent C, et al. (2017): Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics. 18(1). DOI: 10.1186/s12864-017-4304-3
  43. Vorontsov DD, Dyakonova VE (2017): Light-dark decision making in snails: Do preceding light conditions matter? Communicative & Integrative Biology. 10(5–6): e1356515. DOI: 10.1080/19420889.2017.1356515
  44. Adler J (2016): A Search for The Boss: The Thing Inside Each Organism That is in It could be a Phospholipid Derivative. Anatomy Physiology & Biochemistry International Journal. 1(1). DOI: 10.19080/APBIJ.2016.01.555555
  45. Bosch DS (2016): Analysing visual behaviour in Drosophila Dscam2 mutants using optimised optomotor and operant control assays. PhD Dissertation, University of Queensland

Colomb J, Brembs B (2016): PKC in motorneurons underlies self-learning, a form of motor learning in Drosophila. PeerJ. 4:e1971. DOI: 10.7717/peerj.1971
Citations:

  1. Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. (2022): High-throughput automated methods for classical and operant conditioning of Drosophila larvae. eLife, 11. https://doi.org/10.7554/eLife.70015
  2. Klein KT, Croteau-Chonka EC, Narayan L, Winding M, Masson J-B, Zlatic M. (2021): Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae. bioRxiv. doi:10.1101/2021.06.14.448341
  3. Wiggin TD, Hsiao Y, Liu JB, Huber R, Griffith LC. (2021): Rest Is Required to Learn an Appetitively-Reinforced Operant Task in Drosophila. Frontiers in behavioral neuroscience 15:681593. doi:10.3389/fnbeh.2021.681593
  4. Klein KT. (2020): High-Throughput Operant Conditioning in Drosophila Larvae. Apollo – University of Cambridge Repository. doi:10.17863/CAM.47681
  5. Liu J. (2020): Investigating positive-valance operant learning in Drosophila melanogaster with a novel apparatus. Doctoral dissertation, Brandeis University.
  6. Puygrenier L. (2019): Contribution d’une activité neuronale pacemaker dans l’expression et l’adaptation d’un comportement motivé chez l’aplysie. Doctoral dissertation, Bordeaux.
  7. Gao Y, Zhu C, Li K, Cheng X, Du Y, Yang D, Fan X, Gaur U, Yang M. (2020): Comparative proteomics analysis of dietary restriction in Drosophila. PLoS ONE. doi:10.1371/journal.pone.0240596
  8. Spierer AN, Rand DM. (2020): The Genetic Architecture of Robustness for Flight Performance in Drosophila. bioRxiv. doi:10.1101/2020.12.04.412395
  9. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  10. Papanikolopoulou K, Roussou IG, Gouzi JY, Samiotaki M, Panayotou G, Turin L, Skoulakis EMC. (2019): Drosophila Tau Negatively Regulates Translation and Olfactory Long-Term Memory, But Facilitates Footshock Habituation and Cytoskeletal Homeostasis. J Neurosci. doi:10.1523/jneurosci.0391-19.20
  11. Lehmann FO, Bartussek J (2016): Neural control and precision of flight muscle activation in Drosophila. J Comp Physiol A. 203(1):1–14. DOI: 10.1007/s00359-016-1133-9
  12. Lehmann FO (2017): Neural Control and Precision of Spike Phasing in Flight Muscles. Journal of Neurology and Neuromedicine. 2(9):15–19. DOI: 1007/s00359-016-1133-9
  13. Denton-Edmundson M (2017): The Animal Life. Thesis. Virginia Tech. https://vtechworks.lib.vt.edu/handle/10919/78391

Rahman R, Chirn G, Kanodia A, Sytnikova YA, Brembs B, Bergman CM, Lau NC (2015): Unique transposon landscapes are pervasive across Drosophila melanogaster genomes. Nucleic Acids Res, 43: 10655–10672, DOI: 10.1093/nar/gkv1193
Citations:

  1. Eugénio AT, Marialva MSP, Beldade P. (2023): Effects of Wolbachia on transposable element expression vary between Drosophila melanogaster host genotypes.Genome Biology and Evolution, 15(3). https://doi.org/10.1093/gbe/evad036
  2. van den Beek M, Rubanova N, Siudeja K. (2023): Experimental approaches to study somatic transposition in Drosophila using whole-genome DNA sequencing.Methods in Molecular Biology (Clifton, N.J.), 2607, 311–327. https://doi.org/10.1007/978-1-0716-2883-6_14
  3. Cao J, Yu T, Xu B, Hu Z, Zhang XO, Theurkauf WE, Weng Z. (2023): Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster.Nucleic Acids Research, 51(5): 2066–2086. https://doi.org/10.1093/nar/gkad054
  4. Carlson CR, Ter Horst AM, Johnston JS, Henry E, Falk BW, Kuo YW. (2022): High-quality, chromosome-scale genome assemblies: comparisons of three Diaphorina citri (Asian citrus psyllid) geographic populations.DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 29(4). https://doi.org/10.1093/dnares/dsac027
  5. Dang TMN. (2022): Methods for genome-wide structural variation inference in skimming data using graph pangenome. Genetics. Université de Montpellier.
  6. Han S, Dias GB, Basting PJ, Viswanatha R, Perrimon N, Bergman C. M. (2022): Local assembly of long reads enables phylogenomics of transposable elements in a polyploid cell line.Nucleic Acids Research, 50(21). https://doi.org/10.1093/nar/gkac794
  7. Rigal J, Martin Anduaga A, Bitman E, Rivellese E, Kadener S, Marr MT. (2022): Artificially stimulating retrotransposon activity increases mortality and accelerates a subset of aging phenotypes in Drosophila.ELife, 11. https://doi.org/10.7554/eLife.80169
  8. Liu X, Majid M, Yuan H, Chang H, Zhao L, Nie Y, He L, Liu X, He X, Huang Y. (2022): Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism.BMC Biology, 20(1): 243. https://doi.org/10.1186/s12915-022-01441-w
  9. Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Li S, Chinen M, Lei EP, Rosbash M, Lau NC. (2022): Transposable element landscapes in aging Drosophila. PLoS Genetics, 18(3), e1010024. https://doi.org/10.1371/journal.pgen.1010024
  10. Wei KHC, Mai D, Chatla K, Bachtrog D. (2022): Dynamics and impacts of transposable element proliferation in the Drosophila nasuta species group radiation. Molecular Biology and Evolution, 39(5). https://doi.org/10.1093/molbev/msac080
  11. Mariyappa D, Rusch DB, Han S, Luhur A, Overton D, Miller DFB, Bergman CM, Zelhof AC. (2022):A novel transposable element-based authentication protocol for Drosophila cell lines. G3 (Bethesda, Md.), 12(2). https://doi.org/10.1093/g3journal/jkab403
  12. Tiedeman Z, Signor S. (2021): The Transposable Elements of the Drosophila serrata Reference Panel. Genome Biology and Evolution, 13(9). https://doi.org/10.1093/gbe/evab100
  13. Himmel NJ. (2021): How the fly youth chill: The molecular biology, ecology, and evolution of cold nociception in Drosophila and subsequent studies of the evolution of TRP channels. Georgia State University.
  14. Lawlor MA, Cao W, Ellison CE. (2021): A transposon expression burst accompanies the activation of Y-chromosome fertility genes during Drosophila spermatogenesis. Nature Communications, 12(1), 6854. https://doi.org/10.1038/s41467-021-27136-4
  15. Gilbert C, Peccoud J, Cordaux R. (2021): Transposable Elements and the Evolution of Insects. Annual Review of Entomology 66(1):355-372. doi:10.1146/annurev-ento-070720-074650
  16. Himmel NJ, Letcher JM, Sakurai A, Gray TR, Benson MN, Donaldson KJ, Cox DN. (2021): Identification of a neural basis for cold acclimation in Drosophila larvae. iScience 24(6):102657. doi:10.1016/j.isci.2021.102657
  17. Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Chinen M, … Lau NC. (2021): Transposable element landscape changes are buffered by RNA silencing in aging Drosophila. bioRxiv. doi:10.1101/2021.01.08.425853
  18. Amorim IC, Sotero-Caio CG, Costa RGC, et al. (2021): Comprehensive mapping of transposable elements reveals distinct patterns of element accumulation on chromosomes of wild beetles. Chromosome Res29:203-218. doi:10.1007/s10577-021-09655-4
  19. Hatkevich T, Miller DE, Turcotte CA, Miller MC, Sekelsky J. (2021): A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Research 49(2):879-890. doi:10.1093/nar/gkaa1205
  20. Lawlor MA, Cao W, Ellison CE. (2021): A burst of transposon expression accompanies the activation of Y chromosome fertility genes during Drosophila spermatogenesis. Cold Spring Harbor Laboratory. doi:10.1101/2021.05.10.443472
  21. Lee YCG. (2021): Synergistic epistasis of the deleterious effects of transposable elements. Cold Spring Harbor Laboratory. doi:10.1101/2021.05.21.444727
  22. Tan S, Ma H, Wang J, et al. (2021): DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nat Commun 12:4280. doi:10.1038/s41467-021-24585-9
  23. Ninova M, Chen Y-CA, Godneeva B, Rogers AK, Luo Y, Fejes Tóth K, Aravin AA. (2020): Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing. Molecular Cell. doi:10.1016/j.molcel.2019.11.012 
  24. Lee YCG, Ogiyama Y, Martins NMC, Beliveau BJ, Acevedo D, Wu C -ting, Cavalli G, Karpen GH. (2020): Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLoS Genet. doi:10.1371/journal.pgen.1008673
  25. Luo S, Zhang H, Duan Y, et al. (2020): The evolutionary arms race between transposable elements and piRNAs in Drosophila melanogaster. BMC Evol Biol 20(14). doi:10.1186/s12862-020-1580-3
  26. Zhang S, Pointer B, Kelleher ES. (2020): Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations. Genome Res 30:566-575. doi:10.1101/gr.251546.119
  27. Ellison CE, Kagda MS, Cao W. (2020): The Drosophila TART transposon manipulates the piRNA pathway as a counter-defense strategy to limit host silencing. Cold Spring Harbor Laboratory. doi:10.1101/2020.02.20.957324
  28. Ninova M, Godneeva B, Chen Y-CA, Luo Y, Prakash SJ, Jankovics F, Erdélyi M, Aravin AA, Fejes Tóth K. (2020): The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Molecular Cell 77(3):571-585.e4. Elsevier BV. doi:10.1016/j.molcel.2019.09.033
  29. Signor S. (2020): Transposable elements in individual genotypes of Drosophila simulans. Ecology and Evolution 10(7):3402-3412. Wiley. doi:10.1002/ece3.6134
  30. Tiedeman Z, Signor S. (2020): The transposable elements of theDrosophila serratareference panel. Cold Spring Harbor Laboratory. doi:10.1101/2020.06.11.146431
  31. Lin KY, Wang WD, Lin CH, et al. (2020): Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 11:3147. doi:10.1038/s41467-020-16858-6
  32. Choi JY, Lee YCG. (2020): Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements. A. Betancourt (Ed.), PLOS Genetics 16(7):e1008872. Public Library of Science (PLoS). doi:10.1371/journal.pgen.1008872
  33. Mohamed M, Dang NT-M, Ogyama Y, Burlet N, Mugat B, Boulesteix M, Mérel V, Veber P, Salces-Ortiz J, Severac D, Pélisson A, Vieira C, Sabot F, Fablet M, Chambeyron S. (2020): A Transposon Story: From TE Content to TE Dynamic Invasion of Drosophila Genomes Using the Single-Molecule Sequencing Technology from Oxford Nanopore. Cells 9(8):1776. doi:10.3390/cells9081776
  34. Gamez S, Srivastav S, Akbari OS, Lau NC. (2020): Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 9:2180. doi:10.3390/cells9102180
  35. Ellison CE, Kagda MS, Cao W. (2020): Telomeric TART elements target the piRNA machinery in Drosophila. PLoS Biol. doi:10.1371/journal.pbio.3000689
  36. Schwarz F, Wierzbicki F, Senti K-A, Kofler R. (2020): Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Molecular Biology and Evolution 38(4):1482-1497. doi:10.1093/molbev/msaa308
  37. Rech GE, Bogaerts-Márquez M, Barrón MG, Merenciano M, Villanueva-Cañas JL, Horváth V, Fiston-Lavier A-S, Luyten I, Venkataram S, Quesneville H, Petrov DA, González J. (2019): Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genet 15:e1007900. doi:10.1371/journal.pgen.1007900
  38. Lerat E, Goubert C, Guirao-Rico S, Merenciano M, Dufour A, Vieira C, González J. (2019): Population-specific dynamics and selection patterns of transposable element insertions in European natural populations. Mol Ecol. doi:10.1111/mec.14963
  39. Merenciano M, Iacometti C, González J. (2019): A unique cluster of roo insertions in the promoter region of a stress response gene in Drosophila melanogaster. Mobile DNA. doi:10.1186/s13100-019-0152-9
  40. Erwin AA, Blumenstiel JP. (2019): Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements. BMC Genomics. doi:10.1186/s12864-019-5668-3
  41. Bourgeois Y, Boissinot S. (2019): On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes. doi:10.3390/genes10060419
  42. Guio L, González J. (2019): New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods in Molecular Biology. doi:10.1007/978-1-4939-9074-0_16
  43. Hartmann M, Umbanhowar J, Sekelsky J. (2019): Centromere-Proximal Meiotic Crossovers in Drosophila melanogaster Are Suppressed by Both Highly Repetitive Heterochromatin and Proximity to the Centromere. Genetics. doi:10.1534/genetics.119.302509
  44. Borredá C, Pérez-Román E, Ibanez V, Terol J, Talon M. (2019): Reprogramming of retrotransposon activity during speciation of the genus Citrus. Genome Biology and Evolution. doi:10.1093/gbe/evz246
  45. Ellison CE, Cao W. (2019): Nanopore sequencing and Hi-C scaffolding provide insight into the evolutionary dynamics of transposable elements and piRNA production in wild strains of Drosophila melanogaster. Nucleic Acids Research. doi:10.1093/nar/gkz1080
  46. Hill T, Unckless RL. (2019): A Deep Learning Approach for Detecting Copy Number Variation in Next-Generation Sequencing Data. G3 Genes|Genomes|Genetics. doi:10.1534/g3.119.400596
  47. Srivastav SP, Rahman R, Ma Q, Pierre J, Bandyopadhyay S, Lau NC. (2019): Har-P, a short P-element variant, weaponizes P-transposase to severely impair Drosophila development. eLife. doi:10.7554/elife.49948
  48. Vendrell-Mir P, Barteri F, Merenciano M, González J, Casacuberta JM, Castanera R. (2019): A benchmark of transposon insertion detection tools using real data. Mobile DNA. doi:10.1186/s13100-019-0197-9
  49. Serrato-Capuchina A, Matute D. (2018): The Role of Transposable Elements in Speciation. Genes 9:254. doi:10.3390/genes9050254
  50. Hill T, Betancourt AJ. (2018): Extensive exchange of transposable elements in the Drosophila pseudoobscura group. Mobile DNA 9. doi:10.1186/s13100-018-0123-6
  51. Manee MM, Jackson J, Bergman CM. (2018): Conserved Noncoding Elements Influence the Transposable Element Landscape in Drosophila. Genome Biology and Evolution 10:1533-1545. doi:10.1093/gbe/evy104
  52. Goerner-Potvin P, Bourque G. (2018): Computational tools to unmask transposable elements. Nat Rev Genet. doi:10.1038/s41576-018-0050-x
  53. Solares EA, Chakraborty M, Miller DE, Kalsow S, Hall K, Perera AG, Emerson JJ, Hawley RS. (2018): Rapid Low-Cost Assembly of the Drosophila melanogaster Reference Genome Using Low-Coverage, Long-Read Sequencing. G3 Genes|Genomes|Genetics. doi:10.1534/g3.118.200162
  54. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. (2018): Ten things you should know about transposable elements. Genome Biol. doi:10.1186/s13059-018-1577-z
  55. Luhur A, Klueg KM, Zelhof AC. (2018): Generating and working with Drosophila cell cultures: Current challenges and opportunities. WIREs Developmental Biology, 8(3). Wiley. doi:10.1002/wdev.339
  56. Disdero E, Filée J (2017): LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences. Mobile DNA. 8(1). DOI: 10.1186/s13100-017-0088-x
  57. Luo S, Lu J (2017): Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective. Genomics, Proteomics & Bioinformatics. 15(3):164–176. DOI: 10.1016/j.gpb.2017.01.006
  58. Horváth V, Merenciano M, González J (2017): Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. Trends in Genetics. 33(11):832–841. DOI: 10.1016/j.tig.2017.08.007
  59. Clark JP, Rahman R, Yang N, Yang LH, Lau NC (2017): Drosophila PAF1 Modulates PIWI/piRNA Silencing Capacity. Current Biology. 27(17):2718–2726. DOI: 10.1016/j.cub.2017.07.052
  60. Lee YCG, Karpen GH (2017): Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife. 6. DOI: 10.7554/eLife.25762
  61. Bergman CM, Han S, Nelson MG, Bondarenko V, Kozeretska I (2017): Genomic analysis of P elements in natural populations of Drosophila melanogaster. PeerJ. 5: e3824. DOI: 10.7717/peerj.3824
  62. Kelleher ES (2016): Reexamining the P -Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing. Genetics. 203(4):1513–1531. DOI: 10.1534/genetics.115.184119
  63. Zhang S, Kelleher ES (2017): Targeted identification of TE insertions in a Drosophila genome through hemi-specific PCR. Mobile DANN. 8(1). DOI: 10.1186/s13100-017-0092-1
  64. Srivastav SP, Kelleher ES (2017): Paternal Induction of Hybrid Dysgenesis in Drosophila melanogaster Is Weakly Correlated with Both P -Element and hobo Element Dosage. Genes|Genomes|Genetics. 7(5):1487–1497. DOI: 10.1534/g3.117.040634
  65. Nelson MG, Linheiro RS, Bergman CM (2017): McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data. Genes|Genomes|Genetics. 7(8):2763–2778. DOI: 10.1534/g3.117.043893
  66. Ninova M, Griffiths-Jones S, Ronshaugen M (2017): Abundant expression of somatic transposon-derived piRNAs throughout Tribolium castaneum embryogenesis. Genome Biology. 18(1). DOI: 10.1186/s13059-017-1304-1
  67. Quadrana L, Bortolini Silveira A, Mayhew GF, LeBlanc C, Martienssen RA, Jeddeloh JA, Colot V (2016): The Arabidopsis thaliana mobilome and its impact at the species level. eLife. 5. DOI: 10.7554/eLife.15716
  68. Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ (2016): Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes & Development. 30(16):1866–1880. DOI: 10.1101/gad.286278.116
  69. Kofler R, Gomez-Sanchez D, Schloetterer C (2016): PoPoolationTE2: comparative population genomics of transposable elements using Pool-Seq

Mendoza E, Colomb J, Rybak J, Pflüger H-J, Zars T, Scharff C, Brembs B (2014): Drosophila FoxP Mutants Are Deficient in Operant Self-Learning. PLoS ONE 9(6): e100648. doi:10.1371/journal.pone.0100648
Citations:

  1. Li W, Pan X, Li M, Ling L, Zhang M, Liu Z, Zhang K, Guo J, Wang H. (2023): Impact of age on the rotenone-induced sporadic Parkinson’s disease model using Drosophila melanogaster.Neuroscience Letters, 805(137187). https://doi.org/10.1016/j.neulet.2023.137187
  2. Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. (2022): High-throughput automated methods for classical and operant conditioning of Drosophila larvae. eLife, 11. https://doi.org/10.7554/eLife.70015
  3. Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O’Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. (2023): The translational genetics of ADHD and related phenotypes in model organisms.Neuroscience and Biobehavioral Reviews, 144(104949). https://doi.org/10.1016/j.neubiorev.2022.104949
  4. Ehweiner A. (2022): The neuronal basis of operant self-learning in Drosophila melanogaster, Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften
  5. Klein KT, Croteau-Chonka EC, Narayan L, Winding M, Masson J-B, Zlatic M. (2021): Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae. bioRxiv. doi:10.1101/2021.06.14.448341
  6. Klein KT. (2020): High-Throughput Operant Conditioning in Drosophila Larvae. Apollo – University of Cambridge Repository. doi:10.17863/CAM.47681
  7. Smith BH, Cook CN. (2020): Experimental psychology meets behavioral ecology: what laboratory studies of learning polymorphisms mean for learning under natural conditions, and vice versa. Journal of Neurogenetics 34(1):178-183. doi:10.1080/01677063.2020.1718674
  8. Liu J. (2020): Investigating positive-valance operant learning in Drosophila melanogaster with a novel apparatus. Doctoral dissertation, Brandeis University.
  9. Gao J, Geng R, Deng H, Zuo H, Weng S, He J, Xu X. (2020): A Novel Forkhead Box Protein P (FoxP) From Litopenaeus vannamei Plays a Positive Role in Immune Response. Frontiers in immunology11:593987. doi:10.3389/fimmu.2020.593987
  10. B, Faville R, Bridi JC, Hirth F. (2019): Inverse Control of Turning Behavior by Dopamine D1 Receptor Signaling in Columnar and Ring Neurons of the Central Complex in Drosophila. Current Biology. doi:10.1016/j.cub.2019.01.017
  11. Castells-Nobau A, Eidhof I, Fenckova M, Brenman-Suttner DB, Scheffer-de Gooyert JM, Christine S, Schellevis RL, van der Laan K, Quentin C, van Ninhuijs L, Hofmann F, Ejsmont R, Fisher SE, Kramer JM, Sigrist SJ, Simon AF, Schenck A. (2019): Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila. PLoS ONE. doi:10.1371/journal.pone.0211652
  12. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  13. Hagoort P, (Ed.). (2019): Human language: From genes and brains to behavior. MIT Press 46:657-686.
  14. Widmann A, Eichler K, Selcho M, Thum AS, Pauls D. (2018): Odor-taste learning in Drosophila larvae. Journal of Insect Physiology 106:47-54. doi:10.1016/j.jinsphys.2017.08.004
  15. Hung Y-S, Stopfer M. (2018): Decision Making: How Fruit Flies Integrate Olfactory Evidence. Current Biology 28:R757-R759. doi:10.1016/j.cub.2018.05.065
  16. Figdor C. (2018): Pieces of Mind, Oxford Scholarship Online. Oxford University Press. doi:10.1093/oso/9780198809524.001.0001
  17. Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. (2018): Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci. doi:10.1186/s12868-018-0469-1
  18. Schatton A, Mendoza E, Grube K, Scharff C (2018): FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. Journal of Comparative Neurology. 526:1589–1610. DOI: 10.1002/cne.24430
  19. Mendoza E, Ezequiel C, Scharff C (2017): Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Frontiers in Molecular Neuroscience. 10. DOI: 10.3389/fnmol.2017.00112
  20. Foley BR, Marjoram P, Nuzhdin SV (2017): Basic reversal-learning capacity in flies suggests rudiments of complex cognition. PLOS ONE. 12(8): e0181749. DOI: 10.1371/journal.pone.0181749
  21. Schatton A, Scharff C (2017): FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβc neurons. European Journal of Neuroscience. 46(9):2534–2541. DOI: 10.1111/ejn.13713
  22. Widmann A, Eichler K, Selcho M, Thum AS, Pauls D (2017): Odor-taste learning in Drosophila larvae. Journal of Insect Physiology. DOI: 10.1016/j.jinsphys.2017.08.004
  23. Mills I (2017): The Evolution of Fear Ecology: A Fruit Fly (Drosophila melanogaster) Perspective. Master thesis, University of Missouri-St. Louis. https://irl.umsl.edu/thesis/304
  24. Schatton A, Scharff C (2016): Next stop: Language. The “FOXP2” gene’s journey through time. Mètode Revista de difusió de la investigació. 0(7). DOI: 10.7203/metode.7.7248
  25. Ostrowski D, Kahsai L, Kramer EF, Knutson P, Zars T (2015) Place memory retention in Drosophila. Neurobiol Learn Mem 123: 217–224. DOI: 10.1016/j.nlm.2015.06.015
  26. Sperling K (2015): The Nature-Culture-Border in the Light of the Human Genome Project. Med. Gen. 27(1): 7-17, DOI: 10.1007/s11825-015-0037-3
  27. Boeckx C, Theofanopoulou C (2014): A multidimensional interdisciplinary framework for linguistics: the lexicon as a case study. J. Cogn. Sci. 15: 403–420
  28. Weiss SJ, Rosales-Ruiz J (2014): Operant/Classical Conditioning: Comparisons, Intersections and Interactions: The 2014 Winter Conference on Animal Learning and Behavior Focus and Research Seminar Sessions. International Journal of Comparative Psychology. 27(4). https://escholarship.org/uc/item/4c46c9gg

Colomb J, Brembs B (2014): Sub-strains of Drosophila Canton-S differ markedly in their locomotor behavior. F1000Res, 10.12688/f1000research.4263.1
Citations:

  1. Hibicke M, Nichols CD. (2022): Validation of the forced swim test in Drosophila, and its use to demonstrate psilocybin has long-lasting antidepressant-like effects in flies.Scientific Reports, 12(1): 10019. https://doi.org/10.1038/s41598-022-14165-2
  2. Malacrida S, De Lazzari F, Mrakic-Sposta S, Vezzoli A, Zordan MA, Bisaglia M, et al. (2022): Lifespan and ROS levels in different Drosophila melanogaster strains after 24 h hypoxia exposure. Biology Open, 11(6). https://doi.org/10.1242/bio.059386
  3. Genaev MA, Komyshev EG, Shishkina OD, Adonyeva NV, Karpova EK, Gruntenko NE, Zakharenko LP, Koval VS, Afonnikov DA. (2022): Classification of fruit flies by gender in images using smartphones and the YOLOv4-tiny neural network. Mathematics, 10(3), 295. https://doi.org/10.3390/math10030295
  4. Mitra S, Pinch M, Kandel Y, Li Y, Rodriguez SD, Hansen IA. (2021): Olfaction-related gene expression in the antennae of female mosquitoes from common Aedes aegypti laboratory strains. Frontiers in Physiology, 12, 668236. https://doi.org/10.3389/fphys.2021.668236
  5. Samota EK, Davey RP. (2021): Knowledge and Attitudes Among Life Scientists Toward Reproducibility Within Journal Articles: A Research Survey. Frontiers in research metrics and analytics6:678554. doi:10.3389/frma.2021.678554
  6. Himmel NJ, Letcher JM, Sakurai A, Gray TR, Benson MN, Donaldson KJ, Cox DN. (2021): Identification of a neural basis for cold acclimation in Drosophila larvae. iScience 24(6):102657. doi:10.1016/j.isci.2021.102657
  7. Bath E, Thomson J, Perry JC. (2020): Anxiety-like behaviour is regulated independently from sex, mating status and the sex peptide receptor in Drosophila melanogaster. Animal Behaviour 166:1-7. Elsevier BV. doi:10.1016/j.anbehav.2020.05.011
  8. Hague MTJ, Caldwell CN, Cooper BS. (2020): Pervasive Effects of Wolbachia on Host Temperature Preference. mBio 11(5). doi:10.1128/mbio.01768-20
  9. Isaac RE. (2019): The Effect of Mating and the Male Sex Peptide on Group Behaviour of Post-mated Female Drosophila melanogaster. Neurochem Res. doi:10.1007/s11064-019-02722-7
  10. Dolan M-J, Frechter S, Bates AS, Dan C, Huoviala P, Roberts RJ, Schlegel P, Dhawan S, Tabano R, Dionne H, Christoforou C, Close K, Sutcliffe B, Giuliani B, Li F, Costa M, Ihrke G, Meissner GW, Bock DD, Aso Y, Rubin GM, Jefferis GS. (2019): Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. eLife. doi:10.7554/elife.43079
  11. Konkol M, Kray C, Suleiman J. (2019): Creating Interactive Scientific Publications using Bindings. Proc ACM Hum-Comput Interact. doi:10.1145/3331158
  12. Ramaekers A, Claeys A, Kapun M, Mouchel-Vielh E, Potier D, Weinberger S, Grillenzoni N, Dardalhon-Cuménal D, Yan J, Wolf R, Flatt T, Buchner E, Hassan BA. (2019): Altering the Temporal Regulation of One Transcription Factor Drives Evolutionary Trade-Offs between Head Sensory Organs. Developmental Cell. doi:10.1016/j.devcel.2019.07.027
  13. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  14. Kim K, Jang T, Min K, Lee KP. (2019): Effects of dietary protein: carbohydrate balance on life-history traits in six laboratory strains of Drosophila melanogaster. Entomol Exp Appl. doi:10.1111/eea.12855
  15. Qiao B, Li C, Allen VW, Shirasu-Hiza M, Syed S. (2018): Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier. eLife 7. doi:10.7554/elife.34497
  16. Pomatto LCD, Wong S, Tower J, Davies KJA. (2018): Sex-specific adaptive homeostasis in D. melanogaster depends on increased proteolysis by the 20S Proteasome: Data-in-Brief. Data in Brief. doi:10.1016/j.dib.2018.01.044
  17. Coelho DS, Schwartz S, Merino MM, Hauert B, Topfel B, Tieche C, Rhiner C, Moreno E. (2018): Culling Less Fit Neurons Protects against Amyloid-β-Induced Brain Damage and Cognitive and Motor Decline. Cell Reports, 25(13), pp. 3661-3673.e3. Elsevier BV. doi:10.1016/j.celrep.2018.11.098
  18. Pomatto LCD, Wong S, Tower J, Davies KJA (2018): Sex-specific adaptive homeostasis in D. melanogaster depends on increased proteolysis by the 20S Proteasome: Data-in-Brief. Data in Brief. 17:653–661. DOI: 10.1016/j.dib.2018.01.044
  19. Piwowar M, Jurkowski W (2018): Missing data in open-data era – a barrier to multiomics integration. Bio-Algorithms and Med-Systems. 0(0). DOI: 10.1515/bams-2017-0026
  20. Qiao B, Li C, Allen VW, Shirasu-Hiza M, Syed S (2018): Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier. eLife. 7. DOI: 10.7554/eLife.34497
  21. Signor SA, Abbasi M, Marjoram P, Nuzhdin SV (2017): Conservation of social effects (Ψ) between two species of Drosophila despite reversal of sexual dimorphism. Ecology and Evolution. 7(23):10031–10041. DOI: 10.1002/ece3.3523
  22. Qiu S, Xiao C, Meldrum Robertson R (2017): Different age-dependent performance in Drosophila wild-type Canton-S and the white mutant w1118 flies. In: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 206:17–23. Elsevier BV. DOI: 10.1016/j.cbpa.2017.01.003
  23. Velazquez-Ulloa NA (2017): A Drosophila model for developmental nicotine exposure. PLOS ONE. 12(5): e0177710. DOI: 10.1371/journal.pone.0177710
  24. Morgan SL, Seggio JA, Nascimento NF, Huh DD, Hicks JA, Sharp KA, Axelrod JD, et al. (2016): The Phenotypic Effects of Royal Jelly on Wild-Type D. melanogaster Are Strain-Specific. PLOS ONE. 11(8): e0159456. DOI: 10.1371/journal.pone.0159456
  25. Hampel S, Seeds AM (2016): Targeted manipulation of neuronal activity in behaving adult flies. PeerJ. DOI: 10.7287/peerj.preprints.2354v2
  26. Bosch DS (2016): Analysing visual behaviour in Drosophila Dscam2 mutants using optimised optomotor and operant control assays. PhD Dissertation, University of Queensland
  27. Tennant JP, Waldner F, Jacques DC, Masuzzo P, Collister LB, Hartgerink CHJ (2016): The academic, economic and societal impacts of Open Access: an evidence-based review [version 1; referees: 2 approved, 1 approved with reservations]. F1000Research 5:632 (doi: 10.12688/f1000research.8460.1)
  28. Haddaway NR, Hedlund K, Jackson LE, Kätterer T, Lugato E, Thomsen IK, Jørgensen HB, Söderström B (2015): What are the effects of agricultural management on soil organic carbon in boreo-temperate systems? Env Evid, 4:23, DOI: 10.1186/s13750-015-0049-0
  29. West RJ, Elliott CJ, Wade AR (2015): Classification of Parkinson’s Disease Genotypes in Drosophila Using Spatiotemporal Profiling of Vision. Sci Rep. 5: 16933, DOI: 10.1038/srep16933
  30. Pinfield S (2015): Making Open Access work. Online Inf Rev. 39: 604–636, DOI: 10.1108/OIR-05-2015-0167
  31. Xiao C, Robertson RM (2015): Locomotion Induced by Spatial Restriction in Adult Drosophila. PLOS ONE 10(9):e0135825, DOI: 10.1371/journal.pone.0135825
  32. Zalucki O, Day R, Kottler B, Karunanithi S, van Swinderen B (2015): Behavioral and electrophysiological analysis of general anesthesia in 3 background strains of Drosophila melanogaster. Fly, 9: 7–15, DOI: 10.1080/19336934.2015.1072663
  33. Watson M (2015): When will “open science” become simply “science”? Genome Biol, 16:101, DOI: 10.1186/s13059-015-0669-2

Brembs,B. (2014) Aplysia operant conditioning. Scholarpedia, 9, 4097.
Citations:

  1. Sakurai A, Katz PS (2015): Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 201: 829–839, DOI: 10.1007/s00359-015-1007-6

Brembs B (2013): Invertebrate behavior—actions or responses? Frontiers in Neuroscience 7, Article 221
Citations:

  1. Arican C, Bulk J, Deisig N and Nawrot MP. (2020): Cockroaches Show Individuality in Learning and Memory During Classical and Operant Conditioning. Front. Physiol. 10:1539. doi:10.3389/fphys.2019.01539
  2. Tonna M, Marchesi C, Parmigiani S. (2019): The biological origins of rituals: An interdisciplinary perspective. Neuroscience & Biobehavioral Reviews, 98, pp. 95-106. Elsevier BV. doi:10.1016/j.neubiorev.2018.12.031
  3. Mather JA, Carere C. (2019): Consider the Individual: Personality and Welfare in Invertebrates. Animal Welfare. doi:10.1007/978-3-030-13947-6_10
  4. Zaguri M, Zohar Y, Hawlena D. (2018): Data from: Considerations used by desert isopods to assess scorpion predation risk. doi:10.5061/DRYAD.171D18F
  5. Rodrigues AS, Botina L, Nascimento CP, Gontijo LM, Torres JB, Guedes RNC (2016): Ontogenic behavioral consistency, individual variation and fitness consequences among lady beetles. Behav Proc. 131:32–39. DOI: 10.1016/j.beproc.2016.08.003
  6. Shah SN (2017): Effects of sleep-deprivation on decision-making and action selection. Thesis, University of San Diego
  7. Avila-Núñez JL, Naya M, Otero LD, Alonso-Amelot ME (2017): Sticky trap predation in the Neotropical resin bug Heniartes stali (Wygodzinsky) (Hemiptera: Reduviidae: Harpactorinae). Journal of Ethology. 35(2):213–219. DOI: 10.1007/s10164-017-0512-1
  8. Kralj-Fišer S, Schuett W (2014): Studying personality variation in invertebrates: why bother? Anim Behav. 91:41–52

Brembs B, Button K, Munafò M (2013): Deep Impact: unintended consequences of journal rank. Front Hum Neurosci. 7:Article 291
Citations:

  1. Eagle SR, Okonkwo DO. (2023): Response to daneshvar and rovito, “letter to the editor: Telling the whole story: Articles linking chronic traumatic encephalopathy and repetitive head impacts have higher journal impact factors” (DOI: 10.1089/neu.2022.0374).Journal of Neurotrauma, 40(3–4): 413. https://doi.org/10.1089/neu.2022.0395
  2. Heidenreich A, Eisemann N, Katalinic A, Hübner J. (2023): Study results from journals with a higher impact factor are closer to “truth”: a meta-epidemiological study.Systematic Reviews, 12(1): 8. https://doi.org/10.1186/s13643-023-02167-8
  3. Giannos P, Katsikas Triantafyllidis K, Paraskevaidi M, Kyrgiou M, Kechagias KS. (2023): Female dynamics in authorship of scientific publications in the Public Library of science: A 10-year bibliometric analysis of biomedical research.European Journal of Investigation in Health Psychology and Education, 13(2): 228–237. https://doi.org/10.3390/ejihpe13020018
  4. Peng MT. (2023): Changes in scholars’ ways of knowledge production shaped by systematic measures.Gaziantep University Journal of Social Sciences, 22(1): 30–45. https://doi.org/10.21547/jss.1209134
  5. da Costa AF, Martins S da C, Pintassilgo SC, Nunes N, Carvalho H. (2022): Publicação científica e ciências sociais: 100 números da revista Sociologia, Problemas e Práticas.Sociologia Problemas e Práticas, 100. https://doi.org/10.7458/spp202210028003
  6. Dougherty MR, Horne Z. (2022): Citation counts and journal impact factors do not capture some indicators of research quality in the behavioural and brain sciences.Royal Society Open Science, 9(8): 220334. https://doi.org/10.1098/rsos.220334
  7. Stoy L. (2022): Future pathways of a sector in transition: An STS perspective on the scholarly publishing market and Open Access.Septentrio Conference Series, 1. https://doi.org/10.7557/5.6590
  8. Dunleavy DJ. (2022): Progressive and degenerative journals: on the growth and appraisal of knowledge in scholarly publishing.European Journal for Philosophy of Science, 12(4): 61. https://doi.org/10.1007/s13194-022-00492-8
  9. Walsh E, Nikolaou E. (2022): Citation usage as a predictor of academic performance in student academic writing.EDULEARN Proceedings.
  10. Gorman, D. M., & Huber, C. (2022): Ranking of addiction journals in eight widely used impact metrics.Journal of Behavioral Addictions, 11(2): 348–360. https://doi.org/10.1556/2006.2022.00020
  11. Aubert Bonn N, De Vries RG, Pinxten W. (2022): The failure of success: four lessons learned in five years of research on research integrity and research assessments.BMC Research Notes, 15(1): 309. https://doi.org/10.1186/s13104-022-06191-0
  12. Héroux ME, Butler AA, Cashin AG, McCaughey EJ, Affleck AJ, Green MA, et al. (2022): Quality Output Checklist and Content Assessment (QuOCCA): a new tool for assessing research quality and reproducibility.BMJ Open, 12(9). https://doi.org/10.1136/bmjopen-2022-060976
  13. Wenaas L. (2022): Choices of immediate open access and the relationship to journal ranking and publish-and-read deals.Frontiers in Research Metrics and Analytics, 7: 943932. https://doi.org/10.3389/frma.2022.943932
  14. Zhang J, Jin B, Sha J, Chen Y, Zhang Y. (2022): SentenceLDA- and ConNetClus-based heterogeneous academic network analysis for publication ranking.Algorithms, 15(5), 159. https://doi.org/10.3390/a15050159
  15. Pojani D, Olvera-Garcia J, Sipe N, Byrne J. (2022): Research productivity of Australian planning academics: A bibliometric analysis.Journal of Planning Education and Research, 42(1):90–101. https://doi.org/10.1177/0739456×18804330
  16. Lauer G. (2022):Datentracking in den Wissenschaften. https://doi.org/10.5282/O-BIB/5796
  17. Bragg KM, Marchand GC, Hilpert JC, Cummings JL. (2022): Using bibliometrics to evaluate outcomes and influence of translational biomedical research centers.Journal of Clinical and Translational Science, 6(1), e72. https://doi.org/10.1017/cts.2021.863
  18. Villalobos D, Povedano-Montero J, Fernández S, López-Muñoz F, Pacios J, del Río D. (2022):Scientific research on verbal fluency tests: A bibliometric analysis.Journal of Neurolinguistics, 63, 101082. https://doi.org/10.1016/j.jneuroling.2022.101082
  19. López-Muñoz F, Weinreb RN, Moghimi S, Povedano-Montero FJ. (2022): A Bibliometric and Mapping Analysis of Glaucoma Research between 1900 and 2019. Ophthalmology Glaucoma 5(1):16-25. doi:10.1016/j.ogla.2021.05.008
  20. Serenko A, Bontis N. (2022): Global ranking of knowledge management and intellectual capital academic journals: a 2021 update. Journal of Knowledge Management 26(1):126-145. doi:10.1108/JKM-11-2020-0814
  21. Seeber M. (2022): Efficacy, efficiency, and models of journal peer review: the known and unknown in the social sciences. In Handbook on Research Assessment in the Social Sciences. Edward Elgar Publishing. doi: 10.4337/9781800372559.00011
  22. Triggle CR, MacDonald R, Triggle DJ, Grierson D. (2022): Requiem for impact factors and high publication charges. Accountability in Research 29(3):133-164. doi:10.1080/08989621.2021.1909481
  23. Chambers CD, Tzavella L. (2021): The past, present and future of Registered Reports. Nat Hum Behav. doi:10.1038/s41562-021-01193-7
  24. Tiokhin L, Panchanathan K, Lakens D, Vazire S, Morgan T, Zollman K. (2021): Honest signaling in academic publishing. PLoS ONE. doi:10.1371/journal.pone.0246675
  25. Götz M, O‘Boyle EH, Gonzalez-Mulé E, Banks GC, Bollmann SS. (2021): The “Goldilocks Zone”: (Too) many confidence intervals in tests of mediation just exclude zero. Psychological Bulletin 147(1):95-114. American Psychological Association (APA). doi:10.1037/bul0000315
  26. Vergara-Fernández M. (2021): The journal impact factor might be useful but, for what, precisely? OEconomia, 11(3):473–484. https://doi.org/10.4000/oeconomia.11593
  27. Knöchelmann M. (2021): Systemimmanenz und Transformation: Die Bibliothek der Zukunft als lokale Verwalterin? Bibliothek Forschung und Praxis 45(1):151-162. doi:10.1515/bfp-2020-0101
  28. Hernández AM. (2021): Taming the Big Green Elephant, Globale Gesellschaft und internationale Beziehungen. Springer Fachmedien Wiesbaden. doi:10.1007/978-3-658-31821-5
  29. Orhan MA. (2021): Dynamic interactionism between research fraud and research culture: a commentary to Harvey’s analysis. Quality in Higher Education 27(1):134-146. doi:10.1080/13538322.2021.1857900
  30. Teixeira da Silva JA. (2021): The i100-index, i1000-index and i10,000-index: expansion and fortification of the Google Scholar h-index for finer-scale citation descriptions and researcher classification. Scientometrics 126:3667-3672. doi:10.1007/s11192-020-03831-9
  31. D’Ippoliti C. (2021): “MANY-CITEDNESS”: CITATIONS MEASURE MORE THAN JUST SCIENTIFIC QUALITY. Journal of Economic Surveys. doi:10.1111/joes.12416
  32. Banasik-Jemielniak N, Jemielniak D, Wilamowski M. (2022): Psychology and Wikipedia: Measuring Psychology Journals‘ Impact by Wikipedia Citations. Social Science Computer Review 40(3):756-774. doi:10.1177/0894439321993836
  33. Knöchelmann M. (2021): The Democratisation Myth: Open Access and the Solidification of Epistemic Injustices. Science & Technology Studies 34(2):65-89. doi:10.23987/sts.94964.
  34. Palavalli-Nettimi R. (2021): Toward a Sustainable Model of Scientific Publishing. JSPG. doi:10.38126/jspg180111
  35. Bogert E, Schecter A, Watson RT. (2021): Preregistration of Information Systems Research. Communications of the Association for Information Systems 49. doi:10.17705/1CAIS.04905
  36. Hilbert S, Coors S, Kraus E, Bischl B, Lindl A, Frei M, Wild J, Krauss S, Goretzko D, Stachl C. (2021): Machine learning for the educational sciences. Review of Education 9(3):e3310. doi:10.1002/rev3.3310
  37. Manzano-Patrón JP, López-Neira I, Izquierdo P. (2021): Open Science in Spain: Towards a Coordinated Strategy. JSPG 18(1). doi:10.38126/jspg180108
  38. Etchells P. (2021): Changing the Game in Esports Research: Registered Reports at the International Journal of Esports. International Journal of Esports 1(1). https://www.ijesports.org/article/58/html
  39. Rowbottom DP. (2021): Peer review may not be such a bad idea: Response to Heesen and Bright. The British Journal for the Philosophy of Science. doi:10.1086/714787
  40. Piron F, Olyhoek T, Vilchis IL, Smith I, Liré Z. (2021): Chapter 6 Saying ‘No’ to Rankings and Metrics. In: Socially Responsible Higher Education. Leiden, Niederlande: Brill. doi:10.1163/9789004459076_007
  41. Teixeira da Silva JA. (2021): The Matthew effect impacts science and academic publishing by preferentially amplifying citations, metrics and status. Scientometrics 126:5373-5377. doi:10.1007/s11192-021-03967-2
  42. Ferreira CMC, Guatimosim RF, Teles ALS. (2021): Medidas cienciométricas: o que são, para que servem e para que não servem? Boletim Técnico do PPEC 6:e021004.
  43. Raja N, Dunne E. (2021): Publication pressure threatens the integrity of palaeontological research. California Digital Library (CDL). doi:10.31223/x5v32z
  44. Lopez-Munoz F, Eremchenko O, Fernandez-Lopez MA, Rodriguez-Sanchez B, Povedano-Montero FJ. (2021): International Scientific Research on Venture Capital: a Bibliometric and Mapping Analysis from the Period 1978-2020. The Economics of Science 7(1):66-84. doi:10.22394/2410-132X-2021-7-1-66-84
  45. Lizotte M. (2021): If you do not deign to quantify, someone else will do it for you: In support of a balanced approach to the evaluation of science. Social Science Information 60(3):363-371. doi:10.1177/05390184211021364
  46. Braganza O. (2020): A simple model suggesting economically rational sample-size choice drives irreproducibility. PLoS ONE. doi:10.1371/journal.pone.0229615
  47. Seeber M. (2020): How do journals of different rank instruct peer reviewers? Reviewer guidelines in the field of management. Scientometrics. doi:10.1007/s11192-019-03343-1
  48. Baffy G, Burns MM, Hoffmann B, Ramani S, Sabharwal S, Borus JF, Pories S, Quan SF, Ingelfinger JR. (2020): Scientific Authors in a Changing World of Scholarly Communication: What Does the Future Hold? The American Journal of Medicine. doi:10.1016/j.amjmed.2019.07.028
  49. Balthazart J. (2020): How technical progress reshaped behavioral neuroendocrinology during the last 50 years… and some methodological remarks. Hormones and Behavior 118. doi:10.1016/j.yhbeh.2020.104682
  50. Costello E, Farrelly T, Murphy T. (2020): Open and Shut: Open Access in Hybrid Educational Technology Journals 2010 – 2017. The International Review of Research in Open and Distributed Learning21(1):113-134. doi:10.19173/irrodl.v20i5.4383
  51. Niles MT, Schimanski LA, McKiernan EC, Alperin JP. (2020): Why we publish where we do: Faculty publishing values and their relationship to review, promotion and tenure expectations. S. A. Useche (Ed.), PLOS ONE 15(3):e0228914. Public Library of Science (PLoS). doi:10.1371/journal.pone.0228914
  52. Vuong Q-H, La V-P, Ho M-T, Vuong T-T, Ho M-T. (2020): Characteristics of retracted articles based on retraction data from online sources through February 2019. Science Editing 7(1):34-44. Korean Council of Science Editors. doi:10.6087/kcse.187
  53. Tennant JP, Agrawal R, Bazdaric K, Brassard D, Crick T, Dunleavy DJ, Yarkoni T. (2020): A tale of two’opens’: intersections between Free and Open Source Software and Open Scholarship.
  54. Azevedo F. (2020): Not So Simple: Science is in the Details. Psychological Inquiry 31(1):61-65. Informa UK Limited. doi:10.1080/1047840x.2020.1722001
  55. Gray RJ. (2020): Sorry, we’re open: Golden Open Access and inequality in the natural sciences. Cold Spring Harbor Laboratory. doi:10.1101/2020.03.12.988493
  56. Ertas M, Kozak M. (2020): Publish or perish: The proportion of articles versus additional sections in tourism and hospitality journals. Journal of Hospitality and Tourism Management 43:149-156. Elsevier BV. doi:10.1016/j.jhtm.2020.03.001
  57. Tennant J. (2020): How open science is fighting against private, proprietary publishing platforms.
  58. Tennant J, Wien C. (2020): Fixing the crisis state of scientific evaluation. Center for Open Science. doi:10.31235/osf.io/f4zk9
  59. Hanel P. (2020): Conducting High Impact Research With Limited Financial Resources (While Working from Home). Meta-Psychology 4. Linnaeus University. doi:10.15626/mp.2020.2560
  60. Moustafa K. (2020): Reforming science publishing. Learned Publishing 33(4):437-440. Wiley. doi:10.1002/leap.1315
  61. Rodriguez R, Chan V, Wong A, Montoy JC. (2020): A Review of Journal Impact Metrics and Characteristics to Assist Emergency Medicine Investigators with Manuscript Submission Decisions. Western Journal of Emergency Medicine 21(4). Western Journal of Emergency Medicine. doi:10.5811/westjem.2020.4.47030
  62. Beck S, Bergenholtz C, Bogers M, Brasseur T-M, Conradsen ML, Di Marco D, Distel AP, Dobusch L, Dörler D, Effert A, Fecher B, Filiou D, Frederiksen L, Gillier T, Grimpe C, Gruber M, Haeussler C, Heigl F, Hoisl K, … Xu SM. (2020): The Open Innovation in Science research field: a collaborative conceptualisation approach. Industry and Innovation 29(2):136-185. Informa UK Limited. doi:10.1080/13662716.2020.1792274
  63. Mwelwa J, Boulton G, Wafula JM, Loucoubar C. (2020): Developing Open Science in Africa: Barriers, Solutions and Opportunities. Data Science Journal 19(1):31. doi:10.5334/dsj-2020-031
  64. Foderaro A. (2020): Indikatorer på forskningens inverkan på samhället genom Twitter-interaktioner: En forskares guide till spridningspraxis (Dissertation). http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-23673
  65. Büttner F, Toomey E, McClean S, Roe M, Delahunt E. (2020): Are questionable research practices facilitating new discoveries in sport and exercise medicine? The proportion of supported hypotheses is implausibly high. British Journal of Sports Medicine bjsports-2019-101863. doi:10.1136/bjsports-2019-101863
  66. Léonard F. (2020): Le taux de fausses découvertes dans la littérature sur la préférence de lieu conditionné induite par la nicotine chez la souris. Unpublished master’s thesis, Université de Liège. https://matheo.uliege.be/handle/2268.2/10528
  67. Eve MP, Gray J, (eds.). (2020): Reassembling scholarly communications: Histories, infrastructures, and global politics of Open Access. MIT Press.
  68. ElSabry E, Sumikura K. (2020): Does open access to academic research help small, science-based companies? Journal of Industry – University Collaboration 2(3):95-109. doi:10.1108/JIUC-04-2020-0004
  69. Hernandez AM. (2020): The Political Economy of Transformation to Sustainability-Shaping Futures through Narratives on Transformation Processes. ISA 2020 Annual Convention, March 25-28, 2020, Honolulu Junior Scholar Symposia Group/Panel: IPE- The Political Economy of Development.
  70. Orhan M. (2020): Pardon my French: On superfluous journal rankings, incentives, and impacts on industrial-organizational psychology publication practices in French business schools. Industrial and Organizational Psychology 13(3):295-306. doi:10.1017/iop.2020.59
  71. Leachman C, Anderson T. (2020): Publishing Behavior of Engineering Faculty. 2020 ASEE Virtual Annual Conference Content Access Proceedings. doi:10.18260/1-2-35110
  72. Klokov A. (2020): Impact Factor of a Term: a Tool for Assessing Article’s Future Citations and Author’s Influence Based on PubMed and DBLP Collections. GraphiCon 2020 Computer Graphics and Machine Vision Proceedings of the 30th International Conference on Computer Graphics and Machine Vision, Saint Petersburg, Russia, September 22-25, 2020.
  73. Fraumann G, D‘Souza J, Holmberg K. (2020): 4.7 Eigenfactor. In: Ball R, (eds.). Handbook Bibliometrics 245-254. doi:10.1515/9783110646610-025
  74. Sedghi S, Razmgir M, Moradzadeh M. (2020): Contribution of Iranian scholars to medical sciences: A holistic overview of 140-years publication. Medical journal of the Islamic Republic of Iran34:158. doi:10.47176/mjiri.34.158
  75. Schreiber M. (2019): Bibliometric Epilogue: Measuring the Works of D.R.T. Zahn. Phys Status Solidi B. doi:10.1002/pssb.201800748
  76. Perez O, Bar’Ilan J, Cohen R, Schreiber N. (2019): The Network of Law Reviews: Citation Cartels, Scientific Communities, and Journal Rankings. The Modern Law Review. doi:10.1111/1468-2230.12405
  77. Whitley MA, Massey WV, Camiré M, Blom LC, Chawansky M, Forde S, Boutet M, Borbee A, Darnell SC. (2019): A systematic review of sport for development interventions across six global cities. Sport Management Review 22:181-193. doi:10.1016/j.smr.2018.06.013
  78. Perez Velazquez JL. (2019): Corporate Culture in Academia and The Current Standards of Research Appraisal. The Rise of the Scientist-Bureaucrat. doi:10.1007/978-3-030-12326-0_3
  79. Greenhow C, Gleason B, Staudt Willet KB. (2019): Social scholarship revisited: Changing scholarly practices in the age of social media. Br J Educ Technol. doi:10.1111/bjet.12772
  80. Balaji B, Dhanamjaya M. (2019): Preprints in Scholarly Communication: Re-Imagining Metrics and Infrastructures. Publications. doi:10.3390/publications7010006
  81. Campbell H, Gustafson P. (2019): The World of Research Has Gone Berserk: Modeling the Consequences of Requiring “Greater Statistical Stringency” for Scientific Publication. The American Statistician. doi:10.1080/00031305.2018.1555101
  82. Zhu Y, Fu K. (2019): The Relationship Between Interdisciplinarity and Journal Impact Factor in the Field of Communication During 1997-2016. Journal of Communication. doi:10.1093/joc/jqz012
  83. Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, Kramer B, Martin R, Masuzzo P, Nobes A, Rice C, Rivera-López B, Ross-Hellauer T, Sattler S, Thacker PD, Vanholsbeeck M. (2019): Ten Hot Topics around Scholarly Publishing. Publications. doi:10.3390/publications7020034
  84. Griffiths AGF, Modinou I, Heslop C, Brand C, Weatherill A, Baker K, Hughes AE, Lewis J, de Mora L, Mynott S, Roberts KE, Griffiths DJ. (2019): AccessLab: Workshops to broaden access to scientific research. PLoS Biol. doi:10.1371/journal.pbio.3000258
  85. Kulczycki E. (2019): Nauka. doi:10.24425/NAUKA.2019.126190
  86. Katchanov YL, Markova YV, Shmatko NA. (2019): Comparing the topological rank of journals in Web of Science and Mendeley. Heliyon. doi:10.1016/j.heliyon.2019.e02089
  87. McKiernan EC, Schimanski LA, Muñoz Nieves C, Matthias L, Niles MT, Alperin JP. (2019): Use of the Journal Impact Factor in academic review, promotion, and tenure evaluations. eLife. doi:10.7554/elife.47338
  88. Singh GG, Farjalla VF, Chen B, Pelling AE, Ceyhan E, Dominik M, Alisic E, Kerr J, Selin NE, Bassioni G, Bennett E, Kemp AH, Chan KM. (2019): Researcher engagement in policy deemed societally beneficial yet unrewarded. Front Ecol Environ. doi:10.1002/fee.2084
  89. Wang M, Jiao S, Chai K-H, Chen G. (2019): Building journal’s long-term impact: using indicators detected from the sustained active articles. Scientometrics. doi:10.1007/s11192-019-03196-8
  90. Döring K. (2019): Nutzerbedürfnisse als Herausforderungen für die Entwicklung und den Betrieb eines interdisziplinären, mediävistischen Open-Access-Fachrepositoriums. Teil I: Sechs Bedürfnisse: Was erwarten die Nutzer und Nutzerinnen? ZfBB. doi:10.3196/186429501966431
  91. Siler K, Larivière V, Sugimoto CR. (2019): The diverse niches of megajournals: Specialism within generalism. Journal of the Association for Information Science and Technology. doi:10.1002/asi.24299
  92. Fombuena A. (2019): Evaluación de la transferencia de conocimiento e innovación de las universidades españolas. Rev esp doc cient. doi:10.3989/redc.2019.3.1596
  93. Hochberg M. (2019): An Editor’s Guide to Writing and Publishing Science. Oxford University Press. doi:10.1093/oso/9780198804789.001.0001
  94. Akers KG. (2019): Biomedical Journals: Scientific Quality, Reputation, and Impact Factor. A Guide to the Scientific Career. doi:10.1002/9781118907283.ch40
  95. Grab-Kroll C, Schneider A, Keis O, Mayer B, Wirth T, Barth T, Oechsner W, Huber-Lang M. (2019): Welche Beiträge können strukturierte Promotionsprogramme zur Qualitätssicherung medizinischer Promotionen und wissenschaftlichen Karriereförderung/ Nachwuchsförderung leisten? Eine Evaluation am Beispiel der Programminitiative „Experimentelle Medizin“ der Universität Ulm. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen. doi:10.1016/j.zefq.2019.10.001
  96. Katz Y, Matter U. (2019): Metrics of Inequality: The Concentration of Resources in the U.S. Biomedical Elite. Science as Culture. doi:10.1080/09505431.2019.1694882
  97. Hopf H, Matlin SA, Mehta G, Krief A. (2019): Blocking the Hype-Hypocrisy-Falsification-Fakery Pathway is Needed to Safeguard Science. Angew Chem. doi:10.1002/ange.201911889
  98. Wenaas L. (2019): Open Access: A Remedy to the Crisis in Scientific Inquiry? Social Philosophy of Science for the Social Sciences. doi:10.1007/978-3-030-33099-6_13
  99. Kim L, Portenoy JH, West JD, Stovel KW. (2019): Scientific journals still matter in the era of academic search engines and preprint archives. Journal of the Association for Information Science and Technology. doi:10.1002/asi.24326
  100. Kossmeier M, Vilsmeier J, Dittrich R, Fritz T, Kolmanz C, Plessen CY, Slowik A, Tran US, Voracek M. (2019): Long-Term Trends (1980-2017) in the N-Pact Factor of Journals in Personality Psychology and Individual Differences Research. Zeitschrift für Psychologie. doi:10.1027/2151-2604/a000384
  101. Eslamimehdiabadi M. (2019): Participating and designing around algorithmic socio-technical systems. Doctoral dissertation, University of Illinois at Urbana-Champaign.
  102. Bowden JA, Sargent N, Wesselingh S, Size L, Donovan C, Miller CL. (2018): Measuring research impact: a large cancer research funding programme in Australia. Health Res Policy Sys 16. doi:10.1186/s12961-018-0311-3
  103. Kotchoubey B, Pavlov YG. (2018): A Systematic Review and Meta-Analysis of the Relationship Between Brain Data and the Outcome in Disorders of Consciousness. Front. Neurol. 9. doi:10.3389/fneur.2018.00315
  104. Strielkowski W, Gryshova I. (2018): Academic Publishing and «Predatory» Journals. Nauka innov 14:5-12. doi:10.15407/scin14.01.005
  105. Brueckner M, Paull M, Spencer R. (2018): Corporate Social Responsibility an australischen Hochschulen, Management-Reihe Corporate Social Responsibility. Springer Berlin Heidelberg. doi:10.1007/978-3-662-56314-4_19
  106. Heise C. (2018): Von Open Access zu Open Science: Zum Wandel digitaler Kulturen der wissenschaftlichen Kommunikation. DE: meson press. doi:10.14619/1303
  107. Moher D, Naudet F, Cristea IA, Miedema F, Ioannidis JPA, Goodman SN. (2018): Assessing scientists for hiring, promotion, and tenure. PLoS Biol. doi:10.1371/journal.pbio.2004089
  108. Barriga SF, Barbón OG, Buenaño CV, Barriga LF. (2018): Impacto en la Producción Científica de un Programa Experiencial de Preparación para la Investigación Dirigido a Docentes Universitarios. Form Univ 11:41-48. doi:10.4067/s0718-50062018000300041
  109. Coelho GC. (2018): Avaliação de impacto de periódicos brasileiros de extensão universitéria. Biblios 81-89. doi:10.5195/biblios.2018.468
  110. Papoutsis K. (2018): Evaluation angenommener und abgelehnter Kongressbeiträge von Jahrestagungen der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. und deren Bezug zur Publikationsqualität. doi:10.22028/D291-27278
  111. Cuschieri S. (2018): WASP: Is open access publishing the way forward? A review of the different ways in which research papers can be published. Early Human Development 121:54-57. doi:10.1016/j.earlhumdev.2018.02.017
  112. Vogl S, Scherndl T, Kühberger A. (2018): # Psychology: a bibliometric analysis of psychological literature in the online media. Scientometrics 115:1253-1269. doi:10.1007/s11192-018-2727-5
  113. Leydesdorff L, Wagner CS, Bornmann L. (2018): Discontinuities in citation relations among journals: self-organized criticality as a model of scientific revolutions and change. Scientometrics 116:623-644. doi:10.1007/s11192-018-2734-6
  114. Cochrane T, Redmond P, Corrin L. (2018): Technology Enhanced Learning, Research Impact and Open Scholarship. AJET 34. doi:10.14742/ajet.4640
  115. Polonioli A, Vega-Mendoza M, Blankinship B, Carmel D. (2018): Reporting in Experimental Philosophy: Current Standards and Recommendations for Future Practice. RevPhilPsych 12:49-73. doi:10.1007/s13164-018-0414-3
  116. Jan R, Zainab T. (2018): The Impact Story of Retracted Articles. University of Kashmir.
  117. Erling J. (2018): Die Rolle von Bibliotheken im Hinblick auf den Kerndatensatz Forschung. Bachelor thesis, Fachhochschule Potsdam. urn:nbn:de:kobv:525-23351
  118. Paulus FM, Cruz N, Krach S. (2018): The Impact Factor Fallacy. Front Psychol. doi:10.3389/fpsyg.2018.01487
  119. Schreiber M. (2018): A skeptical view on the Hirsch index and its predictive power. Phys Scr. doi:10.1088/1402-4896/aad959
  120. Schimanski LA, Alperin JP. (2018): The evaluation of scholarship in academic promotion and tenure processes: Past, present, and future. F1000Res. doi:10.12688/f1000research.16493.1
  121. Scerbo MW. (2018): Some Exciting News and Changes for the Journal. Sim Healthcare. doi:10.1097/sih.0000000000000346
  122. Huneman P. (2018): L’activité débilitante de la science contemporaine. Zilsel. doi:10.3917/zil.004.0153
  123. Pojani D, Olvera-Garcia J, Sipe N, Byrne J. (2018): Research Productivity of Australian Planning Academics: A Bibliometric Analysis. Journal of Planning Education and Research. doi:10.1177/0739456×18804330
  124. D’Antonio Maceiras S. (2018): El circulo vicioso de las revistas cientí­ficas y la progresiva irrelevancia de la ciencia pública. Política Soc. doi:10.5209/poso.57222
  125. Sharpe M, Turner K. (2018): Bibliopolitics: The History of Notation and the Birth of the Citational Academic Subject. FS. doi:10.22439/fs.v0i25.5578
  126. Eder AB, Frings C. (2018): What Makes a Quality Journal? Experimental Psychology. doi:10.1027/1618-3169/a000426
  127. Tennant JP. (2018): The state of the art in peer review. FEMS Microbiology Letters. doi:10.1093/femsle/fny204
  128. Sauer S, Sülzenbrück S. (2018): Die Arbeitsweise der Forschung zu Zeiten von Digitalisierung und Reproduzierbarkeitskrise: Neue Methoden, alte Probleme. Arbeitswelten der Zukunft. doi:10.1007/978-3-658-23397-6_11
  129. Zhang J, Jin B, Sha J, Chen Y, Zhang Y. (2022): SentenceLDA- and ConNetClus-based heterogeneous academic network analysis for publication ranking.Algorithms, 15(5), 159. https://doi.org/10.3390/a15050159
  130. Pojani D, Olvera-Garcia J, Sipe N, Byrne J. (2022): Research productivity of Australian planning academics: A bibliometric analysis.Journal of Planning Education and Research, 42(1):90–101. https://doi.org/10.1177/0739456×18804330
  131. Lauer G. (2022):Datentracking in den Wissenschaften. https://doi.org/10.5282/O-BIB/5796
  132. Bragg KM, Marchand GC, Hilpert JC, Cummings JL. (2022): Using bibliometrics to evaluate outcomes and influence of translational biomedical research centers.Journal of Clinical and Translational Science, 6(1), e72. https://doi.org/10.1017/cts.2021.863
  133. Villalobos D, Povedano-Montero J, Fernández S, López-Muñoz F, Pacios J, del Río D. (2022):Scientific research on verbal fluency tests: A bibliometric analysis.Journal of Neurolinguistics, 63, 101082. https://doi.org/10.1016/j.jneuroling.2022.101082
  134. Cuschieri S (2018): WASP: Is open access publishing the way forward? A review of the different ways in which research papers can be published. Early Human Development. DOI: 10.1016/j.earlhumdev.2018.02.017
  135. Forest C (2018): PubPeer contre “fake news” en Sciences? Ethics, Medicine and Public Health. DOI: 10.1016/j.jemep.2018.01.009
  136. Heise C (2018): Von Open Access zu Open Science. Lüneburg: meson press. ISBN: 978-3-95796-131-0
  137. Moher D, Naudet F, Cristea IA, Miedema F, Ioannidis JPA, Goodman SN (2018): Assessing scientists for hiring, promotion, and tenure. PLOS Biology. 16(3): e2004089. DOI: 10.1371/journal.pbio.2004089
  138. Brueckner M, Spencer R, Paull M (2018): Teaching for Tomorrow: Preparing Responsible Citizens. In: CSR, Sustainability, Ethics & Governance (pp 1–18). Springer International Publishing. DOI: 10.1007/978-3-319-71449-3_1
  139. Polonioli A (2017): A plea for minimally biased naturalistic philosophy. Springer Nature. DOI: 10.1007/s11229-017-1628-0
  140. Campbell H, & Gustafson P (2018): The world of research has gone berserk: modeling the consequences of requiring „greater statistical stringency“ for scientific publication. University of British Columbia. arXiv:1803.06053
  141. Daston L (2017): Science in the Archives: Pasts, Presents, Futures. University of Chicago Press
  142. Leydesdorff L, Wagner CS, Bornmann L (2018): Discontinuities in Citation Relations among Journals: Self-organized Criticality as a Model of Scientific Revolutions and Change. Scientometrics. 1-22. DOI:1007/s11192-018-2734-6
  143. Smith PL, Little DR (2018): Small is beautiful: In defense of the small-N design. Psychonomic Bulletin & Review. DOI: 10.3758/s13423-018-1451-8
  144. Are C, Yanala U, Malhotra G, Hall B, Smith L, Cummings C, Lecoq C, et al. (2018): Global curriculum in research literacy for the surgical oncologist. European Journal of Surgical Oncology. 44(1):31–42. DOI: 10.1016/j.ejso.2017.07.017
  145. Matlin SA, Metha G, Krief A, Hopf H, et al. (2017): The Scientific publishing conundrum: A perspective from chemistry. Beilstein Magazine. DOI: 10.3762/bmag.9
  146. Copenhaver A, Mitrofan O, Ferguson CJ (2017): For Video Games, Bad News Is Good News: News Reporting of Violent Video Game Studies. Cyberpsychology, Behavior, and Social Networking. 20(12): 735–739. DOI: 10.1089/cyber.2017.0364
  147. Campos LA, Feres Júnior J, Guarnieri F (2017): 50 Anos da Revista DADOS: Uma Análise Bibliométrica do seu Perfil Disciplinar e Temático. Dados. 60(3): 623–661. DOI: 10.1590/001152582017131
  148. Meggs SM, Greer AG., Bian H, Gustina C (2017): Identification of Academic Value for Interior Design Scholarship: A Survey of Journal Ranking. The International Journal of Design Education. 11(4):1–16. DOI: 10.18848/2325-128X/CGP/v11i04/1-16
  149. Buttliere B & Buder J (2017): Personalizing papers using Altmetrics: comparing paper “Quality” or “Impact” to person “Intelligence” or “Personality.” Scientometrics. 111(1):219–239. DOI: 10.1007/s11192-017-2246-9
  150. Meyer AD & Starbuck WH (2017): Mahalo: Sustaining JMI’s Positive Spirit. Journal of Management Inquiry. 27(2):154–157. DOI: 10.1177/1056492617726272
  151. Dumas-Mallet E (2017): Recherche Biomedicale et Journalisme en Situation d‘Incertitude – Validité des résultats de la recherche biomédicale et couverture médiatique. PhD thesis, Université de Bordeaux
  152. Wall T, Bellamy L, Evans V, Hopkins S (2017): Revisiting impact in the context of workplace research: a review and possible directions. Journal of Work-Applied Management. 9(2):95–109. DOI: 10.1108/JWAM-07-2017-0018
  153. Armstrong JS & Green KC (2017): Guidelines for Science: Evidence and Checklists. SSRN Electronic Journal. DOI: 10.2139/ssrn.3055874
  154. McKiernan EC (2017): Imagining the “open” university: Sharing scholarship to improve research and education. PLOS Biology. 15(10): e1002614. DOI: 10.1371/journal.pbio.1002614
  155. Chambers C (2017): The Seven Deadly Sins of Psychology: A Manifesto for Reforming the Culture of Scientific Practice. Princeton University Press. ISBN: 9781400884940
  156. Arsène S (2017): China Perspectives Amidst Scientific Change and Digitalisation. China Perspectives. 3:3-5. https://chinaperspectives.revues.org/7373
  157. Peters GJY, Kok G, Crutzen R, Sanderman R (2017): Health Psychology Bulletin: Improving Publication Practices to Accelerate Scientific Progress. Health Psychology Bulletin. 1(1):1–6. DOI: 10.5334/hpb.2
  158. Peters GJY (2017): Why not to use the journal impact factor as a criterion for the selection of junior researchers: A comment on Bornmann and Williams (2017). Journal of Informetrics. 11(3): 888–891. DOI: 10.1016/j.joi.2017.08.001
  159. Reider B (2017): Brace for Impact. The American Journal of Sports Medicine. 45(10): 2213–2216. DOI: 10.1177/0363546517721707
  160. Eve MP & Priego E (2017): Who is Actually Harmed by Predatory Publishers? tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society. 15(2): 755–770
  161. Greenblatt DJ & Shader RI (2017): The Impact Non-Factor. Journal of Clinical Psychopharmacology. 37(4): 389–390. DOI: 10.1097/JCP.0000000000000743
  162. Katz Y, Matter U (2017): On the Biomedical Elite: Inequality and Stasis in Scientific Knowledge Production. Berkman Klein Center for Internet & Society Research Publication. https://dash.harvard.edu/handle/1/33373356
  163. Tsimilli-Michael M & Haldimann P (2017): Sustainability of photosynthesis research–when research is impeded by the cults of audit and management. Photosynthetica. 55(2): 391–400. DOI: 10.1007/s11099-017-0686-3
  164. Laman JD, Kooistra SM, Clausen BE (2017): Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models. Inflammation (pp. 1–17). Springer New York. DOI: 10.1007/978-1-4939-6786-5_1
  165. Siler K, Strang D (2016): Peer Review and Scholarly Originality. Science, Technology & Human Values. 42(1):29–61. DOI: 10.1177/0162243916656919
  166. Fernandez-Rios L (2016): The rate of impact and the future of academic journals. The risk of pathologization. Innovacion educativa. 16(72).
  167. Carey RM (2016): Quantifying Scientific Merit. Circulation Research. 119(12): 1273–1275. DOI: 10.1161/CIRCRESAHA.116.309883
  168. Hassmén P, Keegan R, Piggott D (2016): Planning a Post-revolutionary World. In: Rethinking Sport and Exercise Psychology Research (pp. 243–276). Palgrave Macmillan, London. DOI: 10.1057/978-1-137-48338-6_10
  169. Abele-Brehm AE, Bühner M (2016): Wer soll die Professur bekommen? Psychologische Rundschau. 67(4):250–261. DOI: 10.1026/0033-3042/a000335
  170. Wolf B, Szerencsits M, Heß J, Gaus H, Müller C, Stockmann R (2016): Weiterentwicklung und Erprobung eines Konzeptes zur Dokumentation und Evaluierung von Leistungen der Agrarforschung für Praxis und Gesellschaft. Project report. Center for evaluation
  171. Grigston J & Mudrak B (2016): The State of Authorship: Maximizing Impact with the Time and Money You Spend. American Journal Experts. https://www.aje.com/en/arc/dist/docs/AJE-State-of-Authorship.pdf
  172. Kliegl R (2016): A Vision of Scientific Communication. In: Weingart P & Taubert N (Eds.): Wissenschaftliches Publizieren. Berlin, Boston: De Gruyter. https://www.degruyter.com/view/books/9783110448115/9783110448115-011/9783110448115-011.x
  173. Bambey D (2016): Fachliche Publikationskulturen und Open Access. Fächerübergreifende Entwicklungstendenzen und Spezifika der Erziehungswissenschaft und Bildungsforschung. PhD Thesis. Technical University Darmstadt. https://tuprints.ulb.tu-darmstadt.de/5603/
  174. Herb U (2016): Altmetrics zwischen Revolution und Dienstleistung: Eine methodische und konzeptionelle Kritik. Scinoptica. https://www.scinoptica.com/2016/11/altmetrics-zwischen-revolution-und-dienstleistung%e2%80%af-eine-methodische-und-konzeptionelle-kritik/
  175. Jessie D & Polly T (2016): Being a Scholar in the Digital Era: Transforming Scholarly Practice for the Public Good. Policy Press. ISBN: 978144732968
  176. Wimmer EN, Rethlefsen ML, Jarvis C, Shipman JP (2016): Understanding Research Impact: A Review of Existing and Emerging Tools for Nursing. Journal of Professional Nursing. 32(6): 401–411. DOI: 10.1016/j.profnurs.2016.05.005
  177. McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, McDougall D, et al. (2016): How open science helps researchers succeed. eLife, 5. DOI 10.7554/eLife.16800
  178. Lazic SE (2016): Experimental Design for Laboratory Biologists: Maximising Information and Improving Reproducibility. Cambridge University Press. ISBN: 978-1107424883
  179. Gent DH, Esker PD, Kriss AB (2018): Statistical Power in Plant Pathology Research. Phytopathology. 108(1): 15–22. DOI: 10.1094/PHYTO-03-17-0098-LE
  180. Maizey L (2016): Controlling for non-inhibitory processes in response inhibition research. PhD Thesis, Cardiff University
  181. Poirazi P, Belin D, Gräff J, Hanganu-Opatz IL, López-Bendito G (2016): Balancing family with a successful career in neuroscience. Eu J Neurosci. 44(2): 1797–1803. DOI: 10.1111/ejn.13280
  182. Meadows M, Dietz T, Vandermotten C (2016): A perspective on problems and prospects for academic publishing in Geography. Geo: Geography and Environment. 3(1): e00016. 10.1002/geo2.16
  183. Spezi V, Wakeling S, Pinfield S, Creaser C, Fry J, Willett P (2017): Open-access mega-journals. Journal of Documentation. 73(2): 263–283. DOI: 10.1108/JD-06-2016-0082
  184. Kulczycki E & Rozkosz EA (2017): Does an expert-based evaluation allow us to go beyond the Impact Factor? Experiences from building a ranking of national journals in Poland. Scientometrics. 111(1): 417–442. DOI: 10.1007/s11192-017-2261-x
  185. Taylor L & Willett P (2017): Comparison of US and UK rankings of LIS journals. Aslib Journal of Information Management. 69(3): 354–367. DOI: 10.1108/AJIM-08-2016-0136
  186. Amrhein V, Korner-Nievergelt F, Roth T (2017): The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research. PeerJ. 5: e3544. DOI: 10.7717/peerj.3544
  187. Munafò MR (2017): Promoting reproducibility in addiction research. Addiction. 112(9): 1519–1520. DOI: 10.1111/add.13853
  188. Hanel PHP, Haase J (2017): Predictors of Citation Rate in Psychology: Inconclusive Influence of Effect and Sample Size. Frontiers in Psychology, 8. DOI: 10.3389/fpsyg.2017.01160
  189. Song M, Kim S & Lee K (2017): Ensemble analysis of topical journal ranking in bioinformatics. Journal of the Association for Information Science and Technology. 68(6): 1564–1583. DOI: 10.1002/asi.23840
  190. van Mil JWF, Green J (2017): Citations and science. International Journal of Clinical Pharmacy. 39(5): 977–979. DOI: 10.1007/s11096-017-0539-y
  191. Molchanovа A, Chunikhina N, Strielkowski W (2017): Innovations and academic publishing: who will cast the first stone? Marketing and Management of Innovations. 4: 40–48. DOI: 10.21272/mmi.2017.4-03
  192. Are C, Yanala U, Malhotra G, Hall B, Smith L, Wyld L, Cummings C, et al. (2017): Global Curriculum in Research Literacy for the Surgical Oncologist. Annals of Surgical Oncology. 25(3): 604–616. DOI: 10.1245/s10434-017-6277-5
  193. Vogl S, Scherndl T, Kühberger A (2018): : a bibliometric analysis of psychological literature in the online media. Scientometrics. DOI: 10.1007/s11192-018-2727-5
  194. Polonioli A (2016): New Issues for New Methods: Ethical and Editorial Challenges for an Experimental Philosophy. Science and Engineering Ethics. 23(4): 1009–1034. DOI: 10.1007/s11948-016-9838-2
  195. Contreras FG, Buzeta LP, Pedraja-Rejas L (2015): Importancia de las publicaciones académicas: algunos problemas y recomendaciones a tener en cuenta. Idesia (Arica). 33(4): 111–119. DOI: 10.4067/S0718-34292015000400014
  196. Moore S, Neylon C, Paul Eve M, Paul O’Donnell D, Pattinson D (2017): “Excellence R Us”: university research and the fetishisation of excellence. Palgrave Communications. 3:16105. DOI: 10.1057/palcomms.2016.105
  197. Brueckner M, Spencer R, Paull M, Girardi A, Klom S (2017): Journeying towards responsible citizenship and sustainability. In: Arevalo JA, Mitchell SF (Eds): Handbook of Sustainability in Management Education. Edward Elgar Publishing. DOI: 10.4337/9781785361241.00026
  198. Smaldino PE, McElrath R (2016): The Natural Selection of Bad Science. arXiv:1605.09511 [physics.soc-ph]
  199. Reinhart A (2016): Statistics Done Wrong: The Woefully Complete Guide. No Starch Press, 176p, ISBN-13: 978-1593276201
  200. Poirazi P, Belin D, Gräff J, Hanganu-Opatz I, López-Bendito G (2016): Balancing family with a successful career in neuroscience. Eur J Neurosci. 2016 May 21. doi: 10.1111/ejn.13280
  201. Branch TA, Linnell AE (2016): What makes some fisheries references highly cited? Fish and Fisheries. doi: 10.1111/faf.12160
  202. Wimmer EN, Rethlefsen ML, Jarvis C, Shipman JP (2016): Understanding Research Impact: A Review of Existing and Emerging Tools for Nursing. J Prof Nurs. doi: 10.1016/j.profnurs.2016.05.005
  203. Schmidt N (2016): Tackling complexity in an interdisciplinary scholarly network: Requirements for semantic publishing. First Monday, 21(5). doi: 10.5210/fm.v21i5.6102
  204. Rentier B (2016): Open Science: a revolution in sight? Interlending & Document Supply. https://hdl.handle.net/2268/198865
  205. Huber WD (2016): Deep Impact: Impact Factors and Accounting Research. Int J Crit Acc 8(1), 56-67
  206. Polonioli, A. (2016): Metrics, flawed indicators, and the case of philosophy journals. Scientometrics 106 (1): 253–261 doi: 10.1007/s11192-016-1941-2
  207. Shanahan DR (2016): Auto-correlation of journal impact factor for consensus research reporting statements: a cohort study. PeerJ 4:e1887 doi: 10.7717/peerj.1887
  208. Meadows M, Dietz T, Vandermotten C (2016): A perspective on problems and prospects for academic publishing in Geography. Geo: Geography and Environment, 3(1): e00016, DOI: 10.1002/geo2.16
  209. Ralph P (2016): Practical Suggestions for Improving Scholarly Peer Review Quality and Reducing Cycle Times, Communications of the AIS, Volume 38, Article 13
  210. Tracz V, Lawrence R (2016): Towards an open science publishing platform. F1000Research, 5:130, DOI: 10.12688/f1000research.7968.1
  211. Carrier JG (2016): After the Crisis: Anthropological Thought, Neoliberalism and the Aftermath, (Routledge Studies in Anthropology), ISBN: 978-1138100855
  212. Starbuck WH (2016): 60th Anniversary Essay: How Journals Could Improve Research Practices in Social Science. Administrative Science Quarterly, DOI: 10.1177/0001839216629644
  213. Salager-Meyer F (2015): Peripheral scholarly journals: From locality to globality. Ibérica 30: 15-36
  214. Margraf J (2015): Zur Lage der Psychologie. Psychologische Rundschau. 66(1): 1–30. DOI: 10.1026/0033-3042/a000247
  215. Erikson MG, Erlandson P, Erikson M (2015): Academic misconduct in teaching portfolios. Int. J Acad Dev. 20(4): 345-354
  216. Jones RT (2015): Presidential address: Truth and error in scientific publishing. Journal of the Southern African Institute of Mining and Metallurgy, 115(9): 799-816
  217. Contreras FG, Buzeta LP, Pedraja-Rejas L (2015): Importancia de las publicaciones académicas: algunos problemas y recomendaciones a tener en cuenta. Idesia (Arica), 33: 111–119, DOI: 10.4067/S0718-34292015000400014
  218. Hernandez-Alvarez M, Gomez JM (2015): Citation Impact Categorization: For Scientific Literature. 2015 IEEE 18th International Conference on Computational Science and Engineering, DOI: 10.1109/cse.2015.21
  219. Nieminen P, Abass K, Vähäkanga K, Rautio A (2015): Statistically non-significant papers in environmental health studies included more outcome variables, Biomed Environ Sci, 28(9): 666-673, DOI: 10.3967/bes2015.093
  220. Casadevall A, Fang FC (2015): Impacted Science: Impact Is Not Importance. mBio, 6(5): e01593-15, DOI: 10.1128/mBio.01593-15
  221. Herb U (2015): Open Science in der Soziologie: Eine interdisziplinäre Bestandsaufnahme zur offenen Wissenschaft und eine Untersuchung ihrer Verbreitung in der Soziologie. Verlag Werner Hülsbusch, ISBN: 978-3-86488-083-4
  222. Bowen A, Casadevall A (2015): Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research. Proc Natl Acad Sci U S A, 112: 11335–11340, DOI: 10.1073/pnas.1504955112
  223. Probst TM, Hagger MS (2015): Advancing the Rigour and Integrity of Our Science: The Registered Reports Initiative. Stress Health, 31: 177–179, DOI: 10.1002/smi.2645
  224. Van Hezewijk R (2015): Old socks and the end of theory, ISTP 30th Biennual Conference, Coventry (UK)
  225. Eve MP (2015): Open Access publishing and scholarly communications in non-scientific disciplines. Online Inf Rev, 39: 717–732, DOI: 10.1108/OIR-04-2015-0103
  226. Louys J (2015): Palaeontologia Electronica in an increasingly open-access world, Palaeontologia Electronica, 18.2.2E
  227. Hunter P (2015): Web 2.0 and academic debate: Social media challenges traditions in scientific publishing. EMBO rep. 16: 787–790, DOI: 10.15252/embr.201540721
  228. Teixeira da Silva JA (2015): Issues in Science Publishing. What’s Hot and What’s not? KOME – An International Journal of Pure Communication Inquiry, 3(1): 81-88
  229. LeHuray A (2015): In response to Bales (2014). Integr Environ Assess Manag, 11: 185–187, DOI: 10.1002/ieam.1619
  230. Fahrenberg J (2015): Theoretische Psychologie: Eine Systematik der Kontroversen, Pabst Science Publ, ISBN: 978-3-95853-077-5, 832pp
  231. Wolf BM, Häring AM, Heß J (2015): Strategies towards Evaluation beyond Scientific Impact. Pathways not only for Agricultural Research. Organic Farming, 1(1): 3-18 , DOI: 10.12924/of2015.01010003
  232. Génova G, Astudillo H, Fraga A (2015): The Scientometric Bubble Considered Harmful. Sci Eng Ethics, 22: 227–235, DOI: 10.1007/s11948-015-9632-6
  233. Hery L, Weill C, Macé B, Benoist D, Boutet A, Defaux H, Nguyen C, Piñol-Domenech N, Fontaine-Martinelli F, Legendre O (2015): Médecins, bibliothécaires : pourquoi travailler ensemble? <hal-01115703>
  234. Margraf J (2015): Zur Lage der Psychologie. Psychologische Rundschau, 66: 1–30, DOI: 10.1026/0033-3042/a000247
  235. Jane EA (2015): Flaming? What flaming? The pitfalls and potentials of researching online hostility. Ethics Inf Technol. 17(1): 65-87, DOI: 10.1007/s10676-015-9362-0
  236. Madan CR (2015): Every scientist is a memory researcher: Suggestions for making research more memorable. F1000Research, 4:19, DOI: 10.12688/f1000research.6053.1
  237. Eslami M, Rickman A, Vaccaro K, Aleyasen A, Vuong A, Karahalios K, Hamilton K, Sandvig C (2015): “I always assumed that I wasn’t really that close to [her].”: Reasoning about Invisible Algorithms in News Feeds. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems – CHI ’15, DOI: 10.1145/2702123.2702556.
  238. Wolf B, Heß J (2015): Veränderungen der Forschungsevaluierung–Chancen für eine ökologische Agrarforschung mit gesellschaftlicher Wirkung. In: Häring AM, Hörning B, Hoffmann-Bahnsen R, Luley H, Luthardt V, Pape J, Trei G (eds.): Am Mut hängt der Erfolg – Rückblicke und Ausblicke auf die ökologische Landbewirtschaftung. Beiträge zur 13. Wissenschaftstagung Ökologischer Landbau, Hochschule für nachhaltige Entwicklung Eberswalde, 17.-20. März 2015, Verlag Dr. Köster, Berlin
  239. Campanario JM (2014): Analysis of the distribution of cited journals according to their positions in the h-core of citing journal listed in Journal Citation Reports. J Informetrics, 8: 534–545, DOI: 10.1016/j.joi.2014.04.007
  240. Engler JO, Husemann M (2014): Data constraints, bias and the (mis-)use of scientometrics for predicting academic success: A comment on van Dijk et al. Proceedings of Peerage of Science, DOI: 10.14726/procpos.2014.e8
  241. Black KJ (2014): F1000Research: Tics welcomes you to 21st century biomedical publishing. F1000Res. 3:272, DOI: 10.12688/f1000research.5664.1
  242. Liao H, Xiao R, Cimini G, Medo M (2014): Network-Driven Reputation in Online Scientific Communities. PLoS ONE 9(12):e112022, DOI: 10.1371/journal.pone.0112022
  243. Knudson D (2014): What is a kinesiology journal? 1 . Comprehensive Psychology, 3, Article 20, DOI: 10.2466/03.CP.3.20
  244. Coates H (2014): Ensuring research integrity: The role of data management in current crises, College & Research Libraries News, 75(11): 598-601
  245. Wáng YX, Arora R, Choi Y, Chung HW, Egorov VI, Frahm J, Kudo H, Kuyumcu S, Laurent S, Loffroy R, Maurea S, Morcos SK, Ni Y, Oei EH, Sabarudin A, Yu X (2014): Implications of Web of Science journal impact factor for scientific output evaluation in 16 institutions and investigators’ opinion, Quant Imaging Med Surg. 4(6):453-61. DOI : 10.3978/j.issn.2223-4292.2014.11.16.
  246. Fraley RC, Vazire S (2014): The N-Pact Factor: Evaluating the Quality of Empirical Journals with Respect to Sample Size and Statistical Power. PLoS ONE 9(10):e109019, DOI: 10.1371/journal.pone.0109019
  247. Hamilton K, Karahalios K, Sandvig C, Eslami M (2014): A path to understanding the effects of algorithm awareness. Proceedings of the extended abstracts of the 32nd annual ACM conference on Human factors in computing systems – CHI EA ’14
  248. Arlinghaus R (2014): Are Current Research Evaluation Metrics Causing a Tragedy of the Scientific Commons and the Extinction of University-Based Fisheries Programs? Fisheries 39(5): 212-215
  249. Gasparyan AY, Ayvazyan L, Akazhanov NA, Kitas GD (2014): Self-correction in biomedical publications and the scientific impact. Croat Med J. 55(1):61-72.
  250. Casadevall A, Fang FC (2014): Causes for the persistence of impact factor mania. MBio. 5(2):e00064-14
  251. Schmidt N (2014): Der Goldene Weg des Open Access zum funktionalen Publikationswesen. Handlungsoptionen für die Universität Wien, https://phaidra.univie.ac.at/o:337723
  252. Moustafa K (2014): The Disaster of the Impact Factor. Sci Eng Ethics doi: 10.1007/s11948-014-9517-0
  253. Jawaid SA (2014): Striving for improved visibility and increased citation through coverage by PubMed Central (PMC). Pak J Med Sci 30(1):1-2
  254. Casadevall A, Fang FC (2014): Specialized Science. Infect Immun DOI: 10.1128/IAI.01530-13
  255. Schreiber M (2014): Is it Possible to Measure Scientific Performance with the h-Index or with Another Variant from the Hirsch Index Zoo? JUnQ, 4, 1, 5–10
  256. Chinamasa E (2014): Journal impact factor: expired prescription for academics research output. International Journal of Advanced Research in Management and Social Sciences. 3(8): 1-16
  257. Ware JJ, Munafò MR (2014) Significance chasing in research practice: causes, consequences and possible solutions. Addiction, 110: 4–8, DOI: 10.1111/add.12673
  258. Chambers CD, Feredoes E, Muthukumaraswamy SD, Etchells P (2014): Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience 1(1): 4-17, DOI: 10.3934/Neuroscience2014.1.4
  259. Lidén K, & Eriksson G (2013): Archaeology vs. archaeological science: Do we have a case? Current Swedish Archaeology. 21:11–20.
  260. Larsson ÅM (2013): Science and prehistory: Are we mature enough to handle it? Curr Swed Arch. 21: 27-33
  261. Vaudano E (2013): The innovative medicines initiative: a public private partnership model to foster drug discovery. Comput Struct Biotechnol J, 6: 1–7, DOI: 10.5936/csbj.201303017
  262. Fear KM (2013): Measuring and anticipating the impact of data reuse. PhD thesis, University of Michigan
  263. Mani J, Makarevic J, Juengel E, Ackermann H, Nelson K, et al. (2013): I Publish in I Edit? – Do Editorial Board Members of Urologic Journals Preferentially Publish Their Own Scientific Work? PLoS ONE 8(12): e83709
  264. Park I-U, Peacey MW, Munafò MR (2013): Modelling the effects of subjective and objective decision making in scientific peer review. Nature 506(7486):93-96
  265. Vessuri H, Guedon J-C, Cetto AM (2013): Excellence or quality? Impact of the current competition regime on science and scientific publishing in Latin America and its implications for development. Current Sociology doi: 10.1177/0011392113512839
  266. Eisen JA, MacCallum CJ, Neylon C (2013): Expert Failure: Re-evaluating Research Assessment. PLoS Biol 11(10): e1001677
  267. Wellen R (2013): Open Access, Megajournals, and MOOCs: On the Political Economy of Academic Unbundling. SAGE Open 3
  268. Sproat R (2013): TALIP Perspectives. ACM Transactions on Asian Language Information Processing 12: 1–2
  269. Fabry, Götz, Fischer, Martin R. (2013): Die ZMA und der Impact Factor. GMS Z Med Ausbild 30(3):Doc39, doi: 10.3205/zma000882
  270. Herb U, Beucke D (2013): Die Zukunft der Impact-Messung. Social Media, Nutzung und Zitate im World Wide Web. Wissenschaftsmanagement. Zeitschrift für Innovation 19(4), 22–25

Colomb J, Reiter L, Blaszkiewicz J, Wessnitzer J, Brembs B. (2012): Open source tracking and analysis of adult Drosophila locomotion in Buridan’s paradigm with and without visual targets. PLoS One 7(8):e42247
Citations:

  1. Sanchez Marco SB, Buhl E, Firth R, Zhu B, Gainsborough M, Beleza-Meireles A, et al. (2022):Hereditary spastic paraparesis presenting as cerebral palsy due to ADD3 variant with mechanistic insight provided by a Drosophila γ-adducin model.Clinical Genetics, 102(6): 494–502. https://doi.org/10.1111/cge.14220
  2. Zárate RV, Hidalgo S, Navarro N, Molina-Mateo D, Arancibia D, Rojo-Cortés F, Oliva C, Andrés ME, Zamorano P, Campusano JM. (2022): An early disturbance in serotonergic neurotransmission contributes to the onset of Parkinsonian phenotypes in Drosophila melanogaster.Cells (Basel, Switzerland), 11(9): 1544. https://doi.org/10.3390/cells11091544
  3. Huda A, Omelchenko AA, Vaden TJ, Castaneda AN, Ni L. (2022): Responses of different Drosophila species to temperature changes.The Journal of Experimental Biology, 225(11). https://doi.org/10.1242/jeb.243708
  4. Kiral FR, Dutta SB, Linneweber GA, Hilgert S, Poppa C, Duch C, von Kleist M, Hassan BA, Hiesinger PR. (2021): Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Reports, 37(12), 110145. https://doi.org/10.1016/j.celrep.2021.110145
  5. Tainton-Heap LAL, Kirszenblat LC, Notaras ET, Grabowska MJ, Jeans R, Feng K, Shaw PJ, van Swinderen B. (2021): A Paradoxical Kind of Sleep in Drosophila melanogaster. Current Biology 31(3):578-590. doi:10.1016/j.cub.2020.10.081
  6. Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. (2021): Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives. Neuroscience & Biobehavioral Reviews 120:1-12. doi:10.1016/j.neubiorev.2020.11.014
  7. Han R, Wei T-M, Tseng S-C, Lo C-C. (2021): Characterizing approach behavior of Drosophila melanogaster in Buridan’s paradigm. PLoS ONE. doi:10.1371/journal.pone.0245990
  8. Rong H. (2021): Neural Coding and Organization Principles in the Drosophila Olfactory System. McKelvey School of Engineering Theses & Dissertations 613. https://openscholarship.wustl.edu/eng_etds/613
  9. Lence T. (2021): The role of m6A modification on mRNA processing in Drosophila melanogaster. Doctoral dissertation, Johannes Gutenberg-Universität Mainz. doi:10.25358/OPENSCIENCE-5570
  10. Hidalgo S, Campusano JM, Hodge JJL. (2021): Assessing olfactory, memory, social and circadian phenotypes associated with schizophrenia in a genetic model based on Rim. Transl Psychiatry11:292. doi:10.1038/s41398-021-01418-3
  11. Carvajal-Oliveros A, Domí­nguez-Baleón C, Zárate RV, et al. (2021): Nicotine suppresses Parkinson’s disease like phenotypes induced by Synphilin-1 overexpression in Drosophila melanogaster by increasing tyrosine hydroxylase and dopamine levels. Sci Rep 11:9579. doi:10.1038/s41598-021-88910-4
  12. Orabi I. (2021): Examining the Role of the Drosophila Melanogaster Unc13 Protein in Open Field Activity Using RNAi. Honors Theses 1696. https://egrove.olemiss.edu/honthesis/1696
  13. Ahronberg A, Scharf I. (2021): Social isolation interaction with the feeding regime differentially affects survival and results in a hump-shaped pattern in movement activity. Behavioural Processes 190:104460. doi:10.1016/j.beproc.2021.104460
  14. Ertekin D, Kirszenblat L, Faville R, van Swinderen B. (2020): Down-regulation of a cytokine secreted from peripheral fat bodies improves visual attention while reducing sleep in Drosophila. PLoS Biol. doi:10.1371/journal.pbio.3000548
  15. Linneweber GA, Andriatsilavo M, Dutta SB, Bengochea M, Hellbruegge L, Liu G, Ejsmont RK, Straw AD, Wernet M, Hiesinger PR, Hassan BA. (2020): A neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science 367(6482):1112-1119. American Association for the Advancement of Science (AAAS). doi:10.1126/science.aaw7182
  16. Leismann J, Spagnuolo M, Pradhan M, Wacheul L, Vu MA, Musheev M, Mier P, Andrade-Navarro MA, Graille M, Niehrs C, Lafontaine DL, Roignant J. (2020): The 18S ribosomal RNA m(6)A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO reports 21(7). EMBO. doi:10.15252/embr.201949443
  17. Hidalgo S, Castro C, Zárate RV, Valderrama BP, Hodge JJL, Campusano JM. (2020): The behavioral and neurochemical characterization of a Drosophila dysbindin mutant supports the contribution of serotonin to schizophrenia negative symptoms. Neurochemistry International 104753. doi:10.1016/j.neuint.2020.104753
  18. Takagi S, Benton R. (2020): Animal Behavior: A Neural Basis of Individuality. Current Biology 30(12):R710-R712. Elsevier BV. doi:10.1016/j.cub.2020.04.052
  19. Palazzo O, Raß M, Brembs B. (2020): Identification of FoxP circuits involved in locomotion and object fixation in Drosophila. Cold Spring Harbor Laboratory. doi:10.1101/2020.07.15.204677
  20. Melnattur K, Kirszenblat L, Morgan E, Militchin V, Sakran B, English D, Patel R, Chan D, van Swinderen B, Shaw PJ. (2020): A conserved role for sleep in supporting Spatial Learning in Drosophila. Sleep. doi:10.1093/sleep/zsaa197
  21. Zhuravlev AV, Vetrovoy OV, Ivanova PN, Savvateeva-Popova EV. (2020): 3-Hydroxykynurenine in Regulation of Drosophila Behavior: The Novel Mechanisms for Cardinal Phenotype Manifestations. Frontiers in Physiology 11. Frontiers Media SA. doi:10.3389/fphys.2020.00971
  22. Khakhalin AS, Lopez V III, Aizenman C. (2020): Behavioral assays to study neural development in Xenopus laevis tadpoles. Cold Spring Harbor Laboratory. doi:10.1101/2020.08.21.261669
  23. Kiral FR, Linneweber GA, Mathejczyk T, et al. (2020): Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring. Nat Commun 11:1325. doi:10.1038/s41467-020-14781-4
  24. Khakhalin AS. (2020): Analysis of Visual Collision Avoidance in Xenopus Tadpoles. Cold Spring Harb Protoc doi:10.1101/pdb.prot106914
  25. Scaplen KM, Mei NJ, Bounds HA, Song SL, Azanchi R, Kaun KR. (2019): Automated real-time quantification of group locomotor activity in Drosophila melanogaster. Sci Rep. doi:10.1038/s41598-019-40952-5
  26. Kirszenblat L, Yaun R, van Swinderen B. (2019): Visual experience drives sleep need in Drosophila. Sleep. doi:10.1093/sleep/zsz102
  27. Yen H-H, Han R, Lo C-C. (2019): Quantification of Visual Fixation Behavior and Spatial Orientation Memory in Drosophila melanogaster. Front Behav Neurosci. doi:10.3389/fnbeh.2019.00215
  28. Rohde PD, Østergaard S, Kristensen TN, Sørensen P, Loeschcke V, Mackay TFC, Sarup P. (2018): Functional Validation of Candidate Genes Detected by Genomic Feature Models. G3 Genes|Genomes|Genetics 8:1659-1668. doi:10.1534/g3.118.200082
  29. Ostrowski D, Salari A, Zars M, Zars T. (2018): A biphasic locomotor response to acute unsignaled high temperature exposure in Drosophila. PLoS ONE 13:e0198702. doi:s10.1371/journal.pone.0198702
  30. Weinrich TW, Hogg C, Jeffery G. (2018): The temporal sequence of improved mitochondrial function on the dynamics of respiration, mobility, and cognition in aged Drosophila. Neurobiology of Aging70:140-147. doi:10.1016/j.neurobiolaging.2018.06.010
  31. Karunanithi S, Troup M, van Swinderen B. (2018): Using Drosophila to Understand General Anesthesia: From Synapses to Behavior. Methods in Enzymology. pp. 153-176. Elsevier. doi:10.1016/bs.mie.2018.02.003
  32. Gilad T, Koren R, Moalem Y, Subach A, Scharf I. (2018): Effect of continuous and alternating episodes of starvation on behavior and reproduction in the red flour beetle. J Zool 305:213-222. doi:10.1111/jzo.12556
  33. Liu G, Nath T, Linneweber GA, Claeys A, Guo Z, et al. (2018): A simple computer vision pipeline reveals the effects of isolation on social interaction dynamics in Drosophila. PLoS Comput Biol 14:e1006410. doi:10.1371/journal.pcbi.1006410
  34. Kirszenblat L, Ertekin D, Goodsell J, Zhou Y, Shaw PJ, van Swinderen B. (2018): Sleep regulates visual selective attention in Drosophila. Journal of Experimental Biology, 221(24). doi:10.1242/jeb.191429
  35. Coelho DS, Schwartz S, Merino MM, Hauert B, Topfel B, Tieche C, Rhiner C, Moreno E. (2018): Culling Less Fit Neurons Protects against Amyloid-ß-Induced Brain Damage and Cognitive and Motor Decline. Cell Reports, 25(13), pp. 3661-3673.e3. Elsevier BV. doi:10.1016/j.celrep.2018.11.098
  36. Fuenzalida-Uribe N, Campusano JM (2018): Unveiling the Dual Role of the Dopaminergic System on Locomotion and the Innate Value for an Aversive Olfactory Stimulus in Drosophila. Neuroscience. 371:433–444. DOI: 10.1016/j.neuroscience.2017.12.032
  37. Karunanithi S, Troup M, van Swinderen B (2018): Using Drosophila to Understand General Anesthesia: From Synapses to Behavior. In: Eckenhoff RG, Dmochowski IJ (Eds.): Methods in Enzymology (pp. 153–176). Elsevier. DOI: 10.1016/bs.mie.2018.02.003
  38. Gilad T, Koren R, Moalem Y, Subach A, Scharf I (2018): Effect of continuous and alternating episodes of starvation on behavior and reproduction in the red flour beetle. Journal of Zoology. DOI: 10.1111/jzo.12556
  39. Rohde PD, Østergaard S, Kristensen TN, Sørensen P, Loeschcke V, Mackay TFC, Sarup P (2018): Functional Validation of Candidate Genes Detected by Genomic Feature Models. Genes|Genomes|Genetics. 3.200082.2018. DOI: 10.1534/g3.118.200082
  40. Scharf I, Wertheimer K-O, Xin JL, Gilad T, Goldenberg I, Subach A. (2017): Context-dependent effects of cold stress on behavioral, physiological, and life-history traits of the red flour beetle. Insect Science. doi:10.1111/1744-7917.12497
  41. Xiao C, Qiu S, Robertson RM (2017): Persistent One-Way Walking in a Circular Arena in Drosophila melanogaster Canton-S Strain. Behavior Genetics. 48(1):80–93. DOI: 10.1007/s10519-017-9881-z
  42. Ferguson L, Petty A, Rohrscheib C, Troup M, Kirszenblat L, Eyles DW, van Swinderen B (2017): Transient Dysregulation of Dopamine Signaling in a Developing Drosophila Arousal Circuit Permanently Impairs Behavioral Responsiveness in Adults. Frontiers in Psychiatry. 8. DOI: 10.3389/fpsyt.2017.00022
  43. Rose J, Cullen DA, Simpson SJ, Stevenson PA (2017): Born to win or bred to lose: aggressive and submissive behavioural profiles in crickets. Animal Behaviour. 123:441–450. DOI: 10.1016/j.anbehav.2016.11.021
  44. Kimura T (2017): Development of automatic tracking methods for the analysis of animal behaviors. PhD thesis, University of Hyogo
  45. Wexler Y, Scharf I (2017): Distinct effects of two separately applied stressors on behavior in the red flour beetle. Behavioural Processes. 145:86–92. DOI: 10.1016/j.beproc.2017.10.008
  46. Gris KV, Coutu J-P, Gris D (2017): Supervised and Unsupervised Learning Technology in the Study of Rodent Behavior. Frontiers in Behavioral Neuroscience. 11. DOI: https://dx.doi.org/10.3389/fnbeh.2017.00141
  47. Qiu S, Xiao C, Meldrum Robertson R (2017): Different age-dependent performance in Drosophila wild-type Canton-S and the white mutant w1118 flies. In: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 206:17–23. Elsevier BV. DOI: 10.1016/j.cbpa.2017.01.003
  48. Hidalgo S, Molina-Mateo D, Escobedo P, Zárate RV, Fritz E, Fierro A, Perez EG, et al. (2017): Characterization of a Novel Drosophila SERT Mutant: Insights on the Contribution of the Serotonin Neural System to Behaviors. ACS Chemical Neuroscience. 8(10):2168–2179. DOI: 10.1021/acschemneuro.7b00089
  49. Scharf I, Wertheimer KO, Xin JL, Gilad T, Goldenberg I, Subach A (2017): Context-dependent effects of cold stress on behavioral, physiological, and life-history traits of the red flour beetle. Insect Science. DOI: 10.1111/1744-7917.12497
  50. Corthals K, Heukamp AS, Kossen R, Großhennig I, Hahn N, Gras H, Göpfert MC, et al. (2017): Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster. Frontiers in Psychiatry. 8. DOI: 10.3389/fpsyt.2017.00113
  51. Geissmann Q, Garcia-Rodriguez L, Beckwith EJ, French AS, Jamasb AR, Gilestro GF (2017): Ethoscopes: An open platform for high-throughput ethomics. PLOS Biology. 15(10): e2003026. DOI: 10.1371/journal.pbio.2003026
  52. Wexler Y, Wertheimer KO, Subach A, Pruitt JN, Scharf I (2017): Mating alters the link between movement activity and pattern in the red flour beetle. Physiological Entomology: 42(4):299–306. DOI: 10.1111/phen.12195
  53. Molina-Mateo D, Fuenzalida-Uribe N, Hidalgo S, Molina-Fernández C, Abarca J, Zárate RV, Escandón M, et al. (2017): Characterization of a presymptomatic stage in a Drosophila Parkinson’s disease model: Unveiling dopaminergic compensatory mechanisms. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 1863(11):2882–2890. DOI: 10.1016/j.bbadis.2017.07.013
  54. Ehaideb SN, Wignall EA, Kasuya J, Evans WH, Iyengar A, Koerselman HL, Lilienthal AJ, et al. (2016): Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans. Annals of Clinical and Translational Neurology. 3(9):695–707. DOI: 10.1002/acn3.334
  55. Wexler Y, Subach A, Pruitt JN, Scharf I (2016): Behavioral repeatability of flour beetles before and after metamorphosis and throughout aging. Behav Ecol Sociobiol. DOI: 10.1007/s00265-016-2098-y
  56. Xiao C, Robertson RM (2015): Locomotion Induced by Spatial Restriction in Adult Drosophila. PLOS ONE 10(9):e0135825, DOI: 10.1371/journal.pone.0135825
  57. Girdhar K, Gruebele M, Chemla YR (2015): The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog. PLOS ONE 10(7):e0128668, DOI: 10.1371/journal.pone.0128668
  58. Freeman AAH, Dai H, Sanyal S (2015): Use of Drosophila to Study Restless Legs Syndrome. In: LeDoux MS (ed.): Movement Disorders: Genetics and Models, DOI: 10.1016/B978-0-12-405195-9.00078-0
  59. Giannoni-Guzmán MA, Avalos A, Marrero Perez J, Otero Loperena EJ, Kayim M, Medina JA, Massey SE, Kence M, Kence A, Giray T, Agosto-Rivera JL (2014): Measuring individual locomotor rhythms in honey bees, paper wasps and other similar-sized insects. J Exp Biol. 217: 1307–1315, DOI: 10.1242/jeb.096180
  60. Zenger B, Wetzel S, Duncan J (2014): Acquisition of High-Quality Digital Video of Drosophila Larval and Adult Behaviors from a Lateral Perspective. J Vis Exp. (92):e51981, DOI: 10.3791/51981.
  61. Kodama N, Kimura T, Yonemura S, Kaneda S, Ohashi M, Ikeno H (2014): Automated Analysis of Two-Dimensional Positions and Body Lengths of Earthworms (Oligochaeta); MimizuTrack. PLoS ONE 9(6):e97986, DOI: 10.1371/journal.pone.0097986
  62. Risse B, Berh D, Tao J, Jiang X, Klette R, Klämbt C (2013): Comparison of two 3D tracking paradigms for freely flying insects. EURASIP J Image Vid Proc 57
  63. Timmerman C, Suppiah S, Gurudatta BV, Yang J, Banerjee C, Sandstrom DJ, Corces VG, Sanyal S (2013): The Drosophila Transcription Factor Adf-1 (nalyot) Regulates Dendrite Growth by Controlling FasII and Staufen Expression Downstream of CaMKII and Neural Activity. J Neurosci. 33(29):11916-11931
  64. Raja S (2013): The neuronal basis of spontaneous flight behavior in Drosophila. PhD dissertation, FU Berlin

Pauly D, Chacana PA, Calzado EG, Brembs B, Schade R (2011): IgY technology: extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. J Vis Exp. (51), e3084, DOI: 10.3791/3084
Citations:

  1. Ephrem S, Tesfaye S, Tadesse F, Bilata T, Paeshuyse J. (2023): Production of Polyclonal Antibodies (IgY) Against Foot-and-Mouth Disease (Serotype: O, A and Sat-2) in Ethiopia by Using Layer Hens. Adv Dairy Sci Res, 1(1): 23-29.
  2. León-Núñez D, Vizcaíno-López MF, Escorcia M, Correa D, Pérez-Hernández E, Gómez-Chávez F. (2022): IgY antibodies as biotherapeutics in biomedicine.Antibodies (Basel, Switzerland), 11(4): 62.https://doi.org/10.3390/antib11040062
  3. Rohde C, Pfeiffer S, Baumgart S, Becker S, Krähling V. (2022): Ebola virus activates IRE1α-dependent XBP1u splicing.Viruses, 15(1): 122.https://doi.org/10.3390/v15010122
  4. Sahoo DK, Allenspach K, Mochel JP, Parker V, Rudinsky AJ, Winston JA, et al. (2022): Synbiotic-IgY therapy modulates the mucosal microbiome and inflammatory indices in dogs with chronic inflammatory enteropathy: A randomized, double-blind, placebo-controlled study.Veterinary Sciences, 10(1): 25.https://doi.org/10.3390/vetsci10010025
  5. Li K, Bermudez O, Forciniti D. (2022): Poly (ethylene) glycol (PEG) precipitation of glycosylated and non-glycosylated monoclonal antibodies.Process Biochemistry (Barking, London, England), 121: 563–574.https://doi.org/10.1016/j.procbio.2022.07.030
  6. El-Kafrawy SA, Odle A, Abbas AT, Hassan AM, Abdel-Dayem UA, Qureshi AK, et al. (2022):SARS-CoV-2-specific immunoglobulin Y antibodies are protective in infected mice.PLoS Pathogens, 18(9). https://doi.org/10.1371/journal.ppat.1010782
  7. Madera-Contreras AM, Solano-Texta R, Cisneros-Sarabia A, Bautista-Santos I, Vences-Velázquez G, Vences-Velázquez A, Cortés-Sarabia K. (2022): Optimized method for the extraction of contaminant-free IgY antibodies from egg yolk using PEG 6000.MethodsX, 9.https://doi.org/10.1016/j.mex.2022.101874
  8. Artman C, Idegwu N, Brumfield KD, Lai K, Hauta S, Falzarano D, Parreño V, Yuan L, Geyer JD, Goepp JG. (2022): Feasibility of polyclonal avian immunoglobulins (IgY) as prophylaxis against human Norovirus infection.Viruses, 14(11): 2371.https://doi.org/10.3390/v14112371
  9. Brumfield K, Seo H, Idegwu N, Artman C, Gonyar L, Nataro J, Zhang W, Sack D, Geyer J, Goepp J. (2022): Feasibility of avian antibodies as prophylaxis against enterotoxigenic escherichia coli colonization.Frontiers in Immunology, 13.https://doi.org/10.3389/fimmu.2022.1011200
  10. Otterbeck A, Skorup P, Hanslin K, Larsson A, Stålberg J, Hjelmqvist H, Lipcsey M. (2022):Intravenous anti-P. aeruginosa IgY-antibodies do not decrease pulmonary bacterial concentrations in a porcine model of ventilator-associated pneumonia.Innate Immunity, 28(7–8): 224–234.https://doi.org/10.1177/17534259221114217
  11. Wang J, Tan L, Bi W, Shen H, Li D, Yu Z, Gan N. (2022): Ultrasensitive microfluidic immunosensor with stir bar enrichment for point-of-care test of Staphylococcus aureus in foods triggered by DNAzyme-assisted click reaction. Food Chemistry, 378(132093), 132093. https://doi.org/10.1016/j.foodchem.2022.132093
  12. Khalaf HE, Al-Bouqaee H, Hwijeh M, Abbady AQ. (2022): Characterization of rabbit polyclonal antibody against camel recombinant nanobodies. Open Life Sciences17(1):659–675. https://doi.org/10.1515/biol-2022-0065
  13. Kupke A, Volz A, Dietzel E, Freudenstein A, Schmidt J, Shams-Eldin H, Jany S, et al. (2022):Protective CD8+ T cell response induced by Modified Vaccinia virus Ankara delivering Ebola virus nucleoprotein. Vaccines, 10(4), 533. https://doi.org/10.3390/vaccines10040533
  14. Magalhães ICL, Souza PFN, Marques LEC, Girão NM, Araújo FMC, Guedes MIF. (2022): New insights into the recombinant proteins and monoclonal antibodies employed to immunodiagnosis and control of Zika virus infection: A review. International Journal of Biological Macromolecules, 200, 139–150. https://doi.org/10.1016/j.ijbiomac.2021.12.196
  15. Quynh Lan TT, Kha TT. (2021): Investigation of two precipitation methods for extracting immunoglobulin Y (IgY) from egg yolks. Veterinary Science Research, 3(2). https://doi.org/10.30564/vsr.v3i2.4074
  16. Karachaliou CE, Vassilakopoulou V, Livaniou E. (2021): IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World Journal of Methodology, 11(5), 243–262. https://doi.org/10.5662/wjm.v11.i5.243
  17. Zhang L, Xiao Y, Ji L, Lin M, Zou Y, Zhao J, Zhao S. (2021): Potential therapeutic effects of egg yolk antibody (IgY) in Helicobacter pylori Infections─A review. Journal of Agricultural and Food Chemistry, 69(46):13691-13699. https://doi.org/10.1021/acs.jafc.1c05398
  18. Cortés-Sarabia K, Bautista-Santos I, Cisneros-Sarabia A, et al. (2021): Gardnerella vaginalis Vaginolysin (VLY)-Derived MAP8 Peptide (VLY-MAP8) Induced the Production of Egg Yolk IgY Antibodies that Inhibit Erythrocytes Lysis. Int J Pept Res Ther 27:413-420. doi:10.1007/s10989-020-10099-3
  19. Zhang L, Xiao Y, Ji L, Lin M, Zou Y, Zhao J, Zhao S. (2021): Potential Therapeutic Effects of Egg Yolk Antibody (IgY) in Helicobacter pylori Infections – A Review. J Agric Food Chem. doi:10.1021/acs.jafc.1c05398
  20. Redwan EM, Aljadawi AA, Uversky VN. (2021): Simple and efficient protocol for immunoglobulin Y purification from chicken egg yolk. Poultry Science 100(3):100956. doi:10.1016/j.psj.2020.12.053
  21. Otterbeck A, Skorup P, Hanslin K, Larsson A, Stålberg J, Hjelmqvist H, Lipcsey M. (2021): Bronchially instilled IgY-antibodies did not decrease pulmonary p. aeruginosa concentration in experimental porcine pneumonia. Acta Anaesthesiol Scand 65(5):656-663. doi:10.1111/aas.13784
  22. Vansofla AN, Nazarian S, Kordbache E, Fathi J. (2021): An IgG/IgY sandwich-ELISA for the detection of heat-labile enterotoxin B subunit of enterotoxigenic Escherichia coli. Gene Reports 23:101099. doi:10.1016/j.genrep.2021.101099
  23. Kanagasubbulakshmi S, Kadirvelu K. (2021): Paper-Based Simplified Visual Detection of Cry2Ab Insecticide from Transgenic Cottonseed Samples Using Integrated Quantum Dots-IgY Antibodies. Journal of Agricultural and Food Chemistry 69(14):4074-4080. doi:10.1021/acs.jafc.0c07180
  24. Artman C, Brumfield KD, Khanna S, Goepp J. (2021): Avian antibodies (IgY) targeting spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibit receptor binding and viral replication. PLoS ONE. doi:10.1371/journal.pone.0252399
  25. Do KLH, Vi TT, Le HT, Do TM, Do DK, Nguyen DD, Le DV, Nguyen PH, Nguyen T. (2021): The inhibitory effect of anti-urease IgY on Helicobacter pylori infection in Swiss albino mice. Pharm Sci Asia. doi:10.29090/psa.2021.03.19.123
  26. Rehan I, Elnagar A. (2021): Chicken Egg Yolk-IgY: Passive Immunization Promising Targeted Therapy of COVID-19 Pandemic. Journal of Applied Veterinary Sciences 6(2):67-91. doi:10.21608/javs.2021.164324
  27. Aston EJ, Mochly-Rosen D, Narayanan A, Egaña-Labrin S, Wallach MG, Gallardo RA. (2021): Hyperimmunized Chickens Produce Neutralizing Antibodies Against SARS-CoV-2. Research Square Platform LLC. doi:10.21203/rs.3.rs-515320/v1
  28. Choraria A, Somasundaram R, Janani S, Rajendran S, Oukkache N, Michael A. (2021): Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. Toxin Reviews. doi:10.1080/15569543.2021.1942063
  29. Matos AFIMD. (2021): Haemonchus contortus: I. atividade de Pleurotus ostreatus em diferentes estádios biológicos do nematoide; II. potencial do poli (Ácido lático-co-ácido glicólico) no nanoencapsulamento de IgY antiH. contortus. Doctoral dissertation, Universidade Federal de Santa Maria.
  30. Morgan PM, Zhang X, Schade R (2021): In: Zhang X-Y, Vieira-Pires R, Morgan PM, Schade R, (eds.). IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice Kapitel 5:59-71.
  31. ABDOLMALEKI F, ZAMANI Z, TALEBI S. (2020): Evaluation of Human Anti Igg Polyclonal Antibody Production Conjugated with Peroxidase in Egg Yolk. ijph. doi:10.18502/ijph.v48i7.2962
  32. Hatamzade Isfahani N, Rahimi S, Rasaee MJ, Karimi Torshizi MA, Zahraei Salehi T, Grimes JL. (2020): The effect of capsulated and noncapsulated egg-yolk-specific antibody to reduce colonization in the intestine of Salmonella enterica ssp. enterica serovar Infantis-challenged broiler chickens. Poultry Science. doi:10.1016/j.psj.2019.11.019
  33. Antenucci F, Arak H, Gao J, Allahgadry T, Thøfner I, Bojesen AM. (2020): Hydrostatic Filtration Enables Large-Scale Production of Outer Membrane Vesicles That Effectively Protect Chickens against Gallibacterium anatis. Vaccines 8(1):40. doi:10.3390/vaccines8010040
  34. Zhang Q, He D, Xu L, Ge S, Wang J, Zhang X. (2020): Generation and evaluation of anti-mouse IgG IgY as secondary antibody. Preparative Biochemistry & Biotechnology 50(8):788-793. doi:10.1080/10826068.2020.1737940
  35. Fathi J, Ebrahimi F, Nazarian S, Hajizade A, Malekzadegan Y, Abdi A. (2020): Production of egg yolk antibody (IgY) against shiga-like toxin (stx) and evaluation of its prophylaxis potency in mice. Microbial Pathogenesis 145:104199. doi:10.1016/j.micpath.2020.104199
  36. Constantin C, Neagu M, Supeanu T, Chiurciu V, Spandidos D. (2020): IgY – turning the page toward passive immunization in COVID-19 infection (Review). Experimental and Therapeutic Medicine 20(1):151-158. Spandidos Publications. doi:10.3892/etm.2020.8704
  37. Mondal B, Ramlal S, Setlem K, et al. (2020): A real-time immunocapture PCR (RT-IPCR) without interference of protein A for convenient detection of staphylococcal enterotoxin B from food and environmental samples. Ann Microbiol 70:25. doi:10.1186/s13213-020-01567-8
  38. Dahlman M. (2020): Implementation of the mille-feuille nanofilter paper in the virus removal filtration of IgY purified from chicken egg yolk (Dissertation). http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-410691
  39. Dos Anjos Oliveira TM, Bezerra FC, Gambarini ML, Teles AV, da Cunha PHJ, Brazil DS, … de Souza GRL. (2020): Immunoconjugates to Increase Photoinactivation of Bovine Alphaherpesvirus 1 in Semen. Veterinary Microbiology 108780. doi:10.1016/j.vetmic.2020.108780
  40. Iqbal A, Shah SRA, Çetingül İS, Gültepe EE, Qudoos A, Bayram İ. (2020): The Use of Egg Yolk Antibodies for Food Protection and Immunity. 3(1):65-74. https://dergipark.org.tr/en/pub/jasp/issue/56061/675360
  41. Zhang J, Li Hh, Chen Yf, et al. (2020): Microencapsulation of immunoglobulin Y: optimization with response surface morphology and controlled release during simulated gastrointestinal digestion. J. Zhejiang Univ. Sci. B 21:611-627. doi:10.1631/jzus.B2000172
  42. Ditty JM, Mebin GM. (2020): Effect of Streptococcal IgY on Quantity of Streptococcus mutans in High Caries Risk Children. Journal of Pharmaceutical Research International 32(16): 6-11.
  43. Pérez de la Lastra JM, Baca-González V, Asensio-Calavia P, González-Acosta S, Morales-delaNuez A. (2020): Can Immunization of Hens Provide Oral-Based Therapeutics against COVID-19? Vaccines8(3):486. MDPI AG. doi:10.3390/vaccines8030486
  44. Petrov K, Wierbowski BM, Liu J, Salic A. (2020): Distinct Cation Gradients Power Cholesterol Transport at Different Key Points in the Hedgehog Signaling Pathway. Developmental Cell 55(3):314-327, e7. Elsevier BV. doi:10.1016/j.devcel.2020.08.002
  45. Roushani M, Rahmati Z, Golchin M, et al. (2020): Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles. Microchim Acta 187:567. doi:10.1007/s00604-020-04547-6
  46. Kota RK, Reddy PN, Sreerama K. (2020): Application of IgY antibodies against staphylococcal protein A (SpA) of Staphylococcus aureus for detection and prophylactic functions. Appl Microbiol Biotechnol104:9387-9398. doi:10.1007/s00253-020-10912-5
  47. Li X, He P, Yu L, He Q, Jia C, Yang H, Lu M, Wei X, Zhao S. (2020): Production and characteristics of a novel chicken egg yolk antibody (IgY) against periodontitis-associated pathogens. Journal of Oral Microbiology 12(1). doi:10.1080/20002297.2020.1831374
  48. Lu Y, Wang Yajun, Zhang Z, Huang J, Yao M, Huang G, Ge Y, Zhang P, Huang H, Wang Yong, Li H, Wang W. (2020): Generation of Chicken IgY against SARS-COV-2 Spike Protein and Epitope Mapping. Journal of Immunology Research. doi:10.1155/2020/9465398
  49. Sivaprasad MS, Vinod VK, Jisna KS, Nair PM, Parmar N. (2020): Egg yolk antibodies (IgY) and its relevance in animal and human health-An updated review. JFAS 1:81-86. doi:10.51128/jfas.2020.a015
  50. Karamzadeh-dehaghani A, Towhidi A, Zhandi M, Mojgani N. (2020): Effect of oral administration of prepared egg yolk antibodies against enterotoxigenic E. coli K99 on growth and health Performance of Holstein suckling Calves. Animal Production 22(4):659-688.
  51. Kota RK, Srirama K, Reddy PN. (2019): IgY antibodies of chicken do not bind staphylococcal binder of immunoglobulin (Sbi) from Staphylococcus aureus. Ann Microbiol. doi:10.1007/s13213-019-1441-8
  52. Fernandes DC, Eto SF, Funnicelli MIG, Fernandes CC, Charlie-Silva I, Belo MAA, Pizauro JM. (2019): Immunoglobulin Y in the diagnosis of Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Aquaculture. doi:10.1016/j.aquaculture.2018.10.045
  53. Nie W, Zhao C, Guo X, Sun L, Meng T, Liu Y, Song X, Xu K, Wang J, Li J. (2019): Preparation and identification of chicken egg yolk immunoglobulins against human enterovirus 71 for diagnosis of hand-foot-and-mouth disease. Analytical Biochemistry. doi:10.1016/j.ab.2019.02.029
  54. Jahandar MH, Nassiri M, Nasiri K, Haghparast A. (2019): Production and Purification of Specific IgY Against InvG Protein of Salmonella typhimurium. Int J Infect. doi:10.5812/iji.87683
  55. Leiva CL, Cangelosi A, Mariconda V, Farace M, Geoghegan P, Brero L, Fernández-Miyakawa M, Chacana P. (2019): IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy. Toxicon. doi:10.1016/j.toxicon.2019.03.020
  56. Das S, Majumder S, Nag M, Kingston JJ. (2019): A sandwich duplex immuno PCR for rapid and sensitive identification of Clostridium perfringens alpha and enterotoxin. Anaerobe. doi:10.1016/j.anaerobe.2019.03.015
  57. Kowalczyk J, Smialek M, Tykałowski B, Dziewulska D, Stenzel T, Koncicki A. (2019): Field evaluation of maternal antibody transfer from breeder turkey hens to egg yolks, egg whites, and poults. Poultry Science. doi:10.3382/ps/pez126
  58. Otterbeck A, Hanslin K, Lantz EL, Larsson A, Stålberg J, Lipcsey M. (2019): Inhalation of specific anti-Pseudomonas aeruginosa IgY antibodies transiently decreases P. aeruginosa colonization of the airway in mechanically ventilated piglets. ICMx. doi:10.1186/s40635-019-0246-1
  59. Silva R de O e, Almeida MEM de, Marialva EF, Balieiro AA da S, Castro DP de, Rios-Velasquez CM, Mariúba LAM, Pessoa FAC. (2019): Chicken eggs as a surveillance tool for malaria and leishmaniasis vector presence. Rev Soc Bras Med Trop. doi:10.1590/0037-8682-0415-2018
  60. Pereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF. (2019): Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International Immunopharmacology. doi:10.1016/j.intimp.2019.05.015
  61. Santiago-Martínez MG, Marín-Hernández Á, Gallardo-Pérez JC, Yoval-Sánchez B, Feregrino-Mondragón RD, Rodríguez-Zavala JS, Pardo JP, Moreno-Sánchez R, Jasso-Chávez R. (2019): FruBPase II and ADP-PFK1 are involved in the modulation of carbon flow in the metabolism of carbohydrates in Methanosarcina acetivorans. Archives of Biochemistry and Biophysics. doi:10.1016/j.abb.2019.05.012
  62. Thirumalai D, Visaga Ambi S, Vieira-Pires RS, Xiaoying Z, Sekaran S, Krishnan U. (2019): Chicken egg yolk antibody (IgY) as diagnostics and therapeutics in parasitic infections – A review. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2019.06.118
  63. Tran TV, Do BN, Nguyen TPT, Tran TT, Tran SC, Nguyen BV, Nguyen CV, Le HQ. (2019): Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. F1000Res. doi:10.12688/f1000research.19643.2
  64. Eto SF, Fernandes DC, Yunis-Aguinaga J, Claudiano G da S, Shimada MT, Salvador R, de Moraes FR, de Moraes JRE. (2019): Characterization and production of IgY antibodies anti-Photobacterium damselae subsp. piscicida: Therapeutic and prophylactic use in Rachycentron canadum. Aquaculture. doi:10.1016/j.aquaculture.2019.734424
  65. Tran TV, Do BN, Nguyen TPT, Tran  TT, Tran SC, Van Nguyen B, Van Nguyen C, Le HQ. (2019):Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. F1000Research, 8, 1042. https://doi.org/10.12688/f1000research.19643.1
  66. Sushma U, Srivastava AK, Krishnan MH. (2019): Melamine Detection in Food matrices employing Chicken Antibody (IgY): A Comparison between Colorimetric and Chemiluminescent Methods. CAC. doi:10.2174/1573411015666181205120323
  67. Afandi A, Dogruman Al F. (2019): Investigation of the effectiveness of IgY antibodies obtained from chickens where immunized with Streptococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa by ELISA. Turk Hij Den Biyol Derg 76(4):379-390. doi:10.5505/turkhijyen.2019.67366
  68. Wang N, Xu Q, Liu Y, Jin Y, Harlina PW, Ma M. (2018): Highly efficient extraction and purification of low-density lipoprotein from hen egg yolk. Poultry Science 97:2230-2238. doi:10.3382/ps/pey059
  69. PURNAMA SUCI I. (2018): PURIFIKASI IMUNOGLOBULIN YOLK (IgY) DARI TELUR AYAM HASIL VAKSINASI DENGAN ANTIGEN Plasmodium falciparum LACTATE DEHYDROGENASE (pfLDH) MENGGUNAKAN POLYETHYLENE GLYCOL (PEG). S1 thesis, Universitas Mataram.
  70. Sun L, Li M, Fei D, Diao Q, Wang J, Li L, Ma M. (2018): Preparation and Application of Egg Yolk Antibodies Against Chinese Sacbrood Virus Infection. Front Microbiol 9. doi:10.3389/fmicb.2018.01814
  71. Aradhya S, Reddy P, Ramlal S, Nagaraj S, Mondal B, Murali HS. (2018): Development and Evaluation of IgY Immunocapture PCR for Detection of Enteropathogenic E. coli Devoid of Protein A Interference. J Pure Appl Microbiol. doi:10.22207/jpam.12.3.09
  72. Bayat M, Khabiri A, Hemati B. (2018): Development of IgY-Based Sandwich ELISA as a Robust Tool for Rapid Detection and Discrimination of Toxigenic Vibrio cholerae. Canadian Journal of Infectious Diseases and Medical Microbiology. doi:10.1155/2018/4032531
  73. Budama-Kilinc Y, Cakir-Koc R, Ozdemir B, Kaya Z, Badur S. (2018): Production and characterization of a conserved M2e peptide-based specific IgY antibody: evaluation of the diagnostic potential via conjugation with latex nanoparticles. Preparative Biochemistry & Biotechnology. doi:10.1080/10826068.2018.1525564
  74. Sheng L, He Z, Liu Y, Ma M, Cai Z (2018): Mass spectrometry characterization for N -glycosylation of immunoglobulin Y from hen egg yolk. International Journal of Biological Macromolecules. 108:277–283. DOI: 10.1016/j.ijbiomac.2017.12.012
  75. Kruse T, Biedenkopf N, Hertz EPT, Dietzel E, Stalmann G, López-Méndez B, Davey NE, et al. (2018): The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. Molecular Cell. 69(1):136–145. DOI: 10.1016/j.molcel.2017.11.034
  76. Akbari MR, Ahmadi A, Mirkalantari S, Salimian J (2018): Anti- Vibrio cholerae IgY Antibody Inhibits Mortality in Suckling Mice Model. Journal of the National Medical Association. 110(1): 84–87. DOI: 10.1016/j.jnma.2017.04.001
  77. Sheng L, He Z, Chen J, Liu Y, Ma M, Cai Z (2017): The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk. International Journal of Biological Macromolecules. 96: 129–136. DOI: 10.1016/j.ijbiomac.2016.12.043
  78. Nagaraj S, Ramlal S, Kingston J, Batra HV (2016): Development of IgY based sandwich ELISA for the detection of staphylococcal enterotoxin G (SEG), an egc toxin. International Journal of Food Microbiology. 237:136–141. DOI: 10.1016/j.ijfoodmicro.2016.08.009
  79. Zhai Y, Qu X, Pang B (2017): Preparation of high immunity yolk antibody against Vibrio parahemolyticus and comparison of effectiveness between different extraction methods. Journal of Jilin University Medicine Edition. 43(2): 441-445. DOI:13481/j.1671-587x.20170245
  80. da Rocha DG, Fernandez JH, de Almeida CMC, da Silva CL, Magnoli FC, da Silva OÉ, da Silva WD (2017): Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity. European Journal of Pharmaceutical Sciences. 106:404–412. DOI: 10.1016/j.ejps.2017.05.069
  81. Kousted TM, Kalliokoski O, Christensen SK, Winther JR, Hau J (2017): Exploring the antigenic response to multiplexed immunizations in a chicken model of antibody production. Heliyon. 3(3): e00267. DOI: 10.1016/j.heliyon.2017.e00267
  82. Ma, O’Kennedy (n.d.): Generation and optimisation of antibodies for biosensor applications. In: Pranjal C, Ester S: Nanobiosensors for Personalized and Onsite Biomedical Diagnosis (pp. 209–230). Institution of Engineering and Technology. DOI: 10.1049/PBHE001E_ch11
  83. Wang N, Xu Q, Liu Y, Jin Y, Harlina PW, Ma M (2018): Highly efficient extraction and purification of low-density lipoprotein from hen egg yolk. Poultry Science. DOI: 10.3382/ps/pey059
  84. Song D, Qu X, Liu Y, Li L, Yin D, Li J, Xu K, et al. (2017): A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies. Nanoscale Research Letters. 12(1). DOI: 10.1186/s11671-017-1941-z
  85. Liu Y, Zhao C, Fu K, Song X, Xu K, Wang J, Li J (2017): Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control. 80: 380–387. DOI: 10.1016/j.foodcont.2017.05.032
  86. Shetty P, D’Souza A, CP G (2017): Conjugation of Peroxidase from Brassica oleracea gongylodes for Use as a Label- Prospect of a Novel Enzyme Tag for Immunoassay Systems. International Journal of Applied Sciences and Biotechnology. 5(1): 59. DOI: 10.3126/ijasbt.v5i1.17009
  87. Hussain CNB (2017): Isolation and Estimation of Chicken Immunoglobulins (IgY) from Egg Yolk by Optimizing Polyethylene Glycol (PEG) Precipitation Method. Sch J Agric Vet Sci. 4(7):286-292. DOI: 10.21276/sjavs
  88. Hussain CNB, Rahman MC (2017): Comparative Study on Genetic Variations in Maternal Antibody (IgY) Transfer from Dam to Egg-yolk in Different Meat Lines of Chickens. American Scientific Research Journal for Engineering, Technology, and Sciences. 36(1):357-369
  89. Amro WA, Al-Qaisi W, Al-Razem F (2017): Production and purification of IgY antibodies from chicken egg yolk. Journal of Genetic Engineering and Biotechnology. DOI: 10.1016/j.jgeb.2017.10.003
  90. Lee W, Syed Atif A, Tan SC, Leow CH (2017): Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. Journal of Immunological Methods: 447: 71–85. DOI: 10.1016/j.jim.2017.05.001
  91. Cahyaningsih T, Hasmi Pasaribu F, Indrawati A (2017): Production of Specific IgY Staphylococcus aureus Origin from Staphylococcosis Case in Rabbits. Jurnal Ilmu Pertanian Indonesia. 22(1):1–5. DOI: 10.18343/jipi.22.1.1
  92. Li C, Ren H, Schade R, Zhang X (2017): A novel and efficient immunoglobulin Y extraction method using poloxamer-polyethylene glycol. Preparative Biochemistry and Biotechnology. 47(7):739–743. DOI: 10.1080/10826068.2017.1315598
  93. Solhi R, Alebouyeh M, Khafri A, Rezaeifard M, Aminian M (2017): In vitro evaluation of cross-strain inhibitory effects of IgY polyclonal antibody against H. pylori. Microbial Pathogenesis. 110: 682–687. DOI: 10.1016/j.micpath.2017.03.025
  94. Gaetani C, Ambrosi E, Ugo P, Moretto L (2017): Electrochemical Immunosensor for Detection of IgY in Food and Food Supplements. Chemosensors. 5(1): 10. DOI: 10.3390/chemosensors5010010
  95. Budama-Kilinc Y, Cakir-Koc R, Ozgun Eren G (2017): Synthesis and Characterization of Gold Nanoparticles-Antibody Enzyme Conjugate for use in Influenza a Spesific Nano-ELISA. Presented at the The 3rd World Congress on New Technologies. DOI: 10.11159/icnfa17.140
  96. Júnior AF, Santos JP, Bassi PB, Bittar JFF, Bittar ER (2017): IgY-Technology Applied to Studies of Toxoplasma gondii Infection. In: Toxoplasmosis. DOI: 10.5772/67997
  97. Li C, Zhang Y, Eremin SA, Yakup O, Yao G, Zhang X (2017): Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA. Food Chemistry. 227:48–54. DOI: 10.1016/j.foodchem.2017.01.058
  98. Sert M, Cakir Koc R, Budama Kilinc Y (2017): Novel Fitc-Labeled Igy Antibody: Fluorescence Imaging Toxoplasma Gondii In Vitro. Scientific Reports. 7(1). DOI: 10.1038/s41598-017-00930-1
  99. Łupicka-Słowik A, Psurski M, Grzywa R, Bobrek K, Smok P, Walczak M, Gaweł A, et al. (2017): Development of Adenosine Deaminase-Specific IgY Antibodies: Diagnostic and Inhibitory Application. Applied Biochemistry and Biotechnology. 184(4): 1358–1374. DOI: 10.1007/s12010-017-2626-x
  100. Toso RE, Neher BD, Alvarez Rubianes NJM, Toribio MS, Boeris MA, Gastaldo MF, et al. (2016): Obtaining, purification and characterization of specific immunoglobulin Y with diagnostic and prophylactic aims. Ciencia Veterinaria. 18(1): 49–58. DOI: 10.19137/cienvet2016-1814
  101. Brown CD (2016): Treatment and Prevention of Human Rotavirus (HRV) in Developing Countries: The Potential of Avian Immunoglobulin Y. Senior thesis, Liberty University
  102. Murilla G, Karanja W, Arusei J, Mdachi R (2016): Development of Immunoassays for Selected Antibiotics for the Detection and Monitoring of the Drug Residues in Livestock and Livestock Products. https://inis.iaea.org/Search/search.aspx?orig_q=RN:48018547
  103. Petrec O, Cătana N, Ghișe A, Stancu A (2016): Using of Pappenheim stain for highlighting the reovirus pathological lesions. Universitatea de Stiinte Agricole a Banatului Timisoara, Medicina Veterinara. 49(3):123–128. https://www.cabdirect.org/cabdirect/abstract/20163322213
  104. Borhani K, Mohabati Mobarez A, Khabiri AR, Behmanesh M, Khoramabadi N (2016): Inhibitory effects of rHP-NAP IgY against Helicobacter pylori attachment to AGS cell line. Microb Pathog. 97:231-235. doi: 10.1016/j.micpath.2016.06.004
  105. Teimoori S, Arimatsu Y, Laha T, Kaewkes S, Sereerak P, Sripa M, Tangkawattana S, Brindley PJ, Sripa B (2016): Chicken IgY-based coproantigen capture ELISA for diagnosis of human opisthorchiasis. Parasitol Int. pii: S1383-5769(16)30093-9. doi: 10.1016/j.parint.2015.10.011
  106. Agrawal R, Hirpurkar SD, Sannat C, Gupta AK (2016): Comparative study on immunoglobulin Y transfer from breeding hens to egg yolk and progeny chicks in different breeds of poultry. Vet World. 9(4):425-431. doi: 10.14202/vetworld.2016.425-431
  107. Korzyukov Y, Hetzel U, Kipar A, Vapalahti O, Hepojoki J (2016): Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor. PLoS ONE 11(6): e0158417. doi:10.1371/journal.pone.0158417
  108. Dietzel E, Schudt G, Krähling V, Matrosovich M, Becker S (2016): Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak. Journal of Virology. 91(2): e01913-16. DOI: 10.1128/JVI.01913-16
  109. Börstler J, Engel D, Petersen M, Poggensee C, Jansen S, Schmidt-Chanasit J, Lühken R (2016): Surveillance of maternal antibodies against West Nile virus in chicken eggs in South-West Germany. Trop Med Int Health. 21(5): 687-690. doi: 10.1111/tmi.12676
  110. Zhang X, Diraviyam T, Li X, Yao G, Michael A (2016): Preparation of chicken IgY against recombinant E2 protein of bovine viral diarrhea virus (BVDV) and development of ELISA and ICA for BVDV detection. Bioscience, Biotechnology, and Biochemistry. 80(12):2467–2472. DOI: 10.1080/09168451.2016.1217144
  111. Cakir-Koc R (2016): Production of anti-SAG1 IgY antibody against Toxoplasma gondii parasites and evaluation of antibody activity by ELISA method. Parasitol Res. [Epub ahead of print] PMID: 27079459
  112. Pauly D, Hanack K (2015): How to avoid pitfalls in antibody use. F1000Res. 4:691. doi: 10.12688/f1000research.6894.1
  113. Brandon DL, Korn AM (2015): Immunosorbent analysis of toxin contamination in milk and ground beef using IgY-based ELISA, Food and Agricultural Immunology. DOI: 10.1080/09540105.2015.1126809
  114. Krähling V, Becker D, Rohde C, Eickmann M, Eroglu Y, Herwig A, Kerber R, Kowalski K, Vergara-Alert J, Becker S; European Mobile Laboratory consortium (2015): Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med Microbiol Immunol, DOI: 10.1007/s00430-015-0438-6
  115. Gandhimathi C, Sentila R, Michael A (2015): Protection against experimental dental caries in rats with chicken egg yolk antibodies (IgY) generated against Streptococcus mutans. World Journal of Pharmaceutical Research, 4(6): 1564-1581, ISSN 2277– 7105
  116. Mudili V, Makam SS, Sundararaj N, Siddaiah C, Gupta VK, Rao PV (2015): A novel IgY-Aptamer hybrid system for cost-effective detection of SEB and its evaluation on food and clinical samples. Sci Rep 5:15151, DOI: 10.1038/srep15151
  117. Müller S, Schubert A, Zajac J, Dyck T, Oelkrug C (2015) IgY antibodies in human nutrition for disease prevention. Nutr J. 14: 109, DOI: 10.1186/s12937-015-0067-3
  118. Borhani K, Mobarez AM, Khabiri AR, Behmanesh M, Khoramabadi N (2015): Production of specific IgY Helicobacter pylori recombinant OipA protein and assessment of its inhibitory effects towards attachment of H. pylori to AGS cell line . Clin Exp Vaccine Res, 4: 177, DOI: 10.7774/cevr.2015.4.2.177
  119. Júnior WF, Cano R, Totola AH, Carvalho LM, Cerri MO, Coimbra JS, Carvalho GG, Carvalho BM (2015): Adsorption of immunoglobulin Y in supermacroporous continuous cryogel with immobilized Cu2+ ions. J Chromatography A, 1395: 16–22, DOI: 10.1016/j.chroma.2015.03.052
  120. Sampaio LC, Baldissera MD, Grando TH, Gressler LT, Capeleto Dde M, de Sa MF, de Jesus FP, dos Santos AG Jr, Anciuti AN, Colonetti K, Stainki DR, Monteiro SG (2014): Production, purification and therapeutic potential of egg yolk antibodies for treating Trypanosoma evansi infection. Vet Parasitol. 204: 96–103, DOI: 10.1016/j.vetpar.2014.05.032
  121. Tong C, Geng F, He Z, Cai Z, Ma M (2014): A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poult Sci. 94: 104–110, DOI: 10.3382/ps/peu005
  122. Gabriel F, Accoceberry I, Bessoule JJ, Salin B, Lucas-Guérin M, Manon S, Dementhon K, Noël T (2014): A Fox2-Dependent Fatty Acid ß-Oxidation Pathway Coexists Both in Peroxisomes and Mitochondria of the Ascomycete Yeast Candida lusitaniae. PLoS ONE 9(12):e114531, DOI: 10.1371/journal.pone.0114531
  123. Winkelbach A, Günzel D, Schulz C, Wuertz S (2015): Differences in IgY gut absorption in gastric rainbow trout (Oncorhynchus mykiss) and agastric common carp (Cyprinus carpio) assessed in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol, 167: 58–64, DOI: 10.1016/j.cbpc.2014.09.001
  124. Gandhimathi C, Michael A (2014): In vitro neutralization of virulence properties of Streptococcus mutans using chicken eggyolk antibodies (IgY). Int J Pharm Bio Sci, 5(2): 498-508
  125. Winkelbach A, Schade R, Schulz C, Wuertz S (2014): Comparison of oral, rectal and intraperitoneal administration of IgY antibodies in passive immunization of rainbow trout (Oncorhynchus mykiss). Aquacult Int 23: 427–438, DOI: 10.1007/s10499-014-9823-1
  126. Lee HY, Abeyrathne ED, Choi I, Suh JW, Ahn DU (2014): Sequential separation of immunoglobulin Y and phosvitin from chicken egg yolk without using organic solvents. Poult Sci. 93: 2668–2677, DOI: 10.3382/ps.2014-04093
  127. Dai YC, Zhang XF, Tan M, Huang P, Lei W, Fang H, Zhong W, Jiang X (2013): A dual chicken IgY against rotavirus and norovirus. Antiviral Res. 97: 293–300, DOI: 10.1016/j.antiviral.2012.12.011
  128. Santos FN, Brum BC, Cruz PB, Molinaro CM, Silva VL, Chaves SA de M (2014): Production and characterization of IgY against canine IgG: prospect of a new tool for the immunodiagnostic of canine diseases. Braz Arch Biol Tech, 57(4): 523-531
  129. Sampaio LCL, Baldissera MD, Sagrillo MB, Heres TDS, Oliveira CB, Stainki DR, Monteiro SG (2014): In vitro cytotoxicity and genotxicity of chicken egg yolk antibodies (IgY) against Trypanosoma evansi in human lymphocytes. Int J Pharm Pharm Sci, 6(3): 167-170
  130. Priyanka BS, Abhijith KS, Rastogi NK, Raghavarao KSMS, Thakur MS (2014): Integrated Approach for the Extraction and Purification of IgY from Chicken Egg Yolk. Sep Sci Techn 49:562–568
  131. Diraviyam T, Menaka M, Mahenthiran R, Michael A (2013): Generation and physicochemical characterization of chicken egg yolk antibodies (IgY) against Salmonella typhimurium. Int J Pharm Bio Sci 4(4): B343-B350
  132. Asemota H, Curtello S, Vaillant AAJ, Mohammed W, Vuma S, Rao AV C, Kurhade A, Kissoon S, Smikle M, Wisdom B, Kurhade G (2013): Purification of Avian IgY with Trichloroacetic Acid (TCA). J Chromat Separ Tech 04
  133. Reddy PK, Shekar A, Kingston JJ, Sripathy MH, Batra H. (2013): Evaluation of IgY capture ELISA for sensitive detection of Alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference. J Immunol Meth 391(1-2):31-38
  134. Bellingeri RV, Busso L, Alustiza FE, Picco NY, Molinero DP, Grosso MC, Motta CE, Vivas AB (2013): Characterization of egg yolk immunoglobulin (IgY) against enterotoxigenic Escherichia coli and evaluation of its effects on bovine intestinal cells. Afr J Microbiol Res 7(5): 398-405
  135. Heinrich D (2012): Substitution humaner Seren auf Basis der IgY-Technologie für die immunologische in vitro-Diagnostik. PhD Thesis, Hamburg University. https://ediss.sub.uni-hamburg.de/volltexte/2013/6315/
  136. Dai YC, Zhang XF, Tan M, Huang P, Lei W, Fang H, Zhong W, Jiang X (2012): A dual chicken IgY against rotavirus and norovirus. Antiviral Res. doi:pii: S0166-3542(12)00291-4. 10.1016/j.antiviral.2012.12.011. [Epub ahead of print]
  137. Tan SH, Mohamedali A, Kapur A, Baker MS (2012): Ultradepletion of Human Plasma using Chicken Antibodies: A Proof of Concept study. J Proteome Res. DOI: 10.1021/pr3007182
  138. Niederstadt L, Hohn O, Dorner BG, Schade R, Bannert N. (2012): Stimulation of IgY responses in gene gun immunized laying hens by combined administration of vector DNA coding for the target antigen Botulinum toxin A1 and for avian cytokine adjuvants. J Immunol Methods. 382(1-2):58-67
  139. Niederstadt L, Schade R (2012): IgY technology: What are polyclonal avian antibodies and what can they do? BioSpektrum 18(2): 174-177
  140. Tan SH, Mohamedali A, Kapur A, Lukjanenko L, Baker MS (2012): A novel, cost-effective and efficient chicken egg IgY purification procedure. J Immunol Methods. 380(1-2):73-76
  141. Niederstadt L (2012): Herstellung von DNA induzierten mono-/polyklonalen Antikörpern, zur Schnelldetektion von hochpathogenen viralen Erregern und bioterroristisch relevanten Toxinen. PhD thesis, Freie Universität Berlin, https://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000011103/Dissertation_Lars_Niederstadt.pdf

Brembs, B. (2011): Spontaneous decisions and operant conditioning in fruit flies. Behav Processes 87: 157-164
Citations:

  1. Tonna M, Ottoni R, Pellegrini C, Mora L, Gambolo L, Di Donna A, Parmigiani S, Marchesi C. (2022): The motor profile of obsessive-compulsive rituals: psychopathological and evolutionary implications.CNS Spectrums, 1–9. https://doi.org/10.1017/S1092852922000165
  2. Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. (2022): High-throughput automated methods for classical and operant conditioning of Drosophila larvae.ELife, 11. https://doi.org/10.7554/eLife.70015
  3. Gibbons M, Crump A, Barrett M, Sarlak S, Birch J, Chittka L. (2022): Can insects feel pain? A review of the neural and behavioural evidence. InAdvances in Insect Physiology. Elsevier.
  4. Ehweiner A. (2022): The neuronal basis of operant self-learning in Drosophila melanogaster, Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Universität Regensburg
  5. Yang C, Wang X, Chen Z, Zhang S, Zeng Z. (2022): Memristive circuit implementation of operant cascaded with classical conditioning.IEEE Transactions on Biomedical Circuits and Systems, 16(5): 926–938. https://doi.org/10.1109/TBCAS.2022.3204742
  6. Skora LI, Yeomans MR, Crombag HS, Scott RB. (2021): Evidence that instrumental conditioning requires conscious awareness in humans. Cognition 208(104546). doi:10.1016/j.cognition.2020.104546
  7. Klein KT, Croteau-Chonka EC, Narayan L, Winding M, Masson J-B, Zlatic M. (2021): Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae. Cold Spring Harbor Laboratory. doi:10.1101/2021.06.14.448341
  8. Klein KT. (2020): High-Throughput Operant Conditioning in Drosophila Larvae. Apollo – University of Cambridge Repository. doi:10.17863/CAM.47681
  9. Tonna M, Ponzi D, Palanza P, Marchesi C, Parmigiani S. (2020): Proximate and ultimate causes of ritual behavior. Behavioural Brain Research 112772.  doi:10.1016/j.bbr.2020.112772
  10. Kuroda T, Gilroy SP, Cançado CRX, Podlesnik CA. (2020): Effects of punishing target response during extinction on resurgence and renewal in zebrafish (Danio rerio). Behavioural Processes 178:104191. Elsevier BV. doi:10.1016/j.beproc.2020.104191
  11. Tonna M, Marchesi C, Parmigiani S. (2019): The biological origins of rituals: An interdisciplinary perspective. In Neuroscience & Biobehavioral Reviews 98, pp. 95-106. Elsevier BV. doi:10.1016/j.neubiorev.2018.12.031
  12. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  13. Cloninger CR, Cloninger KM, Zwir I, Keltikangas-Järvinen L. (2019): The complex genetics and biology of human temperament: a review of traditional concepts in relation to new molecular findings. Transl Psychiatry. doi:10.1038/s41398-019-0621-4
  14. Miletto Petrazzini ME, Pecunioso A, Dadda M, Agrillo C. (2019): The Impact of Brain Lateralization and Anxiety-Like Behaviour in an Extensive Operant Conditioning Task in Zebrafish (Danio rerio). Symmetry. doi:10.3390/sym11111395
  15. Shahsavari H, Zare Z, Parsa-Yekta Z, Griffiths P, Vaismoradi M. (2018): Learning Situations in Nursing Education: A Concept Analysis. Res Theory Nurs Pract 32:23-45. doi:10.1891/1541-6577.32.1.23
  16. Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, Romero-Zaliz R, Hintsanen M, Cloninger KM, Garcia D, Svrakic DM, Rozsa S, Martinez M, Lyytikäinen L-P, Giegling I, Kähönen M, Hernandez-Cuervo H, Seppälä I, Raitoharju E, de Erausquin GA, Raitakari O, Rujescu D, Postolache TT, Sung J, Keltikangas-Järvinen L, Lehtimäki T, Cloninger CR. (2018): Uncovering the complex genetics of human temperament. Mol Psychiatry. doi:10.1038/s41380-018-0264-5
  17. Shahsavari H, Zare Z, Parsa-Yekta Z, Griffiths P, Vaismoradi M (2018): Learning Situations in Nursing Education: A Concept Analysis. Research and Theory for Nursing Practice. 32(1):23–45. DOI: 10.1891/0000-000Y.32.1.23
  18. Waller BN (2017): The Injustice of Punishment. Routledge Research in Applied Ethics. 8. ISBN: 978-1138506398
  19. Schultheiss P, Buatois A, Avarguès-Weber A, Giurfa M (2017): Using virtual reality to study visual performances of honeybees. Current Opinion in Insect Science. 24:43–50. DOI: 10.1016/j.cois.2017.08.003
  20. Bartumeus F, Campos D, Ryu WS, Lloret-Cabot R, Méndez V, Catalan J (2016): Foraging success under uncertainty: search tradeoffs and optimal space use. Ecology Letters. 19(11):1299–1313. DOI: 10.1111/ele.12660
  21. Eilam D (2015): The cognitive roles of behavioral variability: idiosyncratic acts as the foundation of identity and as transitional, preparatory, and confirmatory phases. Neurosci Biobehav Rev. 49:55-70. doi: 10.1016/j.neubiorev.2014.11.023
  22. Peckmezian T, Taylor PW (2015): A virtual reality paradigm for the study of visually mediated behaviour and cognition in spiders. Anim Behav, 107: 87–95, DOI: 10.1016/j.anbehav.2015.06.018
  23. Weiss SJ & Rosales-Ruiz J (2014): Operant/Classical Conditioning: Comparisons, Intersections and Interactions: The 2014 Winter Conference on Animal Learning and Behavior Focus and Research Seminar Sessions. International Journal of Comparative Psychology. 27(4). https://escholarship.org/uc/item/4c46c9gg
  24. Bell HC (2014): Behavioral Variability in the Service of Constancy, International Journal of Comparative Psychology, 27(2): 338-360
  25. Yapici N, Zimmer M, Domingos AI (2014): Cellular and molecular basis of decision-making. EMBO Rep 15: 1023–1035. DOI: 10.15252/embr.201438993
  26. Haggard P (2014): “Free Will” In: Mele A (ed.): Surrounding Free Will, Philosophy, Psychology, Neuroscience, Oxford University Press. 145. ISBN: 9780199333950
  27. Burgos JE, García-Leal Ó (2015): Autoshaped choice in artificial neural networks: Implications for behavioral economics and neuroeconomics. Behav Processes 114: 63–71. DOI:10.1016/j.beproc.2015.01.010
  28. Stahlman W, Blaisdell AP. (2014): Selections on the Empirical and Theoretical Investigations of Behavioral Variability: An Introduction to the Special Issue. International Journal of Comparative Psychology, 27(2). https://escholarship.org/uc/item/21m8h2qp
  29. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  30. Méndez V, Campos D, Bartumeus F (2013): Biological Searches and Random Animal Motility. In: Stochastic Foundations in Movement Ecology. Springer Series in Synergetics, DOI: 10.1007/978-3-642-39010-4_9
  31. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  32. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058

Brembs, B. (2011): Towards a scientific concept of free will as a biological trait: spontaneous actions and decision-making in invertebrates. Proc. Roy. Soc. B. 278(1707): 930-939
Citations:

  1. Yurchenko SB. (2022): A systematic approach to brain dynamics: cognitive evolution theory of consciousness.Cognitive Neurodynamics. https://doi.org/10.1007/s11571-022-09863-6
  2. Jablonka E, Ginsburg S. (2022): Learning and the evolution of conscious agents.Biosemiotics, 15(3): 401–437. https://doi.org/10.1007/s12304-022-09501-y
  3. Kormas P, Moutzouri A, Protopapadakis ED. (2022): Implications of neuroplasticity to the philosophical debate of free will and determinism. InHandbook of Computational Neurodegeneration. Springer International Publishing.
  4. Yurchenko SB. (2022): From the origins to the stream of consciousness and its neural correlates.Frontiers in Integrative Neuroscience, 16: 928978. https://doi.org/10.3389/fnint.2022.928978
  5. Dresp-Langley B. (2022): From biological synapses to “intelligent” robots. Electronics, 11(5):707. https://doi.org/10.3390/electronics11050707
  6. Waller BN. (2022): The deep roots of American neoliberalism: A cultural, economic, and philosophical history. Routledge.
  7. Kane R, Sartorio C (2022): Do We Have Free Will?: A Debate. Do We Have Free Will?: A Debate, pp. 1-214
  8. Hutfluss A, Bermúdez-Cuamatzin E, Mouchet A, Briffa M, Slabbekoorn H, Dingemanse NJ. (2022):Male song stability shows cross-year repeatability but does not affect reproductive success in a wild passerine bird. The Journal of Animal Ecology, 91(7):1507–1520. https://doi.org/10.1111/1365-2656.13736
  9. Christensen JF, Farahi F, Vartanian M, Yazdi SHN. (2021): Choice hygiene for “consumer neuroscientists”? Ethical considerations and proposals for future endeavours. Frontiers in Neuroscience15, 612639. https://doi.org/10.3389/fnins.2021.612639
  10. Malatesti L, McMillan J. (2021): Some Methodological Issues in Neuroethics: The Case of Responsibility and Psychopathy. In Cambridge Quarterly of Healthcare Ethics 30(4):681–693). Cambridge University Press (CUP). https://doi.org/10.1017/s0963180121000153
  11. Osman M, Bechlivanidis C. (2021): Public perceptions of manipulations on behavior outside of awareness. Psychology of Consciousness (Washington, D.C.). https://doi.org/10.1037/cns0000308
  12. Martinig AR, Mathot KJ, Lane JE, Dantzer B, Boutin S. (2021): Selective disappearance does not underlie age-related changes in trait repeatability in red squirrels. Behavioral Ecology 32(2):306-315. doi:10.1093/beheco/araa136
  13. Armstrong L. (2021): Autonomy in political liberalism. PhD thesis, University of Glasgow.
  14. van Loon MS, Bovenkerk B. (2021): The ethics and mindedness of insects. In: Schübel H, Wallimann-Helmer I. Justice and food security in a changing climate. Kapitel 32. Wageningen Academic Publishers. doi:10.3920/978-90-8686-915-2
  15. Westfal M, Crusius J, Genschow O. (2021): Imitation and interindividual differences: Belief in free will is not related to automatic imitation. Acta Psychologica 219:103374. doi:10.1016/j.actpsy.2021.103374
  16. Yurchenko SB. (2021): Why the Quantum Brain? OBM Neurobiology 5(3):19. doi:10.21926/obm.neurobiol.2103103
  17. Perquin MN, Yang J, Teufel C, Sumner P, Hedge C, Bompas A. (2020): Inability to improve performance with control shows limited access to inner states. Journal of Experimental Psychology: General149(2):249-274. doi:10.1037/xge0000641
  18. Abe MS. (2020): Lévy walks emerging near a critical point. E-print bioRxiv 27. doi:10.1101/2020.01.27.920801
  19. Abe MS, Kasada M. (2020): Optimal Random Avoidance Strategy in Prey-Predator Interactions. Cold Spring Harbor Laboratory. doi:10.1101/2020.03.04.976076
  20. Vervoort L, Blusiewicz T. (2020): The CMT Model of Free Will. Dialogue 59(3):415-435. doi:10.1017/S0012217320000104
  21. Beliavsky V. (2020): On Freedom. Freedom, Responsibility, and Therapy 3-37. Springer International Publishing. doi:10.1007/978-3-030-41571-6_1
  22. Metten R. (2020): Ich will, also bin ich. Springer Berlin Heidelberg. doi:10.1007/978-3-662-59827-6
  23. Wilbur D. (2020): Free Will, Physics, and Personal Observation. What’s with Free Will?: Ethics and Religion after Neuroscience 6:82-91
  24. Peels R, de Ridder J, van Woudenberg R, (eds.). (2020): Scientific Challenges to Common Sense Philosophy. Routledge. doi:10.4324/9781351064224 
  25. Deli E. (2020): Can the Fermionic Mind Hypothesis (FMH) Explain Consciousness? The Physics of Selfhood. Act Nerv Super 62:35-47. doi:10.1007/s41470-020-00070-4
  26. Sendova-Franks AB, Worley A, Franks NR. (2020): Post-contact immobility and half-lives that save lives. Proceedings of the Royal Society B: Biological Sciences 287(1930):20200881. The Royal Society. doi:10.1098/rspb.2020.0881
  27. Westphal KR. (2020): Kant’s Critical Epistemology. Routledge. doi:10.4324/9781003082361
  28. Broom DM. (2020): Brain complexity, sentience and welfare. Animal Sentience 29(27). doi:10.51291/2377-7478.1613
  29. Chauhan MS. (2020): Biologically Inspired Intelligent Machine and Its Correlation to Free Will. Computational Methods and Data Engineering 285-292. Springer Singapore. doi:10.1007/978-981-15-6876-3_21
  30. Deli E. (2020): Thermodynamic Implications of the Fermionic Mind Hypothesis. Act Nerv Super 62:96-103. doi:10.1007/s41470-020-00074-0
  31. Gonzalez WJ, (Ed.). (2020): New Approaches to Scientific Realism. De Gruyter. doi:10.1515/9783110664737
  32. Abe MS. (2020): Functional advantages of Lévy walks emerging near a critical point. Proceedings of the National Academy of Sciences of the United States of America 117(39):24336-24344. doi:10.1073/pnas.2001548117
  33. Vervoort L, Blusiewicz T. (2020): Free will and (in)determinism in the brain: a case for naturalized philosophy. THEORIA 35(3):345-364. doi:10.1387/theoria.21302
  34. Waller BN. (2020): Free Will, Moral Responsibility, and the Desire to Be a God. Lexington Books.
  35. Travers E, Friedemann M, Haggard P. (2020): The Readiness Potential reflects planning-based expectation, not uncertainty, in the timing of action. Cognitive Neuroscience 12(1):14-27. doi:10.1080/17588928.2020.1824176
  36. Shine JM. (2020): The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics. Progress in Neurobiology 101951. doi:10.1016/j.pneurobio.2020.101951
  37. Henriksen R, Höglund A, Fogelholm J, Abbey-Lee R, Johnsson M, Dingemanse NJ, Wright D. (2020): Intra-Individual Behavioural Variability: A Trait under Genetic Control. International Journal of Molecular Sciences 21(21):8069. doi:10.3390/ijms21218069
  38. de Hevia EB. (2020): Ontologí­a postclásica para psiquiatrí­a. Doctoral dissertation, UNED, Universidad Nacional de Educación a Distancia (España).
  39. Schultz J, Frith CD. (2020): Animacy and the prediction of behaviour. PsyArXiv doi:10.31234/osf.io/2k4mj
  40. Budaev S, Kristiansen TS, Giske J, Eliassen S. (2020): Computational animal welfare: towards cognitive architecture models of animal sentience, emotion and wellbeing. R. Soc. Open Sci.7:201886. doi:10.1098/rsos.201886
  41. Cornwell TO, McCarthy ID, Snyder CRA, Biro PA. (2019): The influence of environmental gradients on individual behaviour: Individual plasticity is consistent across risk and temperature gradients. J Anim Ecol. doi:10.1111/1365-2656.12935
  42. Slors M. (2019): Two Distinctions That Help to Chart the Interplay Between Conscious and Unconscious Volition. Front Psychol. doi:10.3389/fpsyg.2019.00552
  43. Fisher DN, Pruitt JN. (2019): Insights from the study of complex systems for the ecology and evolution of animal populations. Current Zoology. doi:10.1093/cz/zoz016
  44. Budaev S, Jørgensen C, Mangel M, Eliassen S, Giske J. (2019): Decision-Making From the Animal Perspective: Bridging Ecology and Subjective Cognition. Front Ecol Evol. doi:10.3389/fevo.2019.00164
  45. Hills TT. (2019): Neurocognitive free will. Proc R Soc B. doi:10.1098/rspb.2019.0510
  46. Kokkoris MD, Baumeister RF, Kühnen U. (2019): Freeing or freezing decisions? Belief in free will and indecisiveness. Organizational Behavior and Human Decision Processes. doi:10.1016/j.obhdp.2019.08.002
  47. Kane R. (2019): DIMENSIONS OF RESPONSIBILITY: FREEDOM OF ACTION AND FREEDOM OF WILL. Soc Phil Pol. doi:10.1017/s0265052519000232
  48. Baddeley RJ, Franks NR, Hunt ER. (2019): Optimal foraging and the information theory of gambling. J R Soc Interface. doi:10.1098/rsif.2019.0162
  49. Franklin CE. (2019): THE HEART OF LIBERTARIANISM: FUNDAMENTALITY AND THE WILL. Soc Phil Pol. doi:10.1017/s0265052519000256
  50. Uithol S. (2019): Representaties in cognitieve neurowetenschap. Algemeen Nederlands Tijdschrift voor Wijsbegeerte. doi:10.5117/antw2019.3.006.uith
  51. Horváth G, Rodrí­guez-Ruiz G, Martí­n J, López P, Herczeg G. (2019): Maternal diet affects juvenile Carpetan rock lizard performance and personality. Ecol Evol. doi:10.1002/ece3.5882
  52. Ginsburg S, Jablonka E. (2019): The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness. MIT Press, Cambridge, MA. ISBN:9780262039307
  53. Jensen MJC. (2018): The antecedents of free will: The importance of concept heterogeneity inresearch interpretation and discussion. Dissertation, University of Skövde.
  54. Budaev S, Giske J, Eliassen S. (2018): AHA: A general cognitive architecture for Darwinian agents. Biologically Inspired Cognitive Architectures 25:51-57. doi:10.1016/j.bica.2018.07.009
  55. Müller T, Briegel HJ. (2018): A Stochastic Process Model for Free Agency under Indeterminism. Dialectica 72:219-252. doi:10.1111/1746-8361.12222
  56. Kessler NH. (2018): Posthumanism’s Material Problem. Ontology and Closeness in Human-Nature Relationships. doi:10.1007/978-3-319-99274-7_3
  57. Kiroi VN, Bakhtin OM, Minyaeva NR, Shaposhnikov DG, Aslanyan EV, Lazurenko DM. (2018): Electrographic Correlates of Predictions of the Time Course of Events. Neurosci Behav Physi. doi:10.1007/s11055-018-0660-y 
  58. Ray Xin L. (2018): Nature and source of animal spontaneous behaviors: Insights from psychobehavioral development and neuronal population dynamics in mice. doi:10.15102/1394.00000700
  59. Turri J (2018): Exceptionalist naturalism: Human agency and the causal order. Quarterly Journal of Experimental Psychology. 71(2):396–410. DOI: 10.1080/17470218.2016.1251472
  60. Hadley M (2018): A Deterministic Model of the Free Will Phenomenon. Journal of Consciousness Exploration & Research. 9(1): 19. https://wrap.warwick.ac.uk/98581/
  61. Meincke AS (2018): Bio-Agency and the Possibility of Artificial Agents. In: Christian A, Hommen D, Retzlaff N (Eds.): Philosophy of Science (pp. 65–93). Springer International Publishing. DOI: 10.1007/978-3-319-72577-2_5
  62. Lemos J (2018): A Pragmatic Approach to Libertarian Free Will. Routledge. ISBN: 9781351017251
  63. Cao Y, Li YH, Zou WJ, Li ZP, Shen Q, Liao SK, Ren JG, et al. (2018): Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon. Physical Review Letters. 120(14). DOI: 10.1103/PhysRevLett.120.140405
  64. Rigato J. (2017): Downward causation and supervenience: the non-reductionist’s extra argument for incompatibilism. Philosophical Explorations. doi:10.1080/13869795.2017.1390146
  65. Palacios AG, Escobar MJ, Céspedes E (2017): Authors’ Response: Is a Weak Notion of Representation not Compatible with a Contextualist and Enactivist Account of Perception? Constructivist Foundations. 13(1): 135–140.
  66. Chang C, Teo HY, Norma-Rashid Y, Li D (2017): Predator personality and prey behavioural predictability jointly determine foraging performance. Scientific Reports. 7: e40734. DOI: 10.1038/srep40734
  67. Westphal KR (2017): Kant, Causal Judgment & Locating The Purloined Letter. https://www.con-textoskantianos.net/index.php/revista/article/view/268
  68. Quellet J (2017): Le scepticisme à propos du libre arbitre. [Internet]. https://dokupdf.com/download/le-scepticisme-a-propos-du-libre-arbitre-_5a03479dd64ab2b9bdf836db_pdf
  69. Westphal K (2017): Grounds of Pragmatic Realism: Hegel’s Internal Critique and Reconstruction of Kant’s Critical Philosophy. BRILL. ISBN: 9789004360174
  70. Deli E (2017): Consciousness inspired AI system. https://aisb.org.uk/publications/aisbq/AISBQ145.pdf#page=6
  71. Feldman G (2017): Making sense of agency: Belief in free will as a unique and important construct. Social and Personality Psychology Compass. 11(1): e12293. DOI: 10.1111/spc3.12293
  72. Larrosa PNF, Ojea A, Ojea I, Molina VA, Zorrilla-Zubilete MA, Delorenzi A (2017): Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation. Neurobiology of Learning and Memory. 142: 135–145. DOI: 10.1016/j.nlm.2017.03.005
  73. Edelman S (2017): Language and other complex behaviors: Unifying characteristics, computational models, neural mechanisms. Language Sciences. 62:91–123. DOI: 10.1016/j.langsci.2017.04.003
  74. Kiroy VN, Bakhtin OM, Minyaeva N, Shaposhnikov D, Aslanyan EV, Lazurenko D (2017): Contingent negative variation during prospective activity. DOI: 7868/S00444677I7020083
  75. éli E, Tozzi A, Peters JF (2017): Relationships between short and fast brain timescales. Cognitive Neurodynamics. 11(6):539–552. DOI: 10.1007/s11571-017-9450-4
  76. Fukutomi M, Ogawa H (2017): Crickets alter wind-elicited escape strategies depending on acoustic context. Scientific Reports. 7(1). DOI: 10.1038/s41598-017-15276-x
  77. Perry CJ, Barron AB, Chittka L (2017): The frontiers of insect cognition. Current Opinion in Behavioral Sciences. 16:111–118. DOI: 10.1016/j.cobeha.2017.05.011
  78. Westphal KR (2017): How Kant Justifies Freedom of Agency (without Transcendental Idealism). European Journal of Philosophy. 25(4):1695–1717. DOI: 10.1111/ejop.12264
  79. Feldman G, Farh JL, Wong KFE (2017): Agency Beliefs Over Time and Across Cultures: Free Will Beliefs Predict Higher Job Satisfaction. Personality and Social Psychology Bulletin. 44(3):304–317. DOI: 10.1177/0146167217739261
  80. Feldman G, Chandrashekar SP (2017): Laypersons’ Beliefs and Intuitions About Free Will and Determinism. Social Psychological and Personality Science. DOI: 10.1177/1948550617713254
  81. Rigato J (2017): Downward causation and supervenience: the non-reductionist’s extra argument for incompatibilism. Philosophical Explorations. 1–16. DOI: 10.1080/13869795.2017.1390146
  82. van Hateren JH (2017): A Unifying Theory of Biological Function. Biological Theory. 12(2):112–126. DOI: 10.1007/s13752-017-0261-y
  83. Avila-Núñez JL, Naya M, Otero LD, Alonso-Amelot ME (2017): Sticky trap predation in the Neotropical resin bug Heniartes stali (Wygodzinsky) (Hemiptera: Reduviidae: Harpactorinae). Journal of Ethology. 35(2):213–219. DOI: 10.1007/s10164-017-0512-1
  84. Mele AR (2017): Aspects of Agency: Decisions, Abilities, Explanations, and Free Will. Oxford University Press. ISBN: 9780190659974
  85. Kabadayi C (2017): Planning and inhibition in corvids. PhD thesis, Lund University. https://lup.lub.lu.se/record/096effc9-8dbf-47f7-ac29-5199b82a42f9
  86. Waller BN (2017): The Injustice of Punishment. Routledge Research in Applied Ethics. 8. ISBN: 978-1138506398
  87. Heinze S, von Philipsborn AC (2017): Editorial overview: Recent advances in insect neuroethology: from sensory processing to circuits controlling internal states. Current Opinion in Insect Science. 24: 4-6. DOI: 10.1016/j.cois.2017.11.006
  88. Westphal KR (2017): Empiricism, Pragmatic Realism & the A Priori in Mind and the World Order. In: Sachs C Olen P (eds.) Contemporary Perspectives on C. I. Lewis: Pragmatism in Transition (London: Palgrave Macmillan, 2017)
  89. Kane R. (2016): The complex tapestry of free will: striving will, indeterminism and volitional streams. Synthese. doi:10.1007/s11229-016-1046-8
  90. Merker B (2016): Insects join the consciousness fray. Animal Sentience: An Interdisciplinary Journal on Animal Feeling. 1(9). https://animalstudiesrepository.org/animsent/vol1/iss9/4
  91. Bronfman ZZ, Ginsburg S (2016): The Evolutionary Origins of Consciousness: Suggesting a Transition Marker. Journal of Consciousness Studies. 23(9–10):7–34
  92. Der R, Martius G (2016): Dynamical self-consistency leads to behavioral development and emergent social interactions in robots. IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EPIROB), Link
  93. Kane R (2016): Moral Responsibility, Reactive Attitudes and Freedom of Will. The Journal of Ethics 20: 229–246
  94. Tomsic D (2016): Visual motion processing subserving behavior in crabs. Current Opinion in Neurobiology. 41:113–121. DOI: 10.1016/j.conb.2016.09.003
  95. Velasque M, Briffa M (2016): The opposite effects of routine metabolic rate and metabolic rate during startle responses on variation in the predictability of behaviour in hermit crabs. (2016). Behaviour. 153(13–14): 1545–1566. DOI: 10.1163/1568539X-00003371
  96. Roskies AL (2016): Decision-Making and Self-Governing Systems. Neuroethics. DOI: 10.1007/s12152-016-9280-9
  97. Rigato JM (2016): The Agent as Her Self: How Taking Agency Seriously Leads to Emergent Dualism. – Rivista Internazionale di Filosofia e Psicologia 7(1): 48–60 (Mimesis). doi: 10.4453/rifp.2016.0005
  98. Lavazza A (2016): Free Will and Neuroscience: From Explaining Freedom Away to New Ways of Operationalizing and Measuring It. Front Hum Neurosci. 10:262. doi: 10.3389/fnhum.2016.00262
  99. Feldman G, Wong KF, Baumeister RF (2016): Bad is freer than good: Positive-negative asymmetry in attributions of free will. Conscious Cogn. 42: 26-40. doi: 10.1016/j.concog.2016.03.005
  100. Feldman G, Chandrashekar SP, Wong KFE (2016): The freedom to excel: Belief in free will predicts better academic performance. Personality and Individual Differences 90: 377–383, doi:10.1016/j.paid.2015.11.043
  101. Kane R (2016): The complex tapestry of free will: striving will, indeterminism and volitional streams, Springer Science, DOI: 10.1007/s11229-016-1046-8
  102. Abed-Vieillard D, Cortot J (2016): When Choice Makes Sense: Menthol Influence on Mating, Oviposition and Fecundity in Drosophila melanogaster. Front Integr Neurosci. 10:5. DOI: 10.3389/fnint.2016.00005
  103. De Ridder D, Vanneste S, Gillett G, Manning P, Glue P, Langguth B (2016): Psychosurgery Reduces Uncertainty and Increases Free Will? A Review. Neuromodulation: Technology at the Neural Interface, DOI: 10.1111/ner.12405.
  104. Mohan A, De Ridder D, Vanneste S (2016): Graph theoretical analysis of brain connectivity in phantom sound perception. Sci. Rep. 6:19683, DOI: 10.1038/srep19683
  105. Lakhan R, Bokkon I, Szőke H (2015): Special Issue Transgenerational Epigenetic Mechanisms, Unconscious Creativity, and Sensory Deprivation: Semi-Free Will in the Extended Dual-aspect Monism Framework. Quantum Biosystems. 6(1): 33-53
  106. Marchetti M, Baralla F (2015): The diminished responsability at the Epimetheus’ time. Rassegna Italiana di Criminologia, 9 (2): 99-107
  107. Waller BN (2015): Restorative Free Will: Back to the Biological Base. Lexington Books, ISBN: 9781498522380, 328pp
  108. Osvath M (2015): Putting flexible animal prospection into context: escaping the theoretical box. Wiley Interdiscip Rev Cogn Sci, 7(1): 5–18, DOI: 10.1002/wcs.1372
  109. Briegel HJ, Müller T (2015): A Chance for Attributable Agency. Minds and Machines, 25: 261–279, DOI: 10.1007/s11023-015-9381-y
  110. Vimal RLP, Bókkon I, Császár N, Vas JP, Szoke H (2015): Transgenerational Epigenetic Mechanisms, Unconscious Creativity, and Sensory Deprivation: Semi-Free Will in the Extended Dual-aspect Monism Framework, Quantum Biosystems, 6(1): 33-53
  111. Kane R (2015): On the role of indeterminism in libertarian free will. Philosophical Explorations, DOI: 10.1080/13869795.2016.1085594
  112. Nadin M, Kurismaa A (2015): From Russia with Love / Russian experimental and empirical contributions informed by an anticipatory perspective. Int J Gen Sys. 44: 615–620, DOI: 10.1080/03081079.2015.1032074
  113. Der R, Martius G (2015): Novel plasticity rule can explain the development of sensorimotor intelligence. Proc Natl Acad Sci U S A, 112: E6224–E6232, DOI: 10.1073/pnas.1508400112
  114. Terao K, Matsumoto Y, Mizunami M (2015): Critical evidence for the prediction error theory in associative learning. Sci. Rep., 5, 8929, DOI: 10.1038/srep08929
  115. Lorange-Millette J (2015): Le problème philosophique des transferts épistémiques entre les sciences naturelles et les théories sociales et politiques, PhD dissertation, Université d’Ottawa
  116. Stahlman W, Blaisdell AP. (2014): Selections on the Empirical and Theoretical Investigations of Behavioral Variability: An Introduction to the Special Issue. International Journal of Comparative Psychology,27(2). https://escholarship.org/uc/item/21m8h2qp
  117. Freitas PM, Andrade F, Novais P (2014): Criminal Liability of Autonomous Agents: From the Unthinkable to the Plausible. In: AI Approaches to the Complexity of Legal Systems. Volume 8929 of the series Lecture Notes in Computer Science pp 145-156
  118. Mele AR (2014): Why science hasn’t disproved free will. Oxford University Press, 112p
  119. Misirlisoy E (2014): Intentional inhibition of human action, PhD dissertation, University College London
  120. Westphal KR (2014): Autonomy, Freedom & Embodiment: Hegel’s Critique of Contemporary Biologism. Hegel Bulletin, 35: 56–83, DOI: 10.1017/hgl.2014.4
  121. Rigato JM, Murakami M, Mainen Z (2014): Spontaneous Decisions and Free Will: Empirical Results and Philosophical Considerations. Cold Spring Harb Symp Quant Biol, 79: 177–184, DOI: 10.1101/sqb.2014.79.024810
  122. Van Hateren JH (2014): Active causation and the origin of meaning. Biol Cybern, 109: 33–46, DOI: 10.1007/s00422-014-0622-6
  123. Christensen K, Papavassiliou D, de Figueiredo A, Franks NR, Sendova-Franks AB (2014): Universality in ant behaviour. J R Soc Interface. 12(102):20140985, DOI: 10.1098/rsif.2014.0985
  124. Bode S, Murawski C, Soon CS, Bode P, Stahl J, Smith PL (2014): Demystifying “free will”: The role of contextual information and evidence accumulation for predictive brain activity. Neurosci Biobehav Rev, 47: 636–645, DOI: 10.1016/j.neubiorev.2014.10.017
  125. Neuringer A (2014): Operant Variability and the Evolution of Volition. International Journal of Comparative Psychology, 27(2). https://escholarship.org/uc/item/0s78k28c#author
  126. Van Hateren JH (2014): The origin of agency, consciousness, and free will. Phenom Cogn Sci, 14: 979–1000, DOI: 10.1007/s11097-014-9396-5
  127. Shields GS (2014): Neuroscience and Conscious Causation: Has Neuroscience Shown that We Cannot Control Our Own Actions? Rev Philos Psychol, 5: 565–582, DOI:10.1007/s13164-014-0200-9
  128. Palmer D (2014): Libertarian Free Will: Contemporary Debates, Oxford University Press, ISBN 978-0-19-986008-1
  129. Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J (2014) Memory beyond expression. J Physiol-Paris, 108: 307–322, DOI: 10.1016/j.jphysparis.2014.07.002
  130. Khakhalin,A.S., Koren,D., Gu,J., Xu,H. and Aizenman,C.D. (2014) Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles . European Journal of Neuroscience, 40, 2948–2962, DOI: 10.1111/ejn.12664
  131. Salvador,L.C.M., Bartumeus,F., Levin,S.A. and Ryu,W.S. (2014) Mechanistic analysis of the search behaviour of Caenorhabditis elegans. Journal of The Royal Society Interface, 11, 20131092–20131092, DOI: 10.1098/rsif.2013.1092
  132. Kane R (2014): II-Acting “of One”s Own Free Will’: Modern Reflections on an Ancient Philosophical Problem. Proceedings of the Aristotelian Society (Hardback), 114, 35–55, DOI10.1111/j.1467-9264.2014.00363.x
  133. Smiley J-P, Fernie S, Dainty A (2014): Understanding construction reform discourses. Construction Management and Economics, 32: 804–815, DOI: 10.1080/01446193.2014.909049
  134. Beran O (2014): Wittgensteinian Perspectives on the Turing Test. Studia Philosophica Estonica, 7: 35-57, DOI:10.12697/spe.2014.7.1.02
  135. Loram ID, van de Kamp C, Lakie M, Gollee H, Gawthrop PJ (2014): Does the motor system need intermittent control? Exerc Sport Sci Rev. 42(3): 117-125
  136. Gawthrop P, Loram I, Gollee H, Lakie M (2014): Intermittent control models of human standing: similarities and differences. Biol Cybern doi: 10.1007/s00422-014-0587-5
  137. Walter S (2014): Willusionism, epiphenomenalism, and the feeling of conscious will. Synthese DOI 10.1007/s11229-013-0393-y
  138. Salvador LC, Bartumeus F, Levin SA, Ryu WS (2014): Mechanistic analysis of the search behaviour of Caenorhabditis elegans. J R Soc Interface. 11(92):2013.1092
  139. Shaviro S (2014): The Universe of Things: On Speculative Realism (Posthumanities). University of Minnesota Press. ISBN: 978-0816689262
  140. Griffith M (2013): Free Will: The basics. Routledge. ISBN: 0415562198
  141. Bottini G, Sedda A, Ovadia D (2013): Passato presente e futuro delle neuroscienze e del diritto. Rassegna Italiana di Criminologia
  142. Briffa M (2013): Plastic proteans: reduced predictability in the face of predation risk in hermit crabs. Biol Lett 9(5):20130592
  143. Grandpierre A (2013): Biologically Organized Quantum Vacuum and the Cosmic Origin of Cellular Life. Phenomenology of Space and Time, DOI: 10.1007/978-3-319-02015-0_10
  144. de Ridder D, Verplaetse J, Vanneste S (2013): The predictive brain and the “free will” illusion. Front Psychol. 4, 131
  145. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  146. Walsh A (2013): “Criminological Theory: Assessing Philosophical Assumptions” Anderson Publishing, 224p, ISBN: 9781455775477
  147. Stahlman WD, Leising KJ, Garlick D, Blaisdel AP (2013): There Is Room for Conditioning in the Creative Process: Associative Learning and the Control of Behavioral Variability In: Vartanian O, Bristol AS, Kaufman JC (eds.) Neuroscience of Creativity MIT Press 272p ISBN 0262019582, 9780262019583, p45-67
  148. Biro PA, Adriaenssens B (2013): Predictability as a Personality Trait: Consistent Differences in Intraindividual Behavioral Variation. Amer. Nat. 182: 621–629
  149. Gelperin A (2013): Associative memory mechanisms in terrastrial slugs and snails. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p280-290
  150. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  151. Stamps JA, Saltz JB, Krishnan VV(2013): Genotypic differences in behavioural entropy: unpredictable genotypes are composed of unpredictable individuals. Anim Behav. 86(3): 641–649
  152. Bottini G, Sedda A, Ovadia D (2013): Past present and future of neuroscience and law. Ital. J. Criminol. 1/2013: 17-22
  153. Martius G, Der R, Ay N (2013): Information driven self-organization of complex robotic behaviors. PLoS One. 8(5):e63400
  154. Briffa M, Bridger D, Biro PA (2013): How does temperature affect behaviour? Multilevel analysis of plasticity, personality and predictability in hermit crabs. Anim Behav 86(1): 47–54
  155. Gomez-Marin, A. (2013): Tools, flies and what to do next. American Institute of Physics. AIP Conf. Proc. 1510: 120-123 doi:10.1063/1.4776508
  156. Wong KFE, Cheng C (2013): Predictable or Not? Individuals’ Risk Decisions Do Not Necessarily Predict Their Next Ones. PLoS ONE 8(2): e56811
  157. Frith C (2013): The psychology of volition. Exp Brain Res. 229(3): 289-299
  158. Lemos J (2013): Freedom, Responsibility, and Determinism: A Philosophical Dialogue. Hackett Publishing Co. ISBN-13: 978-1603849302, 120 pages
  159. Martius G, Der R, Ay N (2013): Information driven self-organization of complex robotic behaviors PLoS One. 8(5):e63400
  160. Radder H, Meynen G (2013): Does the brain “initiate” freely willed processes? A philosophy of science critique of Libet-type experiments and their interpretation. Theory & Psychology, 23(1): 3-21
  161. Nepomnyashchikh VA (2012): Variability in invertebrate behavior and the problem of free will. Zhurnal Obshchei Biologii 73(6): 435-441
  162. Grandpierre A, Kafatos M (2012): Biological Autonomy. Philosophy Study, 2(9): 631-649
  163. Warzecha AK, Rosner R, Grewe J (2012): Impact and sources of neuronal variability in the fly’s motion vision pathway. J Physiol – Paris DOI: 10.1016/j.jphysparis.2012.10.002
  164. Rigoni D, Kühn S, Gaudino G, Sartori G, Brass M (2012): Reducing self-control by weakening belief in free will. Conscious Cogn. 21(3):1482-1490
  165. Zhang S, Si A, Pahl M (2012): Visually guided decision making in foraging honeybees. Front Neurosci. 6:88
  166. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  167. Stamps JA, Briffa M, Biro PA (2012): Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim Behav. 83(6): 1325–1334
  168. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  169. Barham JA (2012): Normativity, agency, and life. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 43(1): 92–103
  170. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  171. Ebeling W, Feistel R (2011) Physics of Self-Organization and Evolution, WILEY-VCH, ISBN: 978-3-527-40963-1
  172. Ansorge U, Horstmann G, Scharlau I (2011): Top-down contingent feature-specific orienting with and without awareness of the visual input. Adv. Cogn. Psych. 7(1): 108-119
  173. de Sousa JC (2011): The uncertainty of free will and agent’s penal responsibility. Orbis: Revista Científica 2(3): 287-312
  174. Barham JA (2011): Teleological Realism in Biology, PhD Thesis, University of Notre Dame, USA.
  175. Mele AR (2011): Libertarianism and Human Agency. Phil Phen Res. 87 ( 1 ) 72-92 DOI: 10.1111/j.1933-1592.2011.00529.x
  176. Schüür F, Haggard P (2011): What are self-generated actions? Conscious Cogn. 20(4): 1697-1704
  177. Koukolík F (2011): Basics of cognitive, affective and social neuroscience. VI. Free will. Prakticky Lekar 91(6): 315-320
  178. Cobbe N (2011): Interspecies Mixtures and the Status of Humanity. In: Suarez A, Huarte J (eds.) Is this cell a human being? Springer, Berlin, Heidelberg. pp129-155, DOI: 10.1007/978-3-642-20772-3_9
  179. Chittka L, Skorupski P (2011): Information processing in miniature brains. Proc. Roy. Soc. B. 278(1707): 885-888

Brembs B.; Pauly D.; Schade R.; Mendoza E.; Pflüger J.; Rybak J.; Scharff C.; Zars T. (2010): The Drosophila FoxP gene is necessary for operant self-learning: implications for the evolutionary origins of language. Soc. Neurosci. Abstr., 704.7
Citations:

  1. Scharff C, Petri J (2011): Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos Trans R Soc Lond B Biol Sci. 366(1574):2124-2140

van Swinderen, B.; Brembs, B. (2010): Attention-like deficit and hyperactivity in a Drosophila memory mutant. J Neurosci. 30(3): 1003-1014
Citations:

  1. Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, et al. (2023): The translational genetics of ADHD and related phenotypes in model organisms.Neuroscience and Biobehavioral Reviews, 144(104949). https://doi.org/10.1016/j.neubiorev.2022.104949
  2. Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. (2023): From attention-deficit hyperactivity disorder to sporadic Alzheimer’s disease-Wnt/mTOR pathways hypothesis.Frontiers in Neuroscience, 17, 1104985. https://doi.org/10.3389/fnins.2023.1104985
  3. Philyaw TJ, Rothenfluh A, Titos I. (2022): The use of Drosophila to understand psychostimulant responses. Biomedicines, 10(1). https://doi.org/10.3390/biomedicines10010119
  4. Karam CS, Williams BL, Jones SK, et al. (2022): The Role of the Dopamine Transporter in the Effects of Amphetamine on Sleep and Sleep Architecture in Drosophila. In Neurochemical Research (Vol. 47, Issue 1, pp. 177–189).
  5. Karam, C. S., Williams, B. L., Jones, S. K., & Javitch, J. A. (2021). The Role of the Dopamine Transporter in the Effects of Amphetamine on Sleep and Sleep Architecture
  6. Hime GR, Stonehouse SLA, Pang TY. (2021): Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World Journal of Psychiatry, 11(10):711–735. https://doi.org/10.5498/wjp.v11.i10.711
  7. Qu S, Zhu Q, Zhou H, Gao Y, Wei Y, Ma Y, Wang Z, Sun X, Zhang L, Yang Q, Kong L, Zhang L. (2021): EasyFlyTracker: A simple video tracking Python package for analyzing adult Drosophila locomotor and sleep activity to facilitate revealing the effect of psychiatric drugs. Frontiers in Behavioral Neuroscience, 15, 809665. https://doi.org/10.3389/fnbeh.2021.809665
  8. Coll-Tané M, Gong NN, Belfer SJ, van Renssen LV, Kurtz-Nelson EC, Szuperak M, Eidhof I, van Reijmersdal B, Terwindt I, Durkin J, Verheij MMM, Kim CN, Hudac CM, Nowakowski TJ, Bernier RA, Pillen S, Earl RK, Eichler EE, Kleefstra T, Kayser MS, Schenck A. (2021): The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. Sci Adv 7(23). doi:10.1126/sciadv.abe2626
  9. Carter O, Swinderen B, Leopold DA, Collin SP, Maier A. (2020): Perceptual rivalry across animal species. Journal of Comparative Neurology 528(17):3123-3133. Wiley. doi:10.1002/cne.24939
  10. Grabowska MJ, Jeans R, Steeves J, van Swinderen B. (2020): Oscillations in the central brain of Drosophila are phase locked to attended visual features. Proc Natl Acad Sci USA 117(47):29925-29936. doi:10.1073/pnas.2010749117
  11. Malloy CA, Somasundaram E, Omar A, Bhutto U, Medley M, Dzubuk N, Cooper RL. (2019): Pharmacological identification of cholinergic receptor subtypes: modulation of locomotion and neural circuit excitability in Drosophila larvae. Neuroscience. doi:10.1016/j.neuroscience.2019.05.016
  12. Rohde PD, Jensen IR, Sarup PM, Ørsted M, Demontis D, Sørensen P, Kristensen TN. (2019): Genetic Signatures of Drug Response Variability in Drosophila melanogaster. Genetics. doi:10.1534/genetics.119.302381
  13. Greenspan R. (2019): Gene Networks for Attention and Motor Control: A Path from Drosophila to Humans. UNIVERSITY OF CALIFORNIA, SAN DIEGO.
  14. Lee AH, Brandon CL, Wang J, Frost WN. (2018): An Argument for Amphetamine-Induced Hallucinations in an Invertebrate. Front Physiol 9. doi:10.3389/fphys.2018.00730
  15. Kittel-Schneider S. (2018): Biologische Grundlagen der Aufmerksamkeitsdefizits-/Hyperaktivitätsstörung (ADHS) des Erwachsenenalters. Handbuch Klinische Psychologie. doi:10.1007/978-3-662-45995-9_18-1
  16. Chakravarti L, Moscato EH, Kayser MS (2017): Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila. In: Current Topics in Developmental Biology Vol. 121 (pp. 253–285). Elsevier. DOI: 10.1016/bs.ctdb.2016.07.010
  17. Widmann A, Artinger M, Biesinger L, Boepple K, Peters C, Schlechter J, Selcho M, et al. (2016): Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae. PLOS Genetics. 12(10): e1006378. DOI: 10.1371/journal.pgen.1006378
  18. Adedjeji AA, Vicente-Crespo M (2017): Rejuvenating Research and Training in Biomedical Sciences in Nigeria: Drosophila melanogaster as A Versatile Alternative Model. Archives of Basic and Applied Medicine. 5(1):1–10. https://archivesbamui.com/ojs/index.php/abam/article/view/3
  19. Rohde PD, Madsen LS, Neumann-Arvidson SM, Loeschcke V, Demontis D, Kristensen TN (2016): Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior. Fly (Austin). 10(1):25-34
  20. Bosch DS (2016): Analysing visual behaviour in Drosophila Dscam2 mutants using optimised optomotor and operant control assays. PhD Dissertation, University of Queensland
  21. van der Voet M, Harich B, Franke B, Schenck A (2016): ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol Psychiatry. 21(4):565-573. doi: 10.1038/mp.2015.55
  22. de Bivort BL, van Swinderen B (2016): Evidence for selective attention in the insect brain. Curr Op Ins Sci. 15:9-15, doi:10.1016/j.cois.2016.02.007
  23. Farris SM (2016): Insect societies and the social brain. Curr Op Ins Sci. 15: 1-8
  24. Koenig S, Wolf R, Heisenberg M (2016): Vision in Flies: Measuring the Attention Span. PLOS ONE 11(2):e0148208, DOI: 10.1371/journal.pone.0148208
  25. Koenig S, Wolf R, Heisenberg M (2016): Visual Attention in Flies—Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing. PLOS ONE. 11(8): e0161412. DOI: 10.1371/journal.pone.0161412
  26. Kim S, Tellez K, Buchan G, Lebestky T (2016): Fly Stampede 2.0: A Next Generation Optomotor Assay for Walking Behavior in Drosophila Melanogaster. Frontiers in Molecular Neuroscience. 9. DOI: 10.3389/fnmol.2016.00148
  27. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  28. Zhang Q, Du G, John V, Kapahi P, Bredesen DE (2015): Alzheimer’s Model Develops Early ADHD Syndrome. J Neurol Neurophysiol. 6(6): 1–6.
  29. Farris SM, Van Dyke JW (2015): Evolution and function of the insect mushroom bodies: contributions from comparative and model systems studies. Curr Opin Insect Sci. 12: 19–25, DOI: 10.1016/j.cois.2015.08.006
  30. Paulk AC, Kirszenblat L, Zhou Y, van Swinderen B (2015): Closed-Loop Behavioral Control Increases Coherence in the Fly Brain. J Neurosci 35: 10304–10315, DOI: 10.1523/JNEUROSCI.0691-15.2015
  31. Braus D (2014): EinBlick ins Gehirn: Psychiatrie als angewandte klinische Neurowissenschaft, Georg Thieme Verlag, ISBN: 9783131333537
  32. Zhong C, Zhang Y, He W, Wei P, Lu Y, Zhu Y, Liu L, Wang L (2014): Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster. J Neurosci Meth. 222:218–229
  33. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  34. van Alphen B, van Swinderen B (2013): Drosophila strategies to study psychiatric disorders. Brain Res Bull. 92:1-11
  35. Haendel MA, Chesler EJ (2012): Lost and found in behavioral informatics. Int Rev Neurobiol. 103:1-18
  36. van Swinderen B (2012): Competing visual flicker reveals attention-like rivalry in the fly brain. Front Integr Neurosci. 6:96. doi: 10.3389/fnint.2012.00096
  37. Arena P, Patane L, Termini P (2012): Modeling attentional loop in the insect Mushroom Bodies. The 2012 International Joint Conference on Neural Networks (IJCNN), 1-7. DOI: 10.1109/IJCNN.2012.6252833
  38. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  39. Graham P, Baddeley B, Philippides A, Cheng K (2012): Parsimonious Ways to Use Vision for Navigation. i-Perception. 3(4):226–226. DOI: 10.1068/id226
  40. Baddeley B, Graham P, Husbands P, Philippides A (2012): A Model of Ant Route Navigation Driven by Scene Familiarity. PLoS Comput Biol 8(1): e1002336. doi:10.1371/journal.pcbi.1002336
  41. Leboulle G (2012): Glutamate Neurotransmission in the Honey Bee Central Nervous System. In: Galizia CG, Eisenhardt D, Giurfa M (eds.): Honeybee Neurobiology and Behavior, a tribute to Randolf Menzel. Part 3, 171-184, DOI: 10.1007/978-94-007-2099-2_14
  42. Farris SM, Pettrey C, Daly KC (2011): A subpopulation of mushroom body intrinsic neurons is generated by protocerebral neuroblasts in the tobacco hornworm moth, Manduca sexta (Sphingidae, Lepidoptera). Arthropod Struct Dev. 40(5):395-408
  43. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  44. Lee PT, Lin HW, Chang YH, Fu TF, Dubnau J, Hirsh J, Lee T, Chiang AS (2011): Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. Proc Natl Acad Sci U S A. 108(33):13794-13799
  45. LaFerriere H, Speichinger K, Stromhaug A, Zars T (2011); The Radish Gene Reveals a Memory Component with Variable Temporal Properties. PLoS ONE 6(9): e24557
  46. Evans O, Paulk AC, van Swinderen B (2011): An Automated Paradigm for Drosophila Visual Psychophysics. PLoS ONE 6(6): e21619
  47. Farris SM (2011): Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev. 40(4):368-379
  48. Sareen P, Wolf R, Heisenberg M (2011): Attracting the attention of a fly. Proc Natl Acad Sci U S A. 108(17):7230-7235
  49. van Swinderen B, Andretic R (2011): Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc. Roy. Soc. B. 278(1707): 906-913
  50. Farris SM, Schulmeister S (2011): Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci. 278(1707): 940-951
  51. Blackiston D, Shomrat T, Nicolas CL, Granata C, Levin M. (2010): A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 5(12):e14370

Colomb J.; Brembs, B. (2010): The biology of psychology: ‘Simple’ conditioning? Commun Integr Biol. 3(2):142-145
Citations:

  1. Thiede KI, Born J, Vorster APA. (2021): Sleep and conditioning of the siphon withdrawal reflex in Aplysia. The Journal of Experimental Biology, 224(16). https://doi.org/10.1242/jeb.242431
  2. Ginsburg S, Jablonka E. (2021): Evolutionary transitions in learning and cognition. Phil Trans R Soc B. doi:10.1098/rstb.2019.0766
  3. Klein KT, Croteau-Chonka EC, Narayan L, Winding M, Masson J-B, Zlatic M. (2021): Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae. Cold Spring Harbor Laboratory. doi:10.1101/2021.06.14.448341
  4. Ginsburg S, Jablonka E. (2019):The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness. MIT Press, Cambridge, MA. ISBN:9780262039307
  5. Bronfman ZZ, Ginsburg S, Jablonka E (2016): The Transition to Minimal Consciousness through the Evolution of Associative Learning. Frontiers in Psychology. 7. DOI: 10.3389/fpsyg.2016.01954
  6. Weiss SJ & Rosales-Ruiz J (2014): Operant/Classical Conditioning: Comparisons, Intersections and Interactions: The 2014 Winter Conference on Animal Learning and Behavior Focus and Research Seminar Sessions. International Journal of Comparative Psychology. 27(4). https://escholarship.org/uc/item/4c46c9gg
  7. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511920585.007.
  8. Noboa V, Gillette R (2013): Selective prey avoidance learning in the predatory sea slug Pleurobranchaea californica. J Exp Biol. 216(Pt 17):3231-3236
  9. Scheich H, Brosch M (2013): Task-Related Activation of Auditory Cortex. Springer Handbook of Auditory Research. Cohen YE, Popper AN, Fay RR, editors Springer-Verlag. DOI:10.1007/978-1-4614-2350-8_3
  10. Nepomnyashchikh VA (2012): Variability in invertebrate behavior and the problem of free will. Zhurnal Obshchei Biologii 73(6): 435-441
  11. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058

Brembs, B. (2009): The importance of being active. J. Neurogen. 23(1): 120-126.
Citations:

  1. Triggle CR, MacDonald R, Triggle DJ, Grierson D. (2022): Requiem for impact factors and high publication charges. Accountability in Research 29(3):133-164. doi:10.1080/08989621.2021.1909481
  2. Keijzer F. (2021): Demarcating cognition: the cognitive life sciences. Synthese 198:137-157. doi:10.1007/s11229-020-02797-8
  3. Jékely G, Godfrey-Smith P, Keijzer F. (2021): Reafference and the origin of the self in early nervous system evolution. Phil Trans R Soc B 376(1821). doi:10.1098/rstb.2019.0764
  4. Pütz SM, Kram J, Rauh E, Kaiser S, Toews R, Lueningschroer-Wang Y, Rieger D, Raabe T. (2021):Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila. Disease Models & Mechanisms, 14(6). https://doi.org/10.1242/dmm.047811
  5. Rusch C, Alonso San Alberto D, Riffell JA. (2021): Visuo-Motor Feedback Modulates Neural Activities in the Medulla of the Honeybee, Apis mellifera. J Neurosci 41(14):3192-3203. doi:10.1523/jneurosci.1824-20.2021
  6. Pütz SM, Kram J, Rauh E, Kaiser S, Toews R, Lueningschroer-Wang Y, Rieger D, Raabe T. (2021): Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila. Disease Models & Mechanisms 14(6). doi:10.1242/dmm.047811
  7. Niemann HJ. (2021): Popper, Darwin, and Biology. In: Parusniková Z, Merritt D, (eds.). Karl Popper’s Science and Philosophy. Springer, Cham. doi:10.1007/978-3-030-67036-8_13 
  8. Goulard R, Buehlmann C, Niven JE, Graham P, Webb B. (2020): A motion compensation treadmill for untethered wood ants (Formica rufa): evidence for transfer of orientation memories from free-walking training. Journal of Experimental Biology. doi:10.1242/jeb.228601
  9. Godfrey-Smith P. (2020): Gradualism and the Evolution of Experience. Philosophical Topics 48(1):201-220. https://www.jstor.org/stable/48628592
  10. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  11. Hogan JA. (2017): The Study of Behavior: Organization, Methods, and Principles. Cambridge University Press, 1-371. doi:10.1017/CBO9781108123792
  12. Ferris BD, Green J, Maimon G (2018): Abolishment of Spontaneous Flight Turns in Visually Responsive Drosophila. Current Biology. 28(2):170–180. DOI: 10.1016/j.cub.2017.12.008
  13. Hogan JA (2017): The Study of Behavior. Cambridge University Press. DOI: 10.1017/CBO9781108123792
  14. Bronfman ZZ, Ginsburg S (2016): The Evolutionary Origins of Consciousness: Suggesting a Transition Marker. Journal of Consciousness Studies. 23(9–10):7–34
  15. Bronfman ZZ, Ginsburg S, Jablonka E (2016): The Transition to Minimal Consciousness through the Evolution of Associative Learning. Frontiers in Psychology. 7. DOI: 10.3389/fpsyg.2016.01954
  16. Schneider S, Vogt T, Abeln V (2015): Exercise in Space: Physical and Mental Benefit. In: Sports Performance (pp. 223–243). Springer Japan. DOI: 10.1007/978-4-431-55315-1_19
  17. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511920585.007.
  18. Gomez-Marin,A., Paton,J.J., Kampff,A.R., Costa,R.M. and Mainen,Z.F. (2014) Big behavioral data: psychology, ethology and the foundations of neuroscience. Nature Neuroscience, 17, 1455–1462, DOI: 10.1038/nn.3812
  19. Schleyer M, Diegelmann S, Michels B, Saumweber T, Gerber B (2013): ‘Decision Making’ in Larval Drosophila. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p41-58
  20. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  21. Cai J, Li L (2013): Autonomous Navigation Strategy in Mobile Robot. J. Comp. 8(8): 2118-2125 doi:10.4304/jcp.8.8.2118-2125
  22. Nepomnyashchikh VA (2013): Increases in variations in animal behavior induced by autocorrelations. Biol Bull Rev, 3(1), 49–56
  23. Chen J, Ruan XG, Dai LZ (2012): Behavior Cognition Computational Model Based on Cerebellum and Basal Ganglia Mechanism. Pattern Recognition and Artificial Intelligence 25(1): 29-36
  24. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  25. Koukolík F (2011): Basics of cognitive, affective and social neuroscience. VI. Free will. Prakticky Lekar 91(6): 315-320
  26. Ruan X-G, Chen J (2011): Operant conditioning reflex learning control scheme based on SMC and Elman network. Control and Decision. 26(9):1398-1401

Brembs, B. (2009): Mushroom bodies regulate habit formation in Drosophila. Curr Biol. 19(16): 1351–1355.
Citations:

  1. Ehweiner A. (2022): The neuronal basis of operant self-learning in Drosophila melanogaster, Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Universität Regensburg
  2. Kelly M, Barron AB. (2022): The best of both worlds: Dual systems of reasoning in animals and AI.Cognition, 225, 105118. https://doi.org/10.1016/j.cognition.2022.105118
  3. Thiagarajan D, Sachse S. (2022): Multimodal Information Processing and Associative Learning in the Insect Brain. Insects 13, 332.
  4. Wiggin TD, Hsiao Y, Liu JB, Huber R, Griffith LC. (2021): Rest Is Required to Learn an Appetitively-Reinforced Operant Task in Drosophila. Frontiers in behavioral neuroscience 15:681593. doi:10.3389/fnbeh.2021.681593
  5. Wolf R, Heisenberg M, Brembs B, Waddell S, Mishra A, Kehrer A, Simenson A. (2020): Memory, anticipation, action – working with Troy D. Zars. Journal of Neurogenetics 34(1):9-20. doi:10.1080/01677063.2020.1715976
  6. Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, Stark I, Bates AS, Pleijzier MW, Schlegel P, Nern A, Takemura S, Eckstein N, Yang T, Francis A, Braun A, Parekh R, Costa M, Scheffer LK, Aso Y, Jefferis GS, Abbott LF, Litwin-Kumar A, Waddell S, Rubin GM. (2020): The connectome of the adult Drosophila mushroom body provides insights into function. eLife. doi:10.7554/elife.62576
  7. Mizunami M, Hirohata S, Sato A, Arai R, Terao K, Sato M, Matsumoto Y. (2019): Development of behavioural automaticity by extended Pavlovian training in an insect. Proc R Soc B. doi:10.1098/rspb.2018.2132
  8. Wong AL, Marvel CL, Taylor JA, Krakauer JW. (2019): Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits? Brain. doi:10.1093/brain/awy334
  9. Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. (2019): Intellectual disability and autism spectrum disorders ‘on the fly’: insights from Drosophila. Disease Models & Mechanisms. doi:10.1242/dmm.039180
  10. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  11. Arena E, Arena P, Strauss R, Patané L (2017): Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System. Frontiers in Neurorobotics. 11. DOI: 10.3389/fnbot.2017.00012
  12. Foley BR, Marjoram P, Nuzhdin SV (2017): Basic reversal-learning capacity in flies suggests rudiments of complex cognition. PLOS ONE. 12(8): e0181749. DOI: 10.1371/journal.pone.0181749
  13. Schatton A, Scharff C (2017): FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβc neurons. European Journal of Neuroscience. 46(9):2534–2541. DOI: 10.1111/ejn.13713
  14. Jurjako M (2016): Reasons: A Naturalistic Explanation. PhD thesis, University of Rijeka. https://www.bib.irb.hr/842794
  15. Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, Friedrich AB, Turner GC, Rubin GM, Tanimoto H (2016): Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. Elife. 5. pii: e14009. doi: 10.7554/eLife.14009
  16. de Bivort BL, van Swinderen B (2016): Evidence for selective attention in the insect brain. Curr Op Ins Sci. 15:9-15, doi:10.1016/j.cois.2016.02.007
  17. Parker MO, Brock AJ, Sudwarts A, Teh MT, Combe FJ, Brennan CH (2015): Developmental role of acetylcholinesterase in impulse control in zebrafish. Front. Behav. Neurosci. 9:271, DOI: 10.3389/fnbeh.2015.00271
  18. Farris SM, Van Dyke JW (2015): Evolution and function of the insect mushroom bodies: contributions from comparative and model systems studies. Curr Opin Insect Sci. 12: 19–25, DOI: 10.1016/j.cois.2015.08.006
  19. Heisenberg M (2015): Outcome learning, outcome expectations, and intentionality in Drosophila. Learn Mem. 22: 294–298, DOI: 10.1101/lm.037481.114
  20. Weiss SJ & Rosales-Ruiz J (2014): Operant/Classical Conditioning: Comparisons, Intersections and Interactions: The 2014 Winter Conference on Animal Learning and Behavior Focus and Research Seminar Sessions. International Journal of Comparative Psychology. 27(4). https://escholarship.org/uc/item/4c46c9gg
  21. Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TT, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM (2014): Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3:e04580, DOI: 10.7554/eLife.04580
  22. Solanki N, Wolf R, Heisenberg M (2015) Central complex and mushroom bodies mediate novelty choice behavior in Drosophila. J Neurogen. 29: 30–37, DOI: 10.3109/01677063.2014.1002661
  23. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014): Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife, 3:e02395, DOI: 10.7554/eLife.02395
  24. Parker MO, Evans AM, Brock AJ, Combe FJ, Teh MT, Brennan CH (2014): Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood. Addict Biol. 21: 49–60, DOI: 10.1111/adb.12176
  25. Arena P, Patané L, Stornanti V, Termini PS, Zäpf B, Strauss R (2013): Modeling the insect mushroom bodies: Application to a delayed match-to-sample task. Neur Net 41:202–211
  26. Smith KS, Graybiel AM (2014): Investigating Habits: Strategies, Technologies, and Models. Front. Behav. Neurosci. 8:39
  27. Arena P, Caccamo S, Patane L, Strauss R (2013): A computational model for motor learning in insects. The 2013 International Joint Conference on Neural Networks (IJCNN), 1-8
  28. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  29. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  30. Arena P, Patane L, Strauss R (2013): The Insect Mushroom Bodies: a Paradigm of Neural Reuse. Advances in Artificial Life, ECAL 2013. MIT Press. pp. 765–772
  31. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  32. Zhang X, Ren Q, Guo A (2013): Parallel pathways for cross-modal memory retrieval in Drosophila. J Neurosci. 33(20):8784-8793
  33. Arena P, Patané L, Stornanti V, Termini PS, Zäpf B, Strauss R (2013): Modeling the insect mushroom bodies: Application to a delayed match-to-sample task. Neur. Net. 41: 202–211. DOI: 10.1016/j.neunet.2012.11.013
  34. Parker MO, Brock AJ, Walton RT, Brennan CH (2013): The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits. 7:63
  35. Namiki S, Takaguchi M, Seki Y, Kazawa T, Fukushima R, Iwatsuki C, Kanzaki R (2013): Concentric zones for pheromone components in the mushroom body calyx of the moth brain. J Comp Neurol. 521(5):1073-1092
  36. Nepomnyashchikh VA (2012): Variability in invertebrate behavior and the problem of free will. Zhurnal Obshchei Biologii 73(6): 435-441
  37. Joseph RM, Heberlein U (2012): Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila. Genetics. 192(2):521-532
  38. Shmuelof L, Huang VS, Haith AM, Delnicki RJ, Mazzoni P, Krakauer JW (2012): Overcoming motor “forgetting” through reinforcement of learned actions. J Neurosci. 32(42):14617-14621
  39. Wu Y, Ren Q, Li H, Guo A (2012): The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila. Learn Mem. 19(10):478-486
  40. Ren Q, Li H, Wu Y, Ren J, Guo A (2012): A GABAergic inhibitory neural circuit regulates visual reversal learning in Drosophila. J Neurosci. 32(34):11524-11538
  41. Zanini D, Jallon JM, Rabinow L, Samson ML (2012): Deletion of the Drosophila neuronal gene found in neurons disrupts brain anatomy and male courtship. Genes Brain Behav. 11 (7): 819-827
  42. Zhao XL, Campos AR (2012): Insulin signalling in mushroom body neurons regulates feeding behaviour in Drosophila larvae. J Exp Biol. 215(Pt 15):2696-2702.
  43. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  44. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  45. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  46. Farris SM (2011): Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev. 40(4):368-379
  47. Sorribes A, Armendariz BG, Lopez-Pigozzi D, Murga C, de Polavieja GG (2011): The Origin of Behavioral Bursts in Decision-Making Circuitry. PLoS Comput Biol 7(6): e1002075
  48. Farris SM, Schulmeister S (2010): Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci. 278 (1707): 940-951
  49. Foucaud J, Burns JG, Mery F (2010): Use of Spatial Information and Search Strategies in a Water Maze Analog in Drosophila melanogaster. PLoS ONE 5(12): e15231
  50. Waddell S (2010): Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci. 33(10):457-464
  51. Abramson CI, Nolf SL, Mixson TA, Well H (2010): Can Honey Bees Learn the Removal of a Stimulus as a Conditioning Cue? Ethology 116(9): 843–854
  52. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  53. Yu C, Gupta J, Chen JF, Yin HH (2009): Genetic Deletion of A2A Adenosine Receptors in the Striatum Selectively Impairs Habit Formation. J Neurosci. 29(48):15100-15103
  54. van Swinderen, B. (2009): Fly Memory: A Mushroom Body Story in Parts. Curr Biol. 19(18): R855-R857

Brembs, B. (2008): Operant learning of Drosophila at the torque meter. J Vis Exp. 16. https://www.jove.com/details.stp?id=731 doi:10.3791/731.
Citations:

  1. Czaczkes TJ, Berger A, Koch A, Dreisbach G. (2022): Conflict interference in an insect. Journal of Comparative Psychology (Washington, D.C.: 1983), 136(1):35–43. https://doi.org/10.1037/com0000294
  2. van Alphen B, Semenza ER, Yap M, van Swinderen B, Allada R. (2021): A deep sleep stage in Drosophila with a functional role in waste clearance. Sci Adv. doi:10.1126/sciadv.abc2999
  3. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  4. Kuroda T, Mizutani Y, Cançado CRX, Podlesnik CA. (2018): Predator videos and electric shock function as punishers for zebrafish (Danio rerio). Journal of the Experimental Analysis of Behavior111(1):116-129. Wiley. doi:10.1002/jeab.494
  5. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  6. Guo C, Du Y, Yuan D, Li M, Gong H, Gong Z, Liu L (2014): A conditioned visual orientation requires the ellipsoid body in Drosophila. Learn Mem 22: 56–63, DOI: 10.1101/lm.036863.114
  7. Kirkerud NH, Wehmann H-N, Galizia CG and Gustav D (2013): APIS—a novel approach for conditioning honey bees. Front. Behav. Neurosci. 7:29. doi: 10.3389/fnbeh.2013.00029
  8. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  9. Visvanathan K, Gianchandani YB (2011): Locomotion response of airborne, ambulatory and aquatic insects to thermal stimulation using piezoceramic microheaters. J. Micromech. Microeng. 21: 125002 (9pp)
  10. van Swinderen B, Andretic R (2011): Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc. Roy. Soc. B. 278(1707): 906-913
  11. Masek P, Scott K (2010): Limited taste discrimination in Drosophila. Proc Natl Acad Sci U S A. 107(33):14833-14838

Brembs, B.; Plendl, W. (2008): Double dissociation of PKC and AC manipulations on operant and classical learning in Drosophila. Curr Biol. 18(15): 1168-1171.
Citations:

  1. Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. (2022): High-throughput automated methods for classical and operant conditioning of Drosophila larvae.ELife, 11. https://doi.org/10.7554/eLife.70015
  2. Gibbons M, Crump A, Barrett M, Sarlak S, Birch J, Chittka L. (2022): Can insects feel pain? A review of the neural and behavioural evidence. InAdvances in Insect Physiology. Elsevier.
  3. Ehweiner A. (2022): The neuronal basis of operant self-learning in Drosophila melanogaster, Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Universität Regensburg
  4. Schneider SM, Sanguinetti A. (2021): Positive reinforcement is just the beginning: Associative learning principles for energy efficiency and climate sustainability. Energy Research & Social Science 74:101958. doi:10.1016/j.erss.2021.101958
  5. Croteau-Chonka EC. (2021): Behavioural principles underlying navigational decision-making in Drosophila melanogaster larvae. Trinity College, PhD Thesis.
  6. Klein KT, Croteau-Chonka EC, Narayan L, Winding M, Masson J-B, Zlatic M. (2021): Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae. Cold Spring Harbor Laboratory. doi:10.1101/2021.06.14.448341
  7. Wiggin TD, Hsiao Y, Liu JB, Huber R, Griffith LC. (2021): Rest Is Required to Learn an Appetitively-Reinforced Operant Task in Drosophila. Frontiers in behavioral neuroscience 15:681593. doi:10.3389/fnbeh.2021.681593
  8. Klein KT. (2020): High-Throughput Operant Conditioning in Drosophila Larvae. Apollo – University of Cambridge Repository. doi:10.17863/CAM.47681
  9. Boto T, Stahl A, Tomchik SM. (2020): Cellular and circuit mechanisms of olfactory associative learning in Drosophila. Journal of Neurogenetics 34(1):36-46. doi:10.1080/01677063.2020.1715971
  10. Liu J. (2020): Investigating positive-valance operant learning in Drosophila melanogaster with a novel apparatus. Doctoral dissertation, Brandeis University.
  11. Kuroda T, Gilroy SP, Cançado CRX, Podlesnik CA. (2020): Effects of punishing target response during extinction on resurgence and renewal in zebrafish (Danio rerio). Behavioural Processes 178:104191. Elsevier BV. doi:10.1016/j.beproc.2020.104191
  12. Avraham G, Taylor JA, Breska A, Ivry RB, McDougle SD. (2020): Contextual effects in sensorimotor adaptation adhere to associative learning rules. Cold Spring Harbor Laboratory. doi:10.1101/2020.09.14.297143
  13. Melnattur K, Kirszenblat L, Morgan E, Militchin V, Sakran B, English D, Patel R, Chan D, van Swinderen B, Shaw PJ. (2020): A conserved role for sleep in supporting Spatial Learning in Drosophila. Sleep. doi:10.1093/sleep/zsaa197
  14. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  15. Widmann A, Eichler K, Selcho M, Thum AS, Pauls D. (2018): Odor-taste learning in Drosophila larvae. Journal of Insect Physiology 106:47-54. doi:10.1016/j.jinsphys.2017.08.004
  16. Kirkerud NH, Schlegel U, Galizia GC (2017): Aversive Learning of Colored Lights in Walking Honeybees. Front Behav Neurosci. 11. DOI: 10.3389/fnbeh.2017.00094
  17. Foley BR, Marjoram P, Nuzhdin SV (2017): Basic reversal-learning capacity in flies suggests rudiments of complex cognition. PLOS ONE. 12(8): e0181749. DOI: 10.1371/journal.pone.0181749
  18. Widmann A, Eichler K, Selcho M, Thum AS, Pauls D (2017): Odor-taste learning in Drosophila larvae. J Insect Physiol. DOI: 10.1016/j.jinsphys.2017.08.004
  19. Burgos, J. E. (2015): Misbehavior in a Neural Network Model. International Journal of Comparative Psychology, 28. Retrieved from https://escholarship.org/uc/item/3vb500tv
  20. Hawkins RD, Byrne JH (2015): Associative Learning in Invertebrates. Cold Spring Harbor Perspectives in Biology, 7(5), a021709. https://doi.org/10.1101/cshperspect.a021709
  21. Heisenberg M. (2015): Outcome learning, outcome expectations, and intentionality in Drosophila. Learn Mem. 22(6): 294-298. doi: 10.1101/lm.037481.114
  22. Jozefowiez, J. (2014): The Many Faces of Pavlovian Conditioning. International Journal of Comparative Psychology, 27(4). Retrieved from https://escholarship.org/uc/item/0bg0b3kq
  23. Byrne JH, LaBar KS, LeDoux JE, Schafe GE, Thompson RF (2014): Chapter 20 – Learning and Memory: Basic Mechanisms. In: From Molecules to Networks. Elsevier, 591–637. DOI: 10.1016/b978-0-12-397179-1.00020-8
  24. Weiss SJ & Rosales-Ruiz J (2014): Operant/Classical Conditioning: Comparisons, Intersections and Interactions: The 2014 Winter Conference on Animal Learning and Behavior Focus and Research Seminar Sessions. International Journal of Comparative Psychology. 27(4). https://escholarship.org/uc/item/4c46c9gg
  25. Bédécarrats A (2014): Étude cellulaire de la genèse et de l’apprentissage d’un comportement motivé chez l’aplysie, PhD dissertation, L´Université de Bordeaux
  26. Guo C, Du Y, Yuan D, Li M, Gong H, Gong Z, Liu L (2014): A conditioned visual orientation requires the ellipsoid body in Drosophila. Learn Mem 22: 56–63, DOI: 10.1101/lm.036863.114
  27. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014): Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife, 3:e02395, DOI: 10.7554/eLife.02395
  28. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  29. Alvarez B, Morís J, Luque D, Loy I (2014): Extinction, spontaneous recovery and reinstatement in the garden snail, Helix aspersa. Anim Behav 92: 75–83
  30. Webb B (2013): Issues in Invertebrate Learning Raised by Robot Models. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p81-90
  31. Hastings M, Farah CA, Sossin WS (2013): Roles of Protein Kinase C and Protein Kinase M in Aplysia Learning. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p221-235
  32. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  33. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  34. Cai J, Ao D, Yu R (2013): Bionic learning strategy applied on snake robot motion control. International Journal of Modelling, Identification and Control 19: 265
  35. Zisopoulou S, Asimaki O, Leondaritis G, Vasilaki A, Sakellaridis N, Pitsikas N, Mangoura D (2013): PKC-epsilon activation is required for recognition memory in the rat. Behav Brain Res. 253:280-289
  36. Cai J, Li L (2013): Autonomous Navigation Strategy in Mobile Robot. J. Comp. 8(8): 2118-2125 doi:10.4304/jcp.8.8.2118-2125
  37. Garren MV, Sexauer SB, Page TL (2013): Effect of Circadian Phase on Memory Acquisition and Recall: Operant Conditioning vs. Classical Conditioning. PLoS ONE 8(3): e58693
  38. Cai J, Yu R, Cheng R (2012): Autonomous navigation research for mobile robot. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), art. no. 6357893, pp. 331-335
  39. Chen J, Ruan XG, Dai LZ (2012): Behavior Cognition Computational Model Based on Cerebellum and Basal Ganglia Mechanism. Pattern Recognition and Artificial Intelligence 25(1): 29-36
  40. Cai JX, Sun X, Ma HR, Wang QS (2012): Research autonomous motion control for snake robot based on bionic learning strategy. 2012 Proceedings of International IEEE Conference on Modelling, Identification & Control (ICMIC), 826-831
  41. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  42. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  43. Ueda A, Wu CF (2012): Cyclic Adenosine Monophosphate Metabolism in Synaptic Growth, Strength, and Precision: Neural and Behavioral Phenotype-Specific Counterbalancing Effects between dnc Phosphodiesterase and rut Adenylyl Cyclase Mutations. J Neurogenet. 26(1):64-81
  44. Shuai Y, Hu Y, Qin H, Campbell RA, Zhong Y (2011): Distinct molecular underpinnings of Drosophila olfactory trace conditioning. Proc Natl Acad Sci U S A. 108(50):20201-20206
  45. Ruan X-G, Chen J (2011): Operant conditioning reflex learning control scheme based on SMC and Elman network. Control and Decision. 26(9):1398-1401
  46. Kahsai L, Zars T (2011): Learning and memory in Drosophila: behavior, genetics, and neural systems. Int Rev Neurobiol. 99:139-167
  47. Ruan X, Chen J, Dai L (2011): Motor Learning Based on the Cooperation of Cerebellum and Basal Ganglia for a Self-balancing Two-wheeled Robot. Intelligent Control and Automation 2(3): 57-68
  48. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  49. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. (2009): Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415
  50. Lorenzetti FD, Baxter DA, Byrne JH (2008): Molecular Mechanisms Underlying a Cellular Analog of Operant Reward Learning. Neuron 59: 815-828

Brembs, B.; Christiansen, F.; Pflüger, H.J.; Duch, C. (2007): Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J Neurosci 27: 11122–11131.
Citations:

  1. Kobayashi N, Hasegawa Y, Okada R, Sakura M. (2023): Visual learning in tethered bees modifies flight orientation and is impaired by epinastine.Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology.https://doi.org/10.1007/s00359-023-01623-z
  2. Rádai Z, Kiss J, Nagy NA, Somogyi AÁ, Fülöp A, Tóth Z, Babits MA, Németh Z. (2022): State and physiology behind personality in arthropods: a review.Behavioral Ecology and Sociobiology, 76(11).https://doi.org/10.1007/s00265-022-03259-6
  3. Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. (2023): Behavioral state-dependent modulation of insulin-producing cells in Drosophila.Current Biology: CB, 33(3): 449-463.https://doi.org/10.1016/j.cub.2022.12.005
  4. Rosikon KD, Bone MC, Lawal HO. (2023): Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans.Frontiers in Physiology, 14.https://doi.org/10.3389/fphys.2023.970405
  5. Wilhelm N, Kumari S, Krick N, Rickert C, Duch C. (2022): Dscam1 has diverse neuron type-specific functions in the developing Drosophila CNS.ENeuro, 9(4).https://doi.org/10.1523/ENEURO.0255-22.2022
  6. Gáliková M, Klepsatel P. (2023): Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Seminars in Cell & Developmental Biology, 138:104–116. https://doi.org/10.1016/j.semcdb.2022.03.034
  7. El-Kholy SE, Afifi B, El-Husseiny I, Seif A. (2022): Octopamine signaling via OctαR is essential for a well-orchestrated climbing performance of adult Drosophila melanogaster. Scientific Reports12(1), 14024. https://doi.org/10.1038/s41598-022-18203-x
  8. Doyle T, Jimenez-Guri E, Hawkes WLS, Massy R, Mantica F, Permanyer J, Cozzuto, L, Hermoso Pulido T, et al. (2022): Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Molecular Ecology31(16):4332–4350. https://doi.org/10.1111/mec.16588
  9. El Husseiny IM, El Kholy S, Mohamed AZ, Meshrif WS, Elbrense H. (2022): Alterations in biogenic amines levels associated with age-related muscular tissue impairment in Drosophila melanogaster. Saudi Journal of Biological Sciences, 29(5):3739–3748. https://doi.org/10.1016/j.sjbs.2022.03.006
  10. Varte V, Kairamkonda S, Gupta U, Manjila SB, Mishra A, Salzberg A, Nongthomba U. (2022):Neuronal role of taxi is imperative for flight in Drosophila melanogaster. Gene, 833, 146593. https://doi.org/10.1016/j.gene.2022.146593
  11. El-Kholy SE, Afifi B, El-Husseiny I, Seif A. (2021): Octopamine signaling via oamb is essential for A well-orchestrated climbing performance of adult Drosophila melanogaster. In Research Square. https://doi.org/10.21203/rs.3.rs-1194811/v1
  12. Wong JYH, Wan BA, Bland T, Montagnese M, McLachlan AD, O’Kane CJ, Zhang SW, Masuda-Nakagawa LM. (2021): Octopaminergic neurons have multiple targets in Drosophila larval mushroom body calyx and can modulate behavioral odor discrimination. Learn Mem 28:53-71. doi:10.1101/lm.052159.120
  13. Migdał ‚ P Murawska A, Bienkowski P, Berbec E, Roman A. (2021): Changes in Honeybee Behavior Parameters under the Influence of the E-Field at 50 Hz and Variable Intensity. Animals11:247. doi:10.3390/ani11020247
  14. Fendl S. (2021): Neurotransmitters and receptors in the motion vision pathway of Drosophila. Ludwig-Maximilians-Universität München. doi:10.5282/EDOC.2761
  15. Cheng YCK. (2021): Olfactory modulation of visual object behaviors in Drosophila melanogaster. Doctoral dissertation, University of California, Los Angeles.
  16. Toprak U, Dogan C, Hegedus D. (2021): A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules11:1031. doi:10.3390/biom11071031
  17. Iyengar A, Wu C-F. (2021): Fly seizure EEG: field potential activity in the Drosophila brain. Journal of Neurogenetics 35(3). doi:10.1080/01677063.2021.1950714
  18. Roeder T. (2020): The control of metabolic traits by octopamine and tyramine in invertebrates. Journal of Experimental Biology 223(7). doi:10.1242/jeb.194282
  19. Manzi C, Vergara-Amado J, Franco LM, Silva AX. (2020): The effect of temperature on candidate gene expression in the brain of honey bee Apis mellifera (Hymenoptera: Apidae) workers exposed to neonicotinoid imidacloprid. Journal of Thermal Biology 102696. doi:10.1016/j.jtherbio.2020.102696
  20. Bilz F, Gilles M-M, Schatton A, Pflüger H-J, Schubert M. (2020): Intensity coded octopaminergic modulation of aversive crawling behavior in Drosophila melanogaster larvae. Cold Spring Harbor Laboratory. doi:10.1101/2020.09.04.281022
  21. Pop S, Chen C-L, Sproston CJ, Kondo S, Ramdya P, Williams DW. (2020): Extensive and diverse patterns of cell death sculpt neural networks in insects. eLife. doi:10.7554/elife.59566
  22. Finetti L, Tiedemann L, Zhang X, Civolani S, Bernacchia G, Roeder T. (2020): Monoterpenes alter TAR1-driven physiology in Drosophila species. Journal of Experimental Biology 224(1):jeb232116. doi:10.1242/jeb.232116
  23. Manjila SB, Kuruvilla M, Ferveur J-F, Sane SP, Hasan G. (2019): Extended Flight Bouts Require Disinhibition from GABAergic Mushroom Body Neurons. Current Biology. doi:10.1016/j.cub.2018.11.070
  24. Schützler N, Girwert C, Hügli I, Mohana G, Roignant J-Y, Ryglewski S, Duch C. (2019): Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state. Proc Natl Acad Sci USA. doi:10.1073/pnas.1813554116
  25. Schretter CE. (2019): Microbial Modulation of Host Locomotion. California Institute of Technology. doi:10.7907/Z1DX-4J03
  26. Lee J, Iyengar A, Wu C-F. (2019): Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles. Journal of Neurogenetics. doi:10.1080/01677063.2019.1581188
  27. Gu S, Wang F, Patel NP, Bourgeois JA, Huang JH. (2019): A Model for Basic Emotions Using Observations of Behavior in Drosophila. Front Psychol. doi:10.3389/fpsyg.2019.00781
  28. Qi Y, Wang J, Xu G, Song Q, Stanley D, Fang Q, Ye G. (2019): Biogenic amine biosynthetic and transduction genes in the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Arch Insect Biochem Physiol. doi:10.1002/arch.21632
  29. Reynoso MMN, Lucia A, Zerba EN, Alzogaray RA. (2019): The Octopamine Receptor Is a Possible Target for Eugenol-Induced Hyperactivity in the Blood-Sucking Bug Triatoma infestans (Hemiptera: Reduviidae). Journal of Medical Entomology. doi:10.1093/jme/tjz183
  30. Cheng KY, Frye MA. (2019): Neuromodulation of insect motion vision. J Comp Physiol A. doi:10.1007/s00359-019-01383-9
  31. Howard CE, Chen C-L, Tabachnik T, Hormigo R, Ramdya P, Mann RS. (2019): Serotonergic Modulation of Walking in Drosophila. Current Biology. doi:10.1016/j.cub.2019.10.042
  32. Lee K. (2019): Glial cell mechanisms regulate alcohol sedation in Drosophila melanogaster [VCU Libraries]. VCU Theses and Dissertations. doi:10.25772/VCGF-NE09 
  33. Shepherd S, Lima MAP, Oliveira EE, Sharkh SM, Jackson CW, Newland PL. (2018): Extremely Low Frequency Electromagnetic Fields impair the Cognitive and Motor Abilities of Honey Bees. Sci Rep 8. doi:10.1038/s41598-018-26185-y
  34. Ravi P, Trivedi D, Hasan G. (2018): FMRFa receptor stimulated Ca2+ signals alter the activity of flight modulating central dopaminergic neurons in Drosophila melanogaster. PLoS Genet 14:e1007459. doi:10.1371/journal.pgen.1007459
  35. Claßen G, Scholz H. (2018): Octopamine Shifts the Behavioral Response From Indecision to Approach or Aversion in Drosophila melanogaster. Front Behav Neurosci 12. doi:10.3389/fnbeh.2018.00131
  36. O’Sullivan A, Lindsay T, Prudnikova A, Erdi B, Dickinson M, von Philipsborn AC. (2018): Multifunctional Wing Motor Control of Song and Flight. Current Biology 28:2705-2717.e4. doi:10.1016/j.cub.2018.06.038
  37. Ormerod KG, Jung J, Mercier AJ. (2018): Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. Journal of Neurogenetics. doi:10.1080/01677063.2018.1502761
  38. Pauls D, Blechschmidt C, Frantzmann F, el Jundi B, Selcho M. (2018): A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster. Sci Rep. doi:10.1038/s41598-018-33686-3
  39. Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK. (2018): A gut microbial factor modulates locomotor behaviour in Drosophila. Nature. doi:10.1038/s41586-018-0634-9
  40. Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg H, Colomb J, Weber C et al. (2018): Structural and Molecular Properties of Insect Type II Motor Axon Terminals. Front Sys Neurosci. 12. DOI: 10.3389/fnsys.2018.00005
  41. Neckameyer WS, Leal SM (2017): Diverse Functions of Insect Biogenic Amines as Neurotransmitters, Neuromodulators, and Neurohormones. In: Pfaff DW, Joels M (Eds.): Hormones, Brain and Behavior (pp 367–401). Elsevier. DOI: 1016/B978-0-12-803592-4.00035-3
  42. Roeder T (2010): Pharmacology of Invertebrate Octopamine and Tyramine Receptors. Biogenic Amines: Pharmacological, neurochemical and molecular aspects in the CNS. 15:335–346.
  43. Houot B, Gigot V, Robichon A, Ferveur JF (2017): Free flight odor tracking in Drosophila: Effect of wing chemosensors, sex and pheromonal gene regulation. Scientific Reports. 7:40221. DOI: 10.1038/srep40221
  44. Roeder, T. (2016): Trace Amines. Trace Amines and Neurological Disorders (pp. 3–9). Elsevier. DOI: 10.1016/B978-0-12-803603-7.00001-X
  45. Ryglewski S, Vonhoff F, Scheckel K, Duch C (2017): Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material. Neuron. 93(3):632–645.e6. DOI: 10.1016/j.neuron.2016.12.043
  46. Sinakevitch IT, Daskalova SM, Smith BH (2017): The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee (Apis mellifera) Brain. Frontiers in Systems Neuroscience. 11. DOI: 10.3389/fnsys.2017.00077
  47. Servillo L, Castaldo D, Giovane A, Casale R, D’Onofrio N, Cautela D, Balestrieri ML (2017): Tyramine Pathways in Citrus Plant Defense: Glycoconjugates of Tyramine and Its N-Methylated Derivatives. Journal of Agricultural and Food Chemistry. 65(4):892–899. DOI: 10.1021/acs.jafc.6b04423
  48. Li Y, Tiedemann L, von Frieling J, Nolte S, El-Kholy S, Stephano F, Gelhaus C, et al. (2017): The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila melanogaster. Frontiers in Systems Neuroscience. 11. DOI: 10.3389/fnsys.2017.00060
  49. Zhang H, Blumenthal EM (2017): Identification of multiple functional receptors for tyramine on an insect secretory epithelium. Scientific Reports. 7(1). DOI: 10.1038/s41598-017-00120-z
  50. Iliadi KG, Iliadi N, Boulianne GL (2017): Drosophila mutants lacking octopamine exhibit impairment in aversive olfactory associative learning. European Journal of Neuroscience. 46(5):2080–2087. DOI: 10.1111/ejn.13654
  51. Ryglewski S, Duch C, Altenhein B (2017): Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase. Frontiers in Systems Neuroscience. 11. DOI: 10.3389/fnsys.2017.00068
  52. Kadas D, Klein A, Krick N, Worrell JW, Ryglewski S, Duch C (2017): Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during Drosophila Larval Locomotion. The Journal of Neuroscience. 37(45):10971–10982. DOI: 10.1523/JNEUROSCI.1064-17.2017
  53. Money TGA, Sproule MKJ, Cross KP, Robertson RM (2016): Octopamine stabilizes conduction reliability of an unmyelinated axon during hypoxic stress. J Neurophys. 116(3):949–959. DOI: 10.1152/jn.00354.2016
  54. Li Y, Hoffmann J, Stephano F, Bruchhaus I, Fink C, Roeder T (2016): Octopamine controls starvation resistance, life span and metabolic traits in Drosophila. Scientific Reports. 6(1). DOI: 10.1038/srep35359
  55. Hartfil S (2016): Morphological and electrophysiological properties of lateral deutocerebral cells in desert locust Schistocerca gregaria. PhD Dissertation, FU Berlin.
  56. Berger SD, Crook SM (2015) Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila. Front. Comput. Neurosci., 9, DOI: 10.3389/fncom.2015.00139
  57. El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T (2015): Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res, 361: 669–684, DOI: 10.1007/s00441-015-2137-4
  58. Rillich J, Stevenson PA (2015): Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Front. Behav. Neurosci., 9:95 DOI: 10.3389/fnbeh.2015.00095
  59. Sadaf S, Reddy OV, Sane SP, Hasan G (2015) Neural Control of Wing Coordination in Flies. Curr Biol. 25: 80–86, DOI: 10.1016/j.cub.2014.10.069
  60. Gross AD, Kimber MJ, Coats JR (2014): G-Protein-Coupled Receptors (GPCRs) as Biopesticide Targets: A Focus on Octopamine and Tyramine Receptors. Biopesticides: State of the Art and Future Opportunities, DOI: 10.1021/bk-2014-1172.ch004
  61. Zhao H, Zheng N, Ribi WA, Zheng H, Xue L, Gong F, Zheng X, Hu F (2014): Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation. PLoS ONE 9(11):e113012, DOI: 10.1371/journal.pone.0113012
  62. Ryglewski S, Kadas D, Hutchinson K, Schuetzler N, Vonhoff F, Duch C (2014): Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior. Proc Natl Acad Sci U S A, 111(50): 18049–18054, DOI: 10.1073/pnas.1416247111
  63. Jezzini SH, Reyes-Colón D, Sosa MA (2014): Characterization of a Prawn OA/TA Receptor in Xenopus Oocytes Suggests Functional Selectivity between Octopamine and Tyramine. PLoS ONE 9(10):e111314, DOI: 10.1371/journal.pone.0111314
  64. Lehmann F-O (2014): Flight behavior: Degradation of flight muscle power and locomotor capacity in transgenic Drosophila. In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 77-87. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511920585.007.
  65. Sadaf S, Hasan G (2014): Serotonergic neurons of the Drosophila air-puff-stimulated flight circuit. J Biosci, 39: 575–583, DOI: 10.1007/s12038-014-9449-5
  66. Luo J, Lushchak OV, Goergen P, Williams MJ, Nässel DR (2014): Drosophila Insulin-Producing Cells Are Differentially Modulated by Serotonin and Octopamine Receptors and Affect Social Behavior. PLoS ONE 9, e99732. DOI: 10.1371/journal.pone.0099732
  67. Fuchs S, Rende E, Crisanti A, Nolan T (2014): Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival. Sci. Rep. 4:5526, DOI: 10.1038/srep05526
  68. Ruppert MB (2013): Dissecting Tbh and Hangover function in ethanol tolerance in Drosophila melanogaster. Dissertation, Universität zu Köln.
  69. Sieling F, Bédécarrats A, Simmers J, Prinz AA, Nargeot R (2014): Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior. Curr Biol. 24(9):941-950
  70. Lee YJ (2014): Motion Vision Processing in Fly Lobula Plate Tangential Cells. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 984. 47 pp. ISBN 978-91-554-8908-3.
  71. Ohta H, Ozoe Y (2014): Molecular Signalling, Pharmacology, and Physiology of Octopamine and Tyramine Receptors as Potential Insect Pest Control Targets. Adv Insect Physiol 46: Target Receptors in the Control of Insect Pests: Part II: 73-166
  72. Rien D, Kern R, Kurtz R (2013): Octopaminergic modulation of a fly visual motion-sensitive neuron during stimulation with naturalistic optic flow. Front Behav Neurosci 7
  73. Agrawal T, Sadaf S, Hasan G (2013): A Genetic RNAi Screen for IP3/Ca2+ Coupled GPCRs in Drosophila Identifies the PdfR as a Regulator of Insect Flight. PLoS Genet 9(10): e1003849
  74. Homberg U, Seyfarth J, Binkle U, Monastirioti M, Alkema MJ (2013): Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, Schistocerca gregaria. J Comp Neurol. 521(9):2025-2041
  75. Fuenzalida-Uribe N, Meza RC, Hoffmann HA, Varas R, Campusano JM (2013): nAChR-induced octopamine release mediates the effect of nicotine on a startle response in Drosophila melanogaster. J Neurochem. 2013 Jan 19. doi: 10.1111/jnc.12161. [Epub ahead of print]
  76. Rillich J, Stevenson PA, Pflueger H-J (2013): Flight and Walking in Locusts–Cholinergic Co-Activation, Temporal Coupling and Its Modulation by Biogenic Amines. PLoS ONE 8(5): e62899
  77. Wosnitza A, Bockemühl T, Dübbert M, Scholz H, Büschges A. (2013): Inter-leg coordination in the control of walking speed in Drosophila. J Exp Biol. 216(Pt 3):480-491
  78. Schneider A, Ruppert M, Hendrich O, Giang T, Ogueta M, Hampel S, Vollbach M, Büschges A, Scholz H (2012): Neuronal Basis of Innate Olfactory Attraction to Ethanol in Drosophila. PLoS ONE 7(12): e52007
  79. Adamo SA (2013): Parasites: evolution’s neurobiologists. J Exp Biol. 216(Pt 1):3-10. doi: 10.1242/jeb.073601.
  80. Suver MP, Mamiya A, Dickinson MH (2012): Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila. Curr Biol. 22(24): 2294-2302
  81. Sadaf S, Birman S, Hasan G (2012): Synaptic Activity in Serotonergic Neurons Is Required for Air-Puff Stimulated Flight in Drosophila melanogaster. PLoS ONE 7(9): e46405
  82. Herrera-Valdez MA, McKiernan EC, Berger SD, Ryglewski S, Duch C, Crook S (2012): Relating ion channel expression, bifurcation structure, and diverse firing patterns in a model of an identified motor neuron. J Comput Neurosci. 34(2):211-229
  83. Todorovic D, Markovic T, Prolic Z, Mihajlovic S, Rauš S, Nikolic L, Janac B (2012): The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera). Int J Radiat Biol. 89(1):44-50
  84. Selcho M, Pauls D, Jundi BE, Stocker RF, Thum AS (2012): The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol. 2012 May 24. doi: 10.1002/cne.23152
  85. Adamo SA (2012): Parasites – Evolution’s neurobiologists. What have they learned after millions of years of evolution? Journal of Experimental Biology Symposium 2012, Tenuta Il Cicalino, Massa Marittima, Italy: 17–21 March 2012: https://jeb2012.biologists.com/PDF/Adamo.pdf
  86. Lehmann FO, Schutzner P, Wang, H (2012): Visual motion sensing and flight path control in flies. IN: Frontiers in Sensing: From Biology to Engineering. (Eds. F. Barth, P. Humphrey, M. Srinivasan) 129-141, ISBN: 978-3-211-99748-2
  87. Cossío-Bayúgar R, Miranda-Miranda E, Narváez Padilla V, Olvera-Valencia F, Reynaud E (2012): Perturbation of tyraminergic/octopaminergic function inhibits oviposition in the cattle tick Rhipicephalus (Boophilus) microplus. J Insect Physiol. 58(5):628-633
  88. Holden-Dye L, Walker RJ (2012): Report on the 12th symposium on invertebrate neurobiology held 31 August-4 September 2011 at the Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Tihany, Hungary. Invert Neurosci. 12(1): 69-79
  89. Vonhoff F, Williams A, Ryglewski S, Duch C (2012): Drosophila as a Model for MECP2 Gain of Function in Neurons. PLoS ONE 7(2): e31835
  90. Banks CN, Adams ME (2011): Biogenic amines in the nervous system of the cockroach, Periplaneta americana following envenomation by the jewel wasp, Ampulex compressa. Toxicon. 59(2):320-328
  91. Pflüger HJ, Duch C (2011): Dynamic Neural Control of Insect Muscle Metabolism Related to Motor Behavior. Physiology 26:293-303
  92. Jung SN, Borst A, Haag J (2011): Flight activity alters velocity tuning of fly motion-sensitive neurons. J Neurosci. 31(25): 9231-9237
  93. Palmer CR, Kristan WB Jr. (2011): Contextual modulation of behavioral choice. Curr Opin Neurobiol. 21(4):520-526
  94. Stocker B (2011): Locust thoracic dorsal unpaired median (DUM) neurons: Differential activation and peripheral distribution of octopamine and tyramine. PhD Thesis, Freie Universität Berlin, Germany.
  95. Sinakevitch I, Mustard JA, Smith BH (2011): Distribution of the Octopamine Receptor AmOA1 in the Honey Bee Brain. PLoS ONE 6(1): e14536
  96. Longden KD, Krapp HG (2010): Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front. Syst. Neurosci. 4:153
  97. Yarali A, Gerber B (2010): A Neurogenetic Dissociation between Punishment-, Reward-, and Relief-Learning in Drosophila. Front Behav Neurosci. 4:189
  98. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  99. Sitaraman D, Zars M, Zars T (2010): Place memory formation in Drosophila is independent of proper octopamine signaling. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 196(4):299-305
  100. Schnaitmann C, Vogt K, Triphan T and Tanimoto H (2010): Appetitive and aversive visual learning in freely moving Drosophila. Front. Behav. Neurosci. 4:10. doi:10.3389/fnbeh.2010.00010
  101. Maimon G, Straw AD, Dickinson MH (2010): Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci. 13(3):393-9
  102. Vierk R, Duch C, Pflüger HJ (2010): Postembryonic development of centrally generated flight motor patterns in the hawkmoth, Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(1): 37-50
  103. Longden KD, Krapp HG (2009): State-dependent performance of optic-flow processing interneurons. J Neurophysiol. 102(6):3606-3618
  104. Huang J, Ohta H, Inoue N, Takao H, Kita T, Ozoe F, Ozoe Y (2009): Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem Mol Biol. 39(11):842-849
  105. Blumenthal EM (2009): Isoform- and cell-specific function of tyrosine decarboxylase in the Drosophila Malpighian tubule. J Exp Biol. 212(Pt 23):3802-3809
  106. Hesselberg T, Lehmann FO (2009): The role of experience in flight behaviour of Drosophila. J Exp Biol. 212(Pt 20):3377-3386.
  107. Westmark S, Oliveira EE, Schmidt J (2009): Pharmacological analysis of tonic activity in motoneurons during stick insect walking. J Neurophysiol. 102(2):1049-1061
  108. Peric-Mataruga V, Mircic D, Vlahovic M, Mrdakovic M, Todorovic D, Stevanovic D, Milosevic V. (2009): Effects of ghrelin on the feeding behavior of Lymantria dispar L. (Lymantriidae) caterpillars. Appetite. 53(1): 147-150.
  109. Pirri JK, McPherson AD, Donnelly JL, Francis MM, Alkema MJ (2009): A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron. 62(4):526-538.
  110. Lange AB (2009): Tyramine: from octopamine precursor to neuroactive chemical in insects. Gen Comp Endocrinol. 162(1):18-26
  111. Vierk R, Pflueger HJ, Duch C (2009): Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 195(3): 265-277
  112. Kononenko NL, Wolfenberg H, Pflüger H-J (2009): Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system: An immunocytochemical study. J. comp. Neurol. 512: 433-452
  113. Socha R, Kodrík D, Zemek R. (2008): Stimulatory effects of bioamines norepinephrine and dopamine on locomotion of Pyrrhocoris apterus (L.): is the adipokinetic hormone involved? Comp Biochem Physiol B Biochem Mol Biol. 151(3):305-310
  114. Duch C, Vonhoff F, Ryglewski S. (2008): Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. J Neurophysiol. 100(5):2525-2536
  115. Buhl E, Schildberger K, Stevenson PA (2008): A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight. J Exp Biol. 211(Pt 14):2346-57.
  116. Dierick HA. (2008): Fly fighting: octopamine modulates aggression. Curr Biol. 18(4):R161-163
  117. Vömel M, Wegener C (2008): Neuroarchitecture of Aminergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster. PLoS ONE 3(3): e1848
  118. Ryglewski S (2008): Functional analysis of membrane properties in identified insect neurons: The roles of ionic currents for intracellular calcium signaling, intrinsic excitability and dendritic growth. Doctoral thesis , FU Berlin, Germany.

Maye, A.; Hsieh, C.; Sugihara, G. and Brembs, B. (2007): Order in spontaneous behavior. PLoS ONE 2(5): e443
Citations:

  1. Beyts C, Cella M, Colegrave N, Downie R, Martin JGA, Walsh P. (2023): The effect of heterospecific and conspecific competition on inter-individual differences in tungara frog tadpole (Engystomops pustulosus) behavior.Behavioral Ecology: Official Journal of the International Society for Behavioral Ecology, 34(2): 210–222. https://doi.org/10.1093/beheco/arac109
  2. Koul A, Ahmar D, Iannetti GD, Novembre G. (2023): Interpersonal synchronization of spontaneously generated body movements.IScience, 26(3): 106104. https://doi.org/10.1016/j.isci.2023.106104
  3. Menzel R. (2023): Navigation and dance communication in honeybees: a cognitive perspective.Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. https://doi.org/10.1007/s00359-023-01619-9
  4. Zenil H, Marshall JAR, Tegnér J. (2022): Approximations of algorithmic and structural complexity validate cognitive-behavioral experimental results.Frontiers in Computational Neuroscience, 16, 956074. https://doi.org/10.3389/fncom.2022.956074
  5. Flammang BE. (2022): Bioinspired design in research: Evolution as beta-testing.Integrative and Comparative Biology, 62(5): 1164–1173. https://doi.org/10.1093/icb/icac134
  6. Tan JKP, Tan CP, Nurzaman SG. (2022): An embodied intelligence-based biologically inspired strategy for searching a moving target.Artificial Life, 28(3): 348–368. https://doi.org/10.1162/artl_a_00375
  7. Mazzucato L. (2022): Neural mechanisms underlying the temporal organization of naturalistic animal behavior. ELife, 11. https://doi.org/10.7554/eLife.76577
  8. Kwon V, Cai P, Dixon CT, Hamlin V, Spencer CG, Rojas AM, Hamilton M, Shiau CE. (2022):Peripheral NOD-like receptor deficient inflammatory macrophages trigger neutrophil infiltration into the brain disrupting daytime locomotion. Communications Biology, 5(1), 464. https://doi.org/10.1038/s42003-022-03410-z
  9. Kwon V, Cai P, Dixon CT, Hamlin V, Spencer CG, Rojas AM, Shiau CE. (2021): Peripheral NOD-like receptor deficient inflammatory macrophages trigger neutrophil infiltration disrupting daytime locomotion. In bioRxiv. https://doi.org/10.1101/2021.10.27.466033
  10. Jaiton V, Manoonpong P. (2021): Chaotic neural oscillator for navigation and exploration of autonomous drones. 28. https://doi.org/10.18910/84868
  11. Ahamed T, Costa AC, Stephens GJ. (2021): Capturing the continuous complexity of behaviour in Caenorhabditis elegans. Nat. Phys. 17:275-283. doi:10.1038/s41567-020-01036-8
  12. Chang O, Zhinin-Vera L. (2021): A Wise Up Visual Robot Driven by a Self-taught Neural Agent. In: Arai K, Kapoor S, Bhatia R, (eds.). Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1. FTC 2020. Advances in Intelligent Systems and Computing 1288. Springer, Cham. doi:10.1007/978-3-030-63128-4_47
  13. Steymans I, Pujol-Lereis LM, Brembs B, Gorostiza EA. (2021): Collective action or individual choice: Spontaneity and individuality contribute to decision-making in Drosophila. PLoS ONE. doi:10.1371/journal.pone.0256560
  14. Cocconi L, Kuhn-Régnier A, Neuss M, et al. (2021): Reconstructing the Intrinsic Statistical Properties of Intermittent Locomotion Through Corrections for Boundary Effects. Bull Math Biol83:28. doi:10.1007/s11538-020-00848-2
  15. Martinig AR, Mathot KJ, Lane JE, Dantzer B, Boutin S. (2021): Selective disappearance does not underlie age-related changes in trait repeatability in red squirrels. Behavioral Ecology 32(2):306-315. doi:10.1093/beheco/araa136
  16. Cooper B. (2021): Mechanisms of behavioural variance and plasticity in the desert locust. Doctoral thesis, University of Leicester. doi:10.25392/LEICESTER.DATA.14751423.V1
  17. Höll M, Barkai E. (2021): Big jump principle for heavy-tailed random walks with correlated increments. Eur. Phys. J. B. 94:216. doi:10.1140/epjb/s10051-021-00215-7
  18. Demin KA, Lakstygal AM, Volgin AD, de Abreu MS, Genario R, Alpyshov ET, Serikuly N, Wang D, Wang Jiantao, Yan D, Wang M, Yang L, Hu G, Bytov M, Zabegalov KN, Zhdanov A, Harvey BH, Costa F, Rosemberg DB, Leonard BE, Fontana BD, Cleal M, Parker MO, Wang Jiajia, Song C, Amstislavskaya TG, Kalueff AV. (2020): Cross-species Analyses of Intra-species Behavioral Differences in Mammals and Fish. Neuroscience. doi:10.1016/j.neuroscience.2019.12.035
  19. Abe MS. (2020): Lévy walks emerging near a critical point. E-print bioRxiv 27. doi:10.1101/2020.01.27.920801
  20. Abe MS, Kasada M. (2020): Optimal Random Avoidance Strategy in Prey-Predator Interactions. Cold Spring Harbor Laboratory. doi:10.1101/2020.03.04.976076
  21. Hammond AR, Meyers L, Purcell SW. (2020): Not so sluggish: movement and sediment turnover of the world’s heaviest holothuroid, Thelenota anax. Marine Biology 167(5). doi:10.1007/s00227-020-3671-5
  22. Mathuru AS, Libersat F, Vyas A, Teseo S. (2020): Why behavioral neuroscience still needs diversity?: A curious case of a persistent need. Neuroscience & Biobehavioral Reviews.doi:10.1016/j.neubiorev.2020.06.021
  23. Aa KL. (2020): Can environmental toxins increase parasite fitness? Ecotoxicological studies on the effects of microcystin on the host-parasite dynamics of Schistocephalus solidus. Master’s thesis, University of Bergen.
  24. Sanabria F. (2020): Internal-Clock Models and Misguided Views of Mechanistic Explanations: A Reply to Eckard & Lattal (2020). Perspect Behav Sci 43:779-790. doi:10.1007/s40614-020-00268-6
  25. Cellini B, Mongeau J-M. (2020): Hybrid visual control in fly flight: insights into gaze shift via saccades. Current Opinion in Insect Science. doi:10.1016/j.cois.2020.08.009
  26. Christensen K, Cocconi L, Sendova-Franks AB. (2021): Animal intermittent locomotion: A null model for the probability of moving forward in bounded space. Journal of Theoretical Biology. doi:10.1016/j.jtbi.2020.110533
  27. Shokaku T, Moriyama T, Murakami H, Shinohara S, Manome N, Morioka K. (2020): Development of an automatic turntable-type multiple T-maze device and observation of pill bug behavior. Review of Scientific Instruments 91(10). doi:10.1063/5.0009531
  28. Vervoort L, Blusiewicz T. (2020): Free will and (in)determinism in the brain: a case for naturalized philosophy. THEORIA 35(3):345-364. doi:10.1387/theoria.21302
  29. Travers E, Friedemann M, Haggard P. (2020): The Readiness Potential reflects planning-based expectation, not uncertainty, in the timing of action. Cognitive Neuroscience 12(1):14-27. doi:10.1080/17588928.2020.1824176
  30. Cornwell TO, McCarthy ID, Snyder CRA, Biro PA. (2019): The influence of environmental gradients on individual behaviour: Individual plasticity is consistent across risk and temperature gradients. J Anim Ecol. doi:10.1111/1365-2656.12935
  31. Fisher DN, Pruitt JN. (2019): Insights from the study of complex systems for the ecology and evolution of animal populations. Current Zoology. doi:10.1093/cz/zoz016
  32. Melanson A. (2019): Effective Stochastic Models of Neuroscientific Data with Application to Weakly Electric Fish. doi:10.20381/RUOR-23339
  33. Krueger JI. (2019): The Return of the Death Instinct. The American Journal of Psychology. doi:10.5406/amerjpsyc.132.2.0256
  34. Budaev S, Jørgensen C, Mangel M, Eliassen S, Giske J. (2019): Decision-Making From the Animal Perspective: Bridging Ecology and Subjective Cognition. Front Ecol Evol. doi:10.3389/fevo.2019.00164
  35. Sims DW, Humphries NE, Hu N, Medan V, Berni J. (2019): Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion. eLife. doi:10.7554/elife.50316
  36. Murano J, Mitsuishi M, Moriyama T. (2018): Behavioral pattern of pill bugs revealed in virtually infinite multiple T-maze. Artif Life Robotics 23:444-448. doi:10.1007/s10015-018-0457-7
  37. Grobstein P. (2018): The Brain as a Learner/Inquirer/Creator: Some Implications of Its Organization for Individual and Social Well Being Learning To Live Together: Promoting Social Harmony. Springer International Publishing, pp. 121-128. doi:10.1007/978-3-319-90659-1_14
  38. Sarp V, Kilcik A, Yurchyshyn V, Rozelot JP, Ozguc A. (2018): Prediction of solar cycle 25: a non-linear approach. Monthly Notices of the Royal Astronomical Society. doi:10.1093/mnras/sty2470
  39. Budaev S, Giske J, Eliassen S. (2018): AHA: A general cognitive architecture for Darwinian agents. Biologically Inspired Cognitive Architectures 25:51-57. doi:10.1016/j.bica.2018.07.009
  40. Chang O. (2018): Autonomous Robots and Behavior Initiators. Human-Robot Interaction – Theory and Application. doi:10.5772/intechopen.71958
  41. Ferris BD, Green J, Maimon G (2018): Abolishment of Spontaneous Flight Turns in Visually Responsive Drosophila. Current Biology. 28(2):170–180. DOI: 10.1016/j.cub.2017.12.008
  42. Toepfer F, Wolf R, Heisenberg M (2018): Multi-stability with ambiguous visual stimuli in Drosophila orientation behavior. PLOS Biology. 16(2):e2003113. DOI: 10.1371/journal.pbio.2003113
  43. Fisher DN, Brachmann M, Burant JB (2018): Complex dynamics and the development of behavioural individuality. Animal Behaviour. 138:1-6. DOI: 10.1016/j.anbehav.2018.02.015
  44. Ehrlich DE, Schoppik D (2017): Control of Movement Initiation Underlies the Development of Balance. Current Biology. 27(3):334–344. DOI: 10.1016/j.cub.2016.12.003
  45. Melanson A, Mejias JF, Jun JJ, Maler L, Longtin A (2017): Nonstationary Stochastic Dynamics Underlie Spontaneous Transitions between Active and Inactive Behavioral States. Eneuro. 4(2). DOI: 10.1523/ENEURO.0355-16.2017
  46. Ishida Y, Chiba R (2017): Free Will and Turing Test with Multiple Agents: An Example of Chatbot Design. Procedia Computer Science. 112: 2506–2518. DOI: 10.1016/j.procs.2017.08.190
  47. Yunes RA (2017): Information, system, complexity, feedbacks, retro-causality: an hypothesis based in the new paradigms of the universe, life, evolution and man. Syntropy. 1: 22-42. ISSN: 1825-7968
  48. Shi L, Xiao A (2017): Modeling Anomalous Diffusion by a Subordinated Integrated Brownian Motion. Advances in Mathematical Physics. 1–7. DOI: 10.1155/2017/7246865
  49. Nagaya N, Mizumoto N, Abe MS, Dobata S, Sato R, Fujisawa R (2017): Anomalous diffusion on the servosphere: A potential tool for detecting inherent organismal movement patterns. PLOS ONE. 12(6): e0177480. DOI: 10.1371/journal.pone.0177480
  50. Lindsay T, Sustar A, Dickinson M (2017): The Function and Organization of the Motor System Controlling Flight Maneuvers in Flies. Current Biology. 27(3):345–358. DOI: 10.1016/j.cub.2016.12.018
  51. Jandhyala VK, Fotopoulos SB (2017): Applications of random search methods to foraging in ecological environments and other natural phenomena-A review. Environmetrics. e2451. DOI: 10.1002/env.2451
  52. Guisandez L, Baglietto G, Rozenfeld A (2017): Heterogeneity promotes first to second order phase transition on flocking systems. arXiv:1711.11531. https://arxiv.org/abs/1711.11531
  53. Mele AR (2017): Aspects of Agency: Decisions, Abilities, Explanations, and Free Will. Oxford University Press. ISBN: 9780190659974
  54. Walter S (2016): Illusion freier Wille? B. Metzler. DOI: 10.1007/978-3-476-05445-6
  55. Campos D, Bartumeus F, Méndez V, Andrade JS Jr, Espadaler X (2016): Variability in individual activity bursts improves ant foraging success. Journal of The Royal Society Interface. 13(125): 20160856. DOI: 10.1098/rsif.2016.0856
  56. Zilio D (2016): On the autonomy of psychology from neuroscience: A case study of Skinner’s radical behaviorism and behavior analysis. Rev Gen Psych. 20: 155–170
  57. Kane R (2016): Moral Responsibility, Reactive Attitudes and Freedom of Will. The Journal of Ethics 20: 229–246
  58. Velasque M, Briffa M (2016): The opposite effects of routine metabolic rate and metabolic rate during startle responses on variation in the predictability of behaviour in hermit crabs. Behaviour. 153:1545–1566. doi:10.1163/1568539x-00003371
  59. Racine E, Nguyen V, Saigle V, Dubljevic V (2016): Media Portrayal of a Landmark Neuroscience Experiment on Free Will. Science and Engineering Ethics. 23(4):989–1007. DOI: 10.1007/s11948-016-9845-3
  60. Calderon DP, Kilinc M, Maritan A, Banavar JR, Pfaff D (2016): Generalized CNS arousal: An elementary force within the vertebrate nervous system. Neurosci Biobehav Rev. 68:167-176. doi: 10.1016/j.neubiorev.2016.05.014
  61. Valenti D, Denaro G, Conversano F, Brunet C, Bonanno A, Basilone G, Mazzola S, Spagnolo B (2016): The role of noise on the steady state distributions of phytoplankton populations. J. Stat. Mech., 054044
  62. Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang CT, Schier AF, Freeman J, Engert F, Ahrens MB (2016): Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. Elife. 5. pii: e12741. doi: 10.7554/eLife.12741
  63. Reynolds AM, Bartumeus F, Kölzsch A, van de Koppel J (2016): Signatures of chaos in animal search patterns. Sci Rep. 6:23492. doi: 10.1038/srep23492
  64. Chmielarz P, Kreiner G, Kusmierczyk J, Kowalska M, Roman A, Tota K, Nalepa I (2016): Depressive-like immobility behavior and genotype?×?stress interactions in male mice of selected strains. Stress 3:1-8, DOI: 10.3109/10253890.2016.1150995
  65. Kane R (2016): The complex tapestry of free will: striving will, indeterminism and volitional streams, Springer Science, DOI: 10.1007/s11229-016-1046-8
  66. Kane R (2016): Moral Responsibility, Reactive Attitudes and Freedom of Will. The Journal of Ethics. 20(1–3): 229–246. DOI: 10.1007/s10892-016-9234-9
  67. Hunt ER, Baddeley RJ, Worley A, Sendova-Franks AB, Franks NR (2016): Ants determine their next move at rest: motor planning and causality in complex systems. R. Soc. open sci. 3(1):150534 DOI: 10.1098/rsos.150534
  68. Taylor G (2015): Unravelling the sensory control of behaviour in honeybees using virtual reality paradigms. PhD thesis, University of Queensland. DOI: 14264/uql.2015.332
  69. Waller BN (2015): Restorative Free Will: Back to the Biological Base. Lexington Books, ISBN: 9781498522380, 328pp
  70. Sims DW (2015): Intrinsic Lévy behaviour in organisms–searching for a mechanism: Comment on “Liberating Lévy walk research from the shackles of optimal foraging” by A.M. Reynolds. Phys Life Rev. 14:111-114. doi: 10.1016/j.plrev.2015.06.002
  71. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  72. Moy K, Li W, Tran HP, Simonis V, Story E, Brandon C, Furst J, Raicu D, Kim H. (2015) Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior. PLOS ONE 10(12):e0145870, DOI:10.1371/journal.pone.0145870
  73. Abe MS, Shimada M (2015): Lévy Walks Suboptimal under Predation Risk. PLoS Comput Biol. 11(11):e1004601, DOI: 10.1371/journal.pcbi.1004601
  74. Kane R (2015): On the role of indeterminism in libertarian free will. Philosophical Explorations, DOI: 10.1080/13869795.2016.1085594
  75. Neuringer A (2015): Reinforced (un)predictability and the voluntary operant. Europ J Behav Anal, DOI: 10.1080/15021149.2015.1084767
  76. Lee RX, Kuhn B, Stephens GJ (2015): Prediction of spontaneous behavioral dynamics by neuronal population imaging in mouse neocortex. Presented at the 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), IEEE. DOI: 10.1109/ICIIBMS.2015.7439527
  77. Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AE (2015): Changes in Postural Syntax Characterize Sensory Modulation and Natural Variation of C. elegans Locomotion. PLoS Comput Biol. 11(8):e1004322 DOI: 10.1016/j.procs.2015.08.297
  78. Ishida Y (2015): A Note on Continuous Self-Identification as Self-Awareness: An Example of Robot Navigation. Procedia Computer Science, 60: 1865–1874, DOI: 10.1371/journal.pcbi.1004322
  79. Valenti D, Denaro G, Spagnolo B, Mazzola S, Basilone G, Conversano F, Brunet C, Bonanno A (2015): Stochastic models for phytoplankton dynamics in Mediterranean Sea. Ecol Complex DOI: 10.1016/j.ecocom.2015.06.001
  80. Kim AJ, Fitzgerald JK, Maimon G (2015): Cellular evidence for efference copy in Drosophila visuomotor processing. Nat Neurosci. 18: 1247–1255, DOI: 10.1038/nn.4083
  81. Sullivan C, Loughlin R, Schank JC, Joshi SS (2015): Genetic algorithms produce individual robotic rat pup behaviors that match Norway rat pup behaviors at multiple scales. Artif Life Robotics 20: 93–102, DOI: 10.1007/s10015-015-0208-y
  82. Kölzsch A, Alzate A, Bartumeus F, de Jager M, Weerman EJ, Hengeveld GM, Naguib M, Nolet BA, van de Koppel J (2015): Experimental evidence for inherent Lévy search behaviour in foraging animals. Proc Biol Sci. 282: 20150424–20150424, DOI: 10.1098/rspb.2015.0424
  83. Nurzaman SG, Yu X, Kim Y, Iida F (2015): Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics. Bioinspir. Biomim. 10(2):025004, DOI: 10.1088/1748-3190/10/2/025004
  84. Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH (2015): Body saccades of Drosophila consist of stereotyped banked turns. J Exp Biol. 218: 864–875, DOI: 10.1242/jeb.114280
  85. Bell HC (2014): Behavioral Variability in the Service of Constancy, International Journal of Comparative Psychology, 27(2): 338-360
  86. Humphries NE, Sims DW (2014): Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. J Theor Biol. 358: 179–193, DOI: 10.1016/j.jtbi.2014.05.032
  87. Christensen K, Papavassiliou D, de Figueiredo A, Franks NR, Sendova-Franks AB (2014): Universality in ant behaviour. J R Soc Interface. 12(102):20140985, DOI: 10.1098/rsif.2014.0985
  88. Pyke GH (2014): Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol Evol, 6: 1–16, DOI: 10.1111/2041-210X.12298
  89. Kane R (2014): II-Acting “of One”s Own Free Will’: Modern Reflections on an Ancient Philosophical Problem. Proceedings of the Aristotelian Society. 114:35–55. DOi: 10.1111/j.1467-9264.2014.00363.x
  90. Hillebrandt H, Friston KJ, Blakemore SJ (2014): Effective connectivity during animacy perception – dynamic causal modelling of Human Connectome Project data. Sci Rep. 4: 6240. DOI: 10.1038/srep06240
  91. Jung K, Jang H, Kralik JD, Jeong J (2014): Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions. PLoS Comput Biol, 10: e1003759. DOI: 10.1371/journal.pcbi.1003759
  92. Palmer D (2014): Libertarian Free Will: Contemporary Debates, Oxford University Press, ISBN 978-0-19-986008-1
  93. Sinnott-Armstrong W (2014): Moral Psychology, Volume 4: Free Will and Moral Responsibility, MIT Press, 474pp., ISBN 9780262525473
  94. MacIntosh AJJ (2014): The Fractal PrimatePrimate: Interdisciplinary Science and the Math behind the Monkey. Primate Res. 30: 95–119. DOI: 10.2354/psj.30.011
  95. Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF (2014) Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci, 17: 1455–1462. DOI: 10.1038/nn.3812
  96. Heisenberg M (2014): The Beauty of the Network in the Brain and the Origin of the Mind in the Control of Behavior. J Neurogen, 28: 389–399. DOI: 10.3109/01677063.2014.912279
  97. Moritz JM (2014): Animal suffering, evolution, and the origins of evil: toward a “free creatures” defense. Zygon 49: 348–380. DOI: 10.1111/zygo.12085
  98. Mix LJ, Masel J (2014): Chance, purpose, and progress in evolution and christianity. Evolution. 68(8):2441-2451, 10.1111/evo.12434. DOI:10.1111/evo.12434
  99. Nurzaman S, Yu X, Kim Y, Iida F (2014): Guided Self-Organization in a Dynamic Embodied System Based on Attractor Selection Mechanism. Entropy 16: 2592–2610
  100. Wearmouth VJ, McHugh MJ, Humphries NE, Naegelen A, Ahmed MZ, Southall EJ, Reynolds AM, Sims DW (2014): Scaling laws of ambush predator ‘waiting’ behaviour are tuned to a common ecology. Proc Biol Sci. 281(1782):20132997
  101. Wang R, Wang G, Zheng J (2014): An Exploration of the Range of Noise Intensity That Affects the Membrane Potential of Neurons. Abstract and Applied Analysis 2014:Article ID 801642, 1–11
  102. Seuront L, Stanley HE (2014): Anomalous diffusion and multifractality enhance mating encounters in the ocean. Proc Natl Acad Sci. 111:2206–2211
  103. Salvador LC, Bartumeus F, Levin SA, Ryu WS (2014): Mechanistic analysis of the search behaviour of Caenorhabditis elegans. J R Soc Interface. 11(92):2013.1092
  104. Benhamou S (2014): Of scales and stationarity in animal movements. Ecol Lett. 17:261–272
  105. Nayakar CSM, Omkar S, Srikanth R (2014): Consciousness, Libertarian Free Will and Quantum Randomness. pp 307-323 In: Menon S, Sinha A, Sreekantan BV (Eds.): Interdisciplinary Perspectives on Consciousness and the Self. 328p, Springer-Verlag, ISBN: 978-81-322-1587-5
  106. Humphries NE, Weimerskirch H, Sims DW (2013): A new approach for objective identification of turns and steps in organism movement data relevant to random walk modelling. Methods Ecol Evol. 4(10): 930–938 DOI: 10.1111/2041-210X.12096
  107. Griffith M (2013): Free Will: The basics. Routledge. ISBN: 0415562198
  108. Briffa M (2013): Plastic proteans: reduced predictability in the face of predation risk in hermit crabs. Biol Lett 9(5):20130592
  109. Kawabata M, Ueno T, Tomita J, Kawatani J, Tomoda A, Kume S, Kume K (2013): Temporal organization of rest defined by actigraphy data in healthy and childhood chronic fatigue syndrome children. BMC Psychiatry 13:281
  110. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  111. Dickinson MH (2014): Death Valley, Drosophila , and the Devonian Toolkit . Annu Rev Entomol. 59: 51–72
  112. Biro PA, Adriaenssens B (2013): Predictability as a Personality Trait: Consistent Differences in Intraindividual Behavioral Variation. Amer. Nat. 182: 621–629
  113. Heisenberg M (2013): Action Selection: The Brain as a Behavioral Organizer. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p9-13
  114. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  115. Humphries NE, Weimerskirch H, Sims DW (2013): A new approach for objective identification of turns and steps in organism movement data relevant to random walk modelling. Methods in Ecology and Evolution: n/a–n/a. DOI:https://dx.doi.org/10.1111/2041-210X.12096
  116. Denaro G, Valenti D, Spagnolo B, Basilone G, Mazzola S, Zgosi SW, Aronica S, Nonanno A (2013) Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion Model. PLoS ONE 8(6): e66765
  117. Raja S (2013): The neuronal basis of spontaneous flight behavior in Drosophila. PhD dissertation, FU Berlin
  118. Briffa M, Bridger D, Biro PA (2013): How does temperature affect behaviour? Multilevel analysis of plasticity, personality and predictability in hermit crabs. Anim Behav 86(1): 47–54
  119. Gomez-Marin, A. (2013): Tools, flies and what to do next. American Institute of Physics. AIP Conf. Proc. 1510: 120-123 doi:10.1063/1.4776508
  120. Censi A, Straw AD, Sayaman RW, Murray RM, Dickinson MH (2013): Discriminating external and internal causes for heading changes in freely flying Drosophila. PLoS Comput Biol. 9(2):e1002891
  121. Nepomnyashchikh VA (2013): Increases in variations in animal behavior induced by autocorrelations. Biol Bull Rev, 3(1), 49–56
  122. Wong KFE, Cheng C (2013): Predictable or Not? Individuals’ Risk Decisions Do Not Necessarily Predict Their Next Ones. PLoS ONE 8(2): e56811
  123. Heisenberg, M. (2013): The Origin of Freedom in Animal Behaviour. 95–103 In: Suarez, Antoine; Adams, Peter (Eds.) Is Science Compatible with Free Will? Is Science Compatible with Free Will? Exploring Free Will and Consciousness in the Light of Quantum Physics and Neuroscience. Springer 312p ISBN 978-1-4614-5212-6
  124. Martius G, Der R, Ay N (2013): Information driven self-organization of complex robotic behaviors PLoS One. 8(5):e63400
  125. Libersat F, Gal R (2013): What can parasitoid wasps teach us about decision-making in insects? J Exp Biol. 216(Pt 1):47-55. doi: 10.1242/jeb.073999
  126. Warzecha AK, Rosner R, Grewe J (2013): Impact and sources of neuronal variability in the fly’s motion vision pathway. J Physiol – Paris 07(1-2): 26-40. DOI: 10.1016/j.jphysparis.2012.10.002
  127. Nayakar CSM, Srikanth R (2012): Uncomputability and free will, arXiv:1210.6301 [physics.hist-ph]
  128. Sreedhar M, Upadhyay NM, Mishra S (2012): Optimized solutions for an optimization technique based on minority charge carrier inspired algorithm applied to selective harmonic elimination in induction motor drive. 2012 1st International Conference on Recent Advances in Information Technology (RAIT), DOI: 10.1109/RAIT.2012.6194523
  129. Petrou G (2012): Kinematics of cricket phonotaxis. PhD Thesis, University of Edinburgh
  130. Sreedhar M, Dasgupta A (2012): Experimental verification of Minority Charge Carrier Inspired Algorithm applied to voltage source inverter. In: 2012 IEEE 5th India International Conference on Power Electronics (IICPE). Institute of Electrical and Electronics Engineers, pp 1–6. [online] URL: https://dx.doi.org/10.1109/IICPE.2012.6450395
  131. Sims DW, Humphries NE (2012): Lévy flight search patterns of marine predators not questioned: a reply to Edwards et al. arXiv:1210.2288 [q-bio.PE]
  132. Paulk A, Millard SS, van Swinderen B (2012): Vision in Drosophila: Seeing the World Through a Model’s Eyes. Annu Rev Entomol. 58:313–332
  133. van Swinderen B (2012): Competing visual flicker reveals attention-like rivalry in the fly brain. Front Integr Neurosci. 6:96. doi: 10.3389/fnint.2012.00096
  134. Hartston W (2012): The Things That Nobody Knows: 501 Mysteries of Life, the Universe and Everything. Atlantic Books, ISBN-13: 978-1848878259
  135. Nurzaman SG, Matsumoto Y, Nakamura Y, Shirai K, Ishiguro H (2012): Bacteria-inspired underactuated mobile robot based on a biological fluctuation, Adapt Behav. 20(4) 225–236
  136. Koch C (2012): Consciousness: Confessions of a Romantic Reductionist. MIT Press ISBN-13: 978-0262017497
  137. Proekt A, Banavar JR, Maritan A, Pfaff DW (2012): Scale invariance in the dynamics of spontaneous behavior. Proc Natl Acad Sci U S A. 2012 Jun 7. [Epub ahead of print]
  138. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  139. Bazazi S, Bartumeus F, Hale JJ, Couzin ID (2012): Intermittent motion in desert locusts: behavioural complexity in simple environments. PLoS Comput Biol. 8(5):e1002498
  140. Magdziarz M, Metzler R, Szczotka W, Zebrowski P (2012): Correlated continuous-time random walks – Scaling limits and Langevin picture. J Stat Mech: Theor Exp. 4: P04010
  141. Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, Sims DW (2012): Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci U S A. 109(19):7169-7174
  142. Sims DW, Humphries NE, Bradford RW, Bruce BD (2012): Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J Anim Ecol. 81(2):432-442
  143. Barham JA (2012): Normativity, agency, and life. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 43(1): 92–103
  144. Joseph J, Dunn FA, Stopfer M (2012): Spontaneous olfactory receptor neuron activity determines follower cell response properties. J Neurosci. 32(8):2900-2910
  145. Mandayam Nayakar CS, Omkar S, Srikanth R (2012): Libertarian free will and quantum indeterminism. arXiv:1202.4440v2
  146. Ueno T, Masuda N, Kume S, Kume K (2012); Dopamine Modulates the Rest Period Length without Perturbation of Its Power Law Distribution in Drosophila melanogaster. PLoS ONE 7(2): e32007
  147. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  148. Barham JA (2011): Teleological Realism in Biology, PhD Thesis, University of Notre Dame, USA.
  149. Bendesky A, Bargmann CI (2011): Genetic contributions to behavioural diversity at the gene-environment interface. Nat Rev Genet. 12(12):809-820
  150. Rosner R, Warzecha AK (2011): Relating neuronal to behavioral performance: variability of optomotor responses in the blowfly. PLoS One. 6(10):e26886
  151. Mele AR (2011): Libertarianism and Human Agency. Phil Phen Res. DOI: 10.1111/j.1933-1592.2011.00529.x
  152. Sims DW, Humphries NE, Bradford RW, Bruce BD (2011): Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J Anim Ecol. 2011 Oct 17. doi: 10.1111/j.1365-2656.2011.01914.x. [Epub ahead of print]
  153. Windecker R (2011): Stochastic Artificial Neural Networks and random walks. The 2011 International Joint Conference on Neural Networks, 1134-1140
  154. He BJ (2011): Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task. J Neurosci. 31(39):13786-13795
  155. Nurzaman SG, Matsumoto Y, Nakamura Y, Koizumi S, Ishiguro H (2011): ‘Yuragi’-Based Adaptive Mobile Robot Search With and Without Gradient Sensing: From Bacterial Chemotaxis to a Lévy Walk. Adv. Robot. 25(16): 2019-2037
  156. Lewejohann L, Zipser B, Sachser N (2011): “Personality” in laboratory mice used for biomedical research: A way of understanding variability? Dev Psychobiol. 53(6):624-630
  157. Hays GC, Bastian T, Doyle TK, Fossette S, Gleiss AC, Gravenor MB, Hobson VJ, Humphries NE, Lilley MK, Pade NG, Sims DW (2011): High activity and Lévy searches: jellyfish can search the water column like fish. Proc Biol Sci. 279(1728):465-473
  158. Sorribes A, Armendariz BG, Lopez-Pigozzi D, Murga C, de Polavieja GG (2011): The Origin of Behavioral Bursts in Decision-Making Circuitry. PLoS Comput Biol 7(6): e1002075
  159. Abidin ZZ, Arshad MR, Ngah UK (2011): A simulation based fly optimization algorithm for swarms of mini autonomous surface vehicles application. Ind. J. Geo-Mar. Sci. 40(2): 250-266
  160. Flammang BE, Porter ME (2011): Bioinspiration: Applying Mechanical Design to Experimental Biology. Integr Comp Biol. 51 (1): 128-132
  161. Zou S, Liedo P, Altamirano-Robles L, Cruz-Enriquez J, Morice A, Ingram DK, Kaub K, Papadopoulos N, Carey JR (2011): Recording Lifetime Behavior and Movement in an Invertebrate Model. PLoS ONE 6(4): e18151.
  162. Glaser SM, Ye H, Maunder MN, MacCall AD, Fogarty MJ, Sugihara G (2011): Detecting and forecasting complex nonlinear dynamics in spatially-structured catch-per-unit-effort time series for North Pacific albacore (Thunnus alalunga). Can. J. Fish. Aquat. Sci. 68: 400–412
  163. Nurzaman SG, Matsumoto Y, Nakamura Y, Shirai K, Koizumi S, Ishiguro H. (2011): From Lévy to Brownian: a computational model based on biological fluctuation. PLoS One. 6(2):e16168
  164. Nayakar CSM, Srikanth R (2010): Quantum randomness and free will. arXiv:1011.4898v1
  165. Tang S, Juusola M (2010): Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices. PLoS ONE 5(12): e14455. doi:10.1371/journal.pone.0014455
  166. Abidin ZZ, Arshad MR, Ngah UK (2010): Waypoint control of drosobots: Swarms of mini ASVs. IEEE Symposium on Industrial Electronics and Applications, art. no. 5679401, pp. 556-561
  167. Tanimura Y, Yang MC, Ottens AK, Lewis MH (2010): Development and temporal organization of repetitive behavior in an animal model. Dev Psychobiol. 52(8):813-824
  168. Gal R, Libersat F (2010): On predatory wasps and zombie cockroaches: Investigations of “free will” and spontaneous behavior in insects. Commun Integr Biol. 3(5):458-61
  169. Abidin ZZ, Ngah UK, Arshad MR, Ping OB (2010): A novel fly optimization algorithm for swarming application2010 IEEE Conference on Robotics Automation and Mechatronics (RAM) 425-428, DOI: 10.1109/RAMECH.2010.5513157
  170. Tanimura Y, Yang MC, Ottens AK, Lewis MH (2010): Development and temporal organization of repetitive behavior in an animal model. Dev Psychobiol. 2010 Jul 6. DOI: 10.1002/dev.20477
  171. Gardiner J, Overall R, Marc J (2010): The Fractal Nature of the Brain: EEG Data Suggests That the Brain Functions as a “Quantum Computer” in 5-8 Dimensions. NeuroQuantology 2: 137-141
  172. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010): The temporal structures and functional significance of scale-free brain activity. Neuron. 66(3):353-369
  173. Stewart FJ, Baker DA, Webb B (2010): A model of visual-olfactory integration for odour localisation in free-flying fruit flies. J Exp Biol. 213(11):1886-1900
  174. Gal R, Libersat F (2010): A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey. PLoS ONE 5(4): e10019
  175. Frye MA (2010): Multisensory systems integration for high-performance motor control in flies. Curr Opin Neurobiol. 20 (3): 347-352
  176. Hong YY, Velegol D, Chaturvedi, N, Sen, A (2010): Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. Phys. Chem. Chem. Phys. 12(7): 1423-1435
  177. Kagaya K, Takahata m (2010): Readiness Discharge for Spontaneous Initiation of Walking in Crayfish. J Neurosci. 30(4):1348-1362
  178. Nurzaman SG, Matsumoto Y, Nakamura Y, Shirai K, Koizumi S, Ishiguro H (2010): An adaptive switching behavior between levy and Brownian random search in a mobile robot based on biological fluctuation. Presented at the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE. DOI: 10.1109/IROS.2010.5651671
  179. Nurzaman SG, Matsumoto Y, Nakamura Y, Koizumi S, Ishiguro H (2009): Biologically inspired adaptive mobile robot search with and without gradient sensing. Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, St. Louis, MO, USA Pages: 142-147
  180. Remy SL (2009): How to teach a new robot new tricks-an interactive learning framework applied to service robotics. PhD Dissertation, Georgia Institute of Technology, USA
  181. Abidin ZZ, Arshad MR, Ngah UK (2009): A Survey: Animal-Inspired Metaheuristic Algorithms. 2nd Postgraduate Colloquium School of Electrical & Electronic USM, EEPC 2009, Bukit Jawi Golf Resort, 2nd November 2009
  182. Stewart FJ (2009): Modelling visual-olfactory integration in free-flying Drosophila. PhD dissertation, University of Edinburgh, UK
  183. Koch C (2009): Free Will, Physics, Biology, and the Brain. In: Understanding Complex Systems: Downward Causation and the Neurobiology of Free Will. (Springer Berlin / Heidelberg); 31-52. ISBN: 978-3-642-03204-2
  184. Bartumeus F Catalan J (2009): Optimal search behavior and classic foraging theory. J Phys A: Math Theor. 42(43): 434002
  185. Chechkin, AV, Hofmann, M,; Sokolov, IM (2009): Continuous-time random walk with correlated waiting times Phys Rev. E 80 (3): Art. No. 031112 Part 1
  186. Chow DM, Frye MA (2009): The neuro-ecology of resource localization in Drosophila: behavioral components of perception and search. Fly (Austin). 3(1):50-61
  187. Yanagawa T, Mogi K. (2009): Analysis of ongoing dynamics in neural networks. Neurosci Res. 64(2):177-184.
  188. Steven Shaviro (2009): Without Criteria: Kant, Whitehead, Deleuze, and Aesthetics (Cambridge: MIT Press).
  189. Ryser, P (2009): Creative Choice: How the Mind could Causally Affect the Brain. J Consc Stud. 16(2-3): 6-29
  190. Bartumeus F (2009): Behavioral intermittence, Lévy patterns, and randomness in animal movement. Oikos. 118(4): 488-494
  191. Krstic D, Boll W, Noll M (2009): Sensory integration regulating male courtship behavior in Drosophila. PLoS ONE. 4(2):e4457
  192. Vacariu G (2008): Epistemologicallky different worlds. Editura Universitatii din Bucuresti, ISBN 978-973-737-442-4
  193. Bartumeus F, Levin SA (2008): Fractal reorientation clocks: Linking animal behavior to statistical patterns of search. Proc Natl Acad Sci U S A. 105(49):19072-19077
  194. Dees ND, Bahar S, Moss F (2008): Stochastic resonance and the evolution of Daphnia foraging strategy. Phys. Biol. 5: 1-6
  195. Chikamoto K, Kagaya K, Takahata M (2008): Electromyographic Characterization of Walking Behavior Initiated Spontaneously in Crayfish. Zool. Sci. 25(8): 783–792
  196. Takahashi H, Horibe N, Ikegami T, Shimada M (2008): Analyzing house fly’s exploration behavior with autoregression methods. J. Phys. Soc. Jpn. 77(8): 084802
  197. Schoppik D, Nagel KI, Lisberger SG (2008): Cortical Mechanisms of Smooth Eye Movements Revealed by Dynamic Covariations of Neural and Behavioral Responses. Neuron 58, 248–260
  198. Meixner U (2008): New Perspectives for a Dualistic Conception of Mental Causation. J. Consc. Stud. 15(1): 17-38
  199. Artzy-Randrup Y, Bartumeus F, Mahoney J (2007): Human Random Search Strategies in a Soccer Field. Paper presented at the 2007 Complex Systems Summer School, Santa Fe.
  200. Paixão T (2007): The Stochastic Basis of Somatic Variation. Doctoral thesis, University of Porto, Portugal.
  201. Hong Y, Blackman NMK, Kopp ND, Sen A, Velegol D (2007): Chemotaxis of Nonbiological Colloidal Rods. Phys. Rev. Let. 99, 178103
  202. Niven JE (2007): Ghost in the machine? J. exp. Biol. 210(19): V

Brembs B, Hempel de Ibarra N. (2006): Different parameters support generalization and discrimination learning in Drosophila at the flight simulator. Learn Mem. 13(5): 629-637
Citations:

  1. White TE, Dalrymple RL, Herberstein ME, Kemp DJ (2016): The perceptual similarity of orb-spider prey lures and flower colours. Evol Ecol. 31(1): 1–20. DOI: 10.1007/s10682-016-9876-x
  2. Ajuria-Ibarra H, Tapia-McClung H & Rao D (2017): Mapping the variation in spider body colouration from an insect perspective. Evol Ecol. 31(5): 663–681. DOI: 10.1007/s10682-017-9904-5
  3. Robledo-Ospina LE, Escobar-Sarria F, Troscianko J & Rao D (2017): Two ways to hide: predator and prey perspectives of disruptive coloration and background matching in jumping spiders. Biol J Linnean Soc. 122(4): 752–764. DOI: 10.1093/biolinnean/blx108
  4. Marcus M, Burnham TC, Stephens DW & Dunlap AS (2017). Experimental evolution of color preference for oviposition in Drosophila melanogaster. J Bioeconomics. 20(1), 125–140. DOI: 10.1007/s10818-017-9261-z
  5. White TE, Kemp DJ (2016): Color polymorphic lures target different visual channels in prey. Evolution. 70(6):1398-1408. doi: 10.1111/evo.12948
  6. Germain M, Blanchet S, Loyau A, Danchin É (2016): Mate-choice copying in Drosophila melanogaster: Impact of demonstration conditions and male-male competition. Behav Processes. 125:76-84. doi: 10.1016/j.beproc.2016.02.002
  7. Cohen S, Benjamini Y, Golani I (2015): Coping with Space Neophobia in Drosophila melanogaster: The Asymmetric Dynamics of Crossing a Doorway to the Untrodden. PLOS ONE 10:(12):e0140207, DOI: 10.1371/journal.pone.0140207
  8. Kelly MM, Gaskett AC (2014): UV reflectance but no evidence for colour mimicry in a putative brood-deceptive orchid Corybas cheesemanii. Curr Zool 60 (1), 104-113
  9. Giurfa M, Menzel R (2013): Cognitive components of insect behavior. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p14-25
  10. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  11. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  12. Niggebrügge, C (2008): Untersuchungen zum Farbensehen und Farbenlernen der Honigbiene (Apis mellifera): vom Photorezeptor zum Verhalten. Doctoral thesis , FU Berlin, Germany.
  13. Peng Y, Xi W, Zhang W, Zhang K, Guo A (2007): Experience Improves Feature Extraction in Drosophila. J. Neurosci. 27:5139-5145

Brembs B. and Wiener J. (2006): Context and occasion setting in Drosophila visual learning. Learn. Mem. 13(5): 618-628
Citations:

  1. Mesich J, Reynolds A, Liu M, Laberge F. (2022): Recovery-from-extinction effects in an anuran amphibian: renewal effect, but no reinstatement. Animal Cognition, 25(2):359–368. https://doi.org/10.1007/s10071-021-01558-5
  2. Eschbach C, Fushiki A, Winding M. et al. (2020): Recurrent architecture for adaptive regulation of learning in the insect brain. Nat Neurosci 23:544-555. doi:10.1038/s41593-020-0607-9
  3. Lafon G, Geng H, Avarguès-Weber A, Buatois A, Massou I, Giurfa M. (2022): The neural signature of visual learning under restrictive virtual-reality conditions. Frontiers in Behavioral Neuroscience, 16, 846076. https://doi.org/10.3389/fnbeh.2022.846076
  4. Coban-Poppinga B. (2020): Plasticity of Dopamine-Releasing Central Brain Neurons Underlying Adaptational Feeding-Related Behavior in Drosophila Melanogaster. Doctoral dissertation, Georg-August-Universität Göttingen.
  5. Assael-Monier M. (2020): Mate copying chez la drosophile: importance Évolutive et bases mécanistiques. Doctoral dissertation, Université Paul Sabatier-Toulouse III.
  6. Durrieu M, Wystrach A, Arrufat P, Giurfa M, Isabel G. (2020): Fruit flies can learn non-elemental olfactory discriminations. Proc. R. Soc. B 287:20201234. doi:10.1098/rspb.2020.1234
  7. Czaczkes TJ, Kumar P. (2020): Very rapid multi-odour discrimination learning in the ant Lasius niger. Insect. Soc. 67:541-545. doi:10.1007/s00040-020-00787-0
  8. Grabowska MJ, Jeans R, Steeves J, van Swinderen B. (2020): Oscillations in the central brain of Drosophila are phase locked to attended visual features. Proc Natl Acad Sci USA 117(47):9925-29936. doi:10.1073/pnas.2010749117
  9. Merritt DM, Melkis JG, Kwok B, Tran C, van der Kooy D. (2019): Analysis of Mutants Suggests Kamin Blocking in C. elegans is Due to Interference with Memory Recall Rather than Storage. Sci Rep. doi:10.1038/s41598-019-38939-3
  10. Fraser KM, Holland PC. (2019): Occasion setting. Behavioral Neuroscience. doi:10.1037/bne0000306
  11. Santos-Pata D, Escuredo A, Mathews Z, Verschure PFMJ. (2018): Insect Behavioral Evidence of Spatial Memories During Environmental ReconfigurationBiomimetic and Biohybrid Systems. Springer International Publishing, pp. 415-427. doi:10.1007/978-3-319-95972-6_45
  12. Grabowska MJ, Steeves J, Alpay J, van de Poll M, Ertekin D, van Swinderen B. (2018): Innate visual preferences and behavioral flexibility in Drosophila. Journal of Experimental Biology. doi:10.1242/jeb.185918
  13. Leising KJ, Bonardi C (2017): Occasion setting. Behav Proc. 137: 1–4. DOI: 10.3389/fnbeh.2017.00141
  14. Kirkerud NH, Schlegel U, Giovanni Galizia C (2017): Aversive Learning of Colored Lights in Walking Honeybees. Front Behav Neurosci. 11. DOI: 10.3389/fnbeh.2017.00094
  15. Schultheiss P, Buatois A, Avarguès-Weber A, Giurfa M (2017): Using virtual reality to study visual performances of honeybees. Curr Opin Insect Sci. 24:43–50. DOI: 10.1016/j.cois.2017.08.003
  16. Santos-Pata D, Escuredo A, Mathews Z, Verschure PF (2017): Insect behavioral evidence of spatial memories during environmental reconfiguration.
  17. Ravi S, Garcia JE, Wang C, Dyer AG (2016): The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions. J Exp Biol. 219(21): 3465–3472. DOI: 10.1242/jeb.142679
  18. Liu Q, Yang X, Tian J, Gao Z, Wang M, Li Y, Guo A (2016): Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila.. Elife. 5. pii: e13238. doi: 10.7554/eLife.13238
  19. Farris SM (2016): Insect societies and the social brain. Curr Op Ins Sci. 15: 1-8
  20. Van De Poll MN, Zajaczkowski EL, Taylor GJ, Srinivasan MV, van Swinderen B (2015): Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. J Exp Biol. 218(Pt 21):3448-60. doi: 10.1242/jeb.125138
  21. Avargués-Weber A, Lihoreau M, Isabel G, Giurfa M (2015): Information transfer beyond the waggle dance: observational learning in bees and flies. Front Ecol Evol, 3, DOI: 10.3389/fevo.2015.00024
  22. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H (2014): Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife, 3:e02395, DOI: 10.7554/eLife.02395
  23. Kottler B, van Swinderen B (2014): Taking a new look at how flies learn. eLife, 3:e03978, DOI: 10.7554/eLife.03978
  24. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  25. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  26. Zhang X, Ren Q, Guo A (2013): Parallel pathways for cross-modal memory retrieval in Drosophila. J Neurosci. 33(20):8784-8793
  27. Fustiñana MS, Carbó Tano M, Romano A, Pedreira ME (2013): Contextual Pavlovian conditioning in the crab Chasmagnathus. Anim Cogn. 16(2):255-272
  28. Ren Q, Li H, Wu Y, Ren J, Guo A (2012): A GABAergic inhibitory neural circuit regulates visual reversal learning in Drosophila. J Neurosci. 32(34):11524-11538
  29. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  30. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  31. Wessnitzer J, Young JM, Armstrong JD, Webb B (2011): A model of non-elemental olfactory learning in Drosophila. J Comput Neurosci. 32(2):197-212
  32. Young JM, Wessnitzer J, Armstrong JD, Webb B (2011): Elemental and non-elemental olfactory learning in Drosophila. Neurobiol Learn Mem. 96(2):339-352
  33. Farris SM (2011): Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev. 40(4):368-379
  34. Mota T, Giurfa M, Sandoz JC (2011): Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem. 18(3):144-155
  35. Farris SM, Schulmeister S (2010): Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci. 278 (1707): 940-951
  36. Foucaud J, Burns JG, Mery F (2010): Use of Spatial Information and Search Strategies in a Water Maze Analog in Drosophila melanogaster. PLoS ONE 5(12): e15231
  37. Lau HL (2010): Chemosensory context conditioning in Ceanorhabditis elegans. MSc dissertation, The University of British Columbia
  38. Dunlap-Lehtilä AS (2009): Change and Reliability in the Evolution of Learning and Memory. PhD dissertation, University of Minnesota
  39. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  40. van Swinderen B, McCartney A, Kauffman S, Flores K, Agrawal K, Wagner J, Paulk A (2009): Shared Visual Attention and Memory Systems in the Drosophila Brain. PLoS ONE 4(6): e5989.
  41. Seugnet L, Suzuki Y, Stidd R, Shaw PJ. (2009): Aversive Phototaxic Suppression: evaluation of a short-term memory assay in Drosophila melanogaster. Genes Brain Behav. 8(4): 377-389
  42. Bueno JL, Holland PC (2008): Occasion setting in Pavlovian ambiguous target discriminations. Behav Processes. 79(3):132-147
  43. Tanaka NK, Tanimoto H, Ito K. (2008): Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol. 508(5):711-755.
  44. van Swinderen B. (2007): Attention-like processes in Drosophila require short-term memory genes. Science. 315(5818):1590-1593
  45. Peng Y, Xi W, Zhang W, Zhang K, Guo A (2007): Experience Improves Feature Extraction in Drosophila. J. Neurosci. 27:5139-5145

Menzel R.; Brembs, B. and Giurfa M. (2006): Cognition in Invertebrates. In: Kaas, J.H. (ed.) Evolution of Nervous Systems. Academic Press, Oxford ; pp. 403-442
Citations:

  1. Heinrich DDU, Huveneers C, Houslay TM, Dhellemmes F, Brown C. (2022): Shark habituation to a food-related olfactory cue. Animal Behaviour, 187:147–165. https://doi.org/10.1016/j.anbehav.2022.03.003
  2. Singh S, Dhyani S, Kokate P. (2021): Assessing insect responses towards different wavelengths of light: Lessons from illumination perspectives. Climate Change and Environmental Sustainability, 9(1):64–73. https://doi.org/10.5958/2320-642x.2021.00007.7
  3. Menzel R. (2021): A short history of studies on intelligence and brain in honeybees. Apidologie 52:23-34. doi:10.1007/s13592-020-00794-x
  4. Anton S, Rössler W. (2021): Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 383:149-164. doi:10.1007/s00441-020-03329-z
  5. Winsor AM, Pagoti GF, Daye DJ, Cheries EW, Cave KR, Jakob EM. (2021): What gaze direction can tell us about cognitive processes in invertebrates. Biochemical and Biophysical Research Communications 564:43-54. doi:10.1016/j.bbrc.2020.12.001
  6. Steedman CC. (2021): Wildlife-pet markets in a one-health context. Int. J. One Health 7(1):42-64. doi:10.14202/IJOH.2021.42-64
  7. Jin N, Paffhausen BH, Duer A, Menzel R. (2020): Mushroom Body Extrinsic Neurons in Walking Bumblebees Correlate With Behavioral States but Not With Spatial Parameters During Exploratory Behavior. Front. Behav. Neurosci. 14:590999. doi:10.3389/fnbeh.2020.590999
  8. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  9. Schilling M. (2019): Setup of a Recurrent Neural Network as a Body Model for Solving Inverse and Forward Kinematics as well as Dynamics for a Redundant Manipulator. 2019 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2019.8851783
  10. Haenicke J, Yamagata N, Zwaka H, Nawrot M, Menzel R. (2018): Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx. eNeuro5:ENEURO.0128-18.2018. doi:10.1523/eneuro.0128-18.2018
  11. Gorostiza EA. (2018): Does Cognition Have a Role in Plasticity of “Innate Behavior”? A Perspective From Drosophila. Front Psychol. doi:10.3389/fpsyg.2018.01502
  12. Menzel R (2017): Navigation and Communication in Insects. In: Byrne JH (Eds): Learning and Memory: A Comprehensive Reference. 389–405. Elsevier. DOI: 10.1016/B978-0-12-809324-5.21018-3
  13. Schilling M, Cruse H (2017): ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems. Front Neurorobotics, 11. DOI: 10.3389/fnbot.2017.00003
  14. Domjan M & Krause M (2017): Generality of the Laws of Learning: From Biological Constraints to Ecological Perspectives. In Byrne JH (Eds): Learning and Memory: A Comprehensive Reference. 189–201. Elsevier. DOI: 10.1016/B978-0-12-809324-5.21012-2
  15. Zhang H & Blumenthal EM (2017): Identification of multiple functional receptors for tyramine on an insect secretory epithelium. Sci Rep. 7(1). DOI: 10.1038/s41598-017-00120-z
  16. Borgeaud C (2016): Strategic social behaviour in wild vervet monkeys. PhD thesis, Université de Neuchâtel
  17. Service EW, Plowright CMS (2015): Food restriction and threat of predation affect visual pattern choices by flower-naïve bumblebees. Learn Motiv. 50: 3-10, DOI:10.1016/j.lmot.2014.10.006
  18. Arien Y, Dag A, Zarchin S, Masci T, Shafir S (2015): Omega-3 deficiency impairs honey bee learning. Proc Natl Acad Sci U S A. 112(51):15761-15766, DOI: 10.1073/pnas.1517375112.
  19. Roth G (2015): Convergent evolution of complex brains and high intelligence. Philos Trans R Soc Lond B Biol Sci. 370(1684). pii: 20150049, DOI: 10.1098/rstb.2015.0049
  20. Falibene A, Roces F, Rössler W (2015): Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants. Front. Behav. Neurosci., 9:84 DOI: 10.3389/fnbeh.2015.00084
  21. Tew ER, Adamson A, Hesselberg T (2015): The web repair behaviour of an orb spider. Anim Behav. 103: 137–146, DOI: 10.1016/j.anbehav.2015.02.016
  22. Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MD, Gallistel CR, Warman GR, Menzel R (2014): Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc Natl Acad Sci U S A. 111: 8949–8954, DOI: 10.1073/pnas.1408039111
  23. Cruse H, Schilling M (2013): How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network. Front. Psychol. 4:324
  24. Parmir E (2013): From behavioral plasticity to neuronal computation: An investigation of associative learning in the honeybee brain. PhD thesis, Freie Universität Berlin https://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094475
  25. Hussaini SA, Menzel R (2013): Mushroom body extrinsic neurons in the honeybee brain encode cues and contexts differently. J Neurosci. 33(17):7154-7164
  26. Eckstein MP, Mack SC, Liston DB, Bogush L, Menzel R, Krauzlis RJ (2013): Rethinking human visual attention: Spatial cueing effects and optimality of decisions by honeybees, monkeys and humans. Vision Res. 2013 Jan 5. doi:pii: S0042-6989(12)00416-6. 10.1016/j.visres.2012.12.011
  27. Carazo P, Fernández-Perea R, Font E (2012): Quantity estimation based on numerical cues in the mealworm beetle (Tenebrio molitor). Front. Psychology 3:502. doi: 10.3389/fpsyg.2012.00502
  28. Jeanson R, Dussutour A, Fourcassié V (2012): Key factors for the emergence of collective decision in invertebrates. Front Neurosci. 6:121
  29. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  30. Giurfa M, Sandoz JC (2012): Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem. 19(2):54-66
  31. Pamir E, Chakroborty NK, Stollhoff N, Gehring KB, Antemann V, Morgenstern L, Felsenberg J, Eisenhardt D, Menzel R, Nawrot MP. (2011): Average group behavior does not represent individual behavior in classical conditioning of the honeybee. Learn Mem. 18(11):733-741
  32. Vinauger C, Buratti L, Lazzari CR (2011): Learning the way to blood: first evidence of dual olfactory conditioning in a blood-sucking insect, Rhodnius prolixus. I. Appetitive learning. J Exp Biol. 214(Pt 18):3032-3038
  33. Matsumoto CS, Matsumoto Y, Watanabe H, Nishino H, Mizunami M. (2011): Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches. Neurobiol Learn Mem. 2011 Sep 10. [Epub ahead of print]
  34. Cruse H, Wehner R (2011): No Need for a Cognitive Map: Decentralized Memory for Insect Navigation. PLoS Comput Biol 7(3): e1002009
  35. Bar-Shaia N, Keasarb T, Shmida A (2011): The use of numerical information by bees in foraging tasks. Behav Ecol 22 (2): 317-325
  36. Gal R, Libersat F (2010): On predatory wasps and zombie cockroaches: Investigations of “free will” and spontaneous behavior in insects. Commun Integr Biol. 3(5):458-61
  37. Roussel E, Sandoz JC, Giurfa M (2010): Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honeybees. Front Behav. Neurosci. 4: 155
  38. Abramson CI, Nolf SL, Mixson TA, Well H (2010): Can Honey Bees Learn the Removal of a Stimulus as a Conditioning Cue? Ethology 116: 1–12 doi: 10.1111/j.1439-0310.2010.01796.x
  39. Bar-Shai N, Keasar T, Shmida A (2010): The use of numerical information by bees in foraging tasks. Center for the study of rationality – Hebrew University of Jerusalem, Discussion Paper # 555 June 2010
  40. Tomina Y, Takahata M. (2010): A behavioral analysis of force-controlled operant tasks in American lobster. Physiol Behav. 101(1): 108-116
  41. Abramson CI (2009): A Study in Inspiration: Charles Henry Turner (1867–1923) and the Investigation of Insect Behavior. Annu. Rev. Entomol. 54:343–359
  42. Wehner R (2009): The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecological News, 12: 85-96
  43. Bozkurt A, Gilmour RF, Sinha A, Stern D, Lal A (2009): Insect–Machine Interface Based Neurocybernetics. IEEE Transactions on Biomedical Engineering 56(6): 1727 – 1733
  44. Josens R, Eschbach C, Giurfa M (2009): Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants. J Exp Biol. 212(Pt 12):1904-1911
  45. Carazo P, Font E, Forteza-Behrendt E, Desfilis E (2009): Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate? Anim Cogn. 12(3):463-470
  46. Garzón PC, Keijzer F (2009): Cognition in plants. In: F. Baluška (Ed.) Plant – environment interactions: Behavioral perspective. Elsevier.
  47. Menzel R. (2009): Serial position learning in honeybees. PLoS ONE 4(3): e4694.
  48. Platt M, Dayan P, Dehaene S, McCabe K, Menzel R, Phelps E, Plassmann H, Ratcliff R, Shadlen M, Singer W (2008): Neuronal correlates of decision making. In: Engel C and Singer W (Eds.) Better Than Conscious? Decision Making, the Human Mind, and Implications For Institutions. MIT Press
  49. Menzel R. (2008): Insect minds for human minds. In: Benjamin AS, de Belle JS, Etnyre B, Polk TA(eds.) Human Learning, pp. 271-285, Elsevier
  50. Menzel R. (2007): Electrophysiology and Optophysiology of Complex Brain Functions in Insects. In: North G and Greenspan RJ (eds.) Invertebrate Neurobiology, pp. 53-78, CSHL Press.
  51. Okada R, Rybak J, Manz G, Menzel R. (2007): Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci. 27(43):11736-11747.
  52. van Duijn M, Keijzer F, Franken D (2006): Principles of minimal cognition: Casting cognition as sensorimotor coordination. Adapt. Behav. 14 (2): 157-170

Phillips A.M.; Smart R.; Strauss R.; Brembs B. and Kelly L.E. (2005): The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele. Gene 351:131-142
Citations:

  1. Brent CS, Heu CC, Gross RJ, Fan B, Langhorst D, Hull JJ. (2022): RNAi-mediated manipulation of cuticle coloration genes in Lygus hesperus Knight (Hemiptera: Miridae).Insects, 13(11): 986. https://doi.org/10.3390/insects13110986
  2. Hu ZC, Tian YH, Yang JL, Zhu YN, Zhou HY, Zheng YG, Liu ZQ. (2022): Research progress of L-aspartate-α-decarboxylase and its isoenzyme in the β-alanine synthesis.World Journal of Microbiology and Biotechnology, 39(2): 42. https://doi.org/10.1007/s11274-022-03483-2
  3. Dean DM, Deitcher DL, Paster CO, Xu M, Loehlin DW. (2022): “A fly appeared”: sable, a classic Drosophila mutation, maps to Yippee, a gene affecting body color, wings, and bristles. G3 (Bethesda, Md.), 12(5). https://doi.org/10.1093/g3journal/jkac058
  4. Ze LJ, Jin L, Li GQ. (2022): Silencing of ADC and Ebony causes abnormal darkening of cuticle in Henosepilachna vigintioctopunctata. Frontiers in Physiology, 13, 829675. https://doi.org/10.3389/fphys.2022.829675
  5. Cerqueira APM, Santos M da C, Dos Santos Júnior MC, Botura MB. (2022): Molecular targets for the development of new acaricides against Rhipicephalus microplus: a review. Parasitology, 149(8):1019–1026. https://doi.org/10.1017/S0031182022000506
  6. Futahashi R, Koshikawa S, Okude G, Osanai-Futahashi M. (2022): Diversity of melanin synthesis genes in insects. In Insect Cuticle – Chitin, Catecholamine and Chemistry of Complexation. Elsevier.
  7. Han R, Wei T-M, Tseng S-C, Lo C-C. (2021): Characterizing approach behavior of Drosophila melanogaster in Buridan’s paradigm. PLoS ONE. doi:10.1371/journal.pone.0245990
  8. Chen J-X, Li W-X, Lyu J, Hu Y-T, Huang G, Zhang W-Q. (2021): CRISPR/Cas9-mediated knockout of the NlCSAD gene results in darker cuticle pigmentation and a reduction in female fecundity in Nilaparvata lugens (Hemiptera: Delphacidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 256:110921. doi:10.1016/j.cbpa.2021.110921
  9. Takahashi M, Okude G, Futahashi R, Takahashi Y, Kawata M. (2021): The effect of the doublesex gene in body colour masculinization of the damselfly Ischnura senegalensis. Biol Lett 17(6). doi:10.1098/rsbl.2020.0761
  10. Alexandrov ID, Alexandrova MV. (2021): The dose-, LET-, and gene-dependent patterns of DNA changes underlying the point mutations in spermatozoa of Drosophila melanogaster. I. Autosomal gene black. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 823:111755. doi:10.1016/j.mrfmmm.2021.111755
  11. Mun S, Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. (2020): Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor. Insect Biochemistry and Molecular Biology. doi:10.1016/j.ibmb.2019.103291
  12. Yen H-H, Han R, Lo C-C. (2019): Quantification of Visual Fixation Behavior and Spatial Orientation Memory in Drosophila melanogaster. Front Behav Neurosci. doi:10.3389/fnbeh.2019.00215
  13. Oppert B, Perkin L. (2019): RNAiSeq: How to See the Big Picture. Front Microbiol. doi:10.3389/fmicb.2019.02570
  14. Takahashi M, Takahashi Y, Kawata M. (2018): Candidate genes associated with color morphs of female-limited polymorphisms of the damselfly Ischnura senegalensis. Heredity 122:81-92. doi:10.1038/s41437-018-0076-z
  15. Christie AE, Stanhope ME, Gandler HI, et al. (2018): Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus. Invert Neurosci, 18, 12. doi:10.1007/s10158-018-0216-4
  16. Perkin LC, Gerken AR, Oppert B (2017): RNA-Seq Validation of RNAi Identifies Additional Gene Connectivity in Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Insect Science. 17(2). DOI: 10.1093/jisesa/iex026
  17. Han Y, Xiong L, Xu Y, Tian T, Wang T (2017): The β-alanine transporter BalaT is required for visual neurotransmission in Drosophila. eLife. 6. DOI: 10.7554/eLife.29146
  18. Minami R, Sato C, Yamahama Y, Kubo H, Hariyama T, Kimura K (2016): An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster. Zoological Science. 33(6): 583–591. DOI: 10.2108/zs160105
  19. Sugumaran M, Barek H (2016): Critical Analysis of the Melanogenic Pathway in Insects and Higher Animals. International Journal of Molecular Sciences. 17(10):1753. DOI: 10.3390/ijms17101753
  20. Beasley V, Dowse H (2016): Suppression of Tryptophan 2,3-Dioxygenase Produces a Slow Heartbeat Phenotype in Drosophila melanogaster. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 325(10):651–664. DOI: 10.1002/jez.2057
  21. Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K (2017): Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. Wiley Interdisciplinary Reviews: Developmental Biology. 7(1): e291. DOI: 10.1002/wdev.291
  22. Arakane Y, Noh MY, Asano T, Kramer KJ (2016): Tyrosine Metabolism for Insect Cuticle Pigmentation and Sclerotization. In: Cohen E, Moussian B (Eds.): Extracellular Composite Matrices in Arthropods (pp. 165–220). Springer, Cham. DOI: 10.1007/978-3-319-40740-1_6
  23. Noh MY, Koo B, Kramer KJ, Muthukrishnan S, Arakane Y (2016): Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology. 79: 119–129. DOI: 10.1016/j.ibmb.2016.10.013
  24. Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2016): Cuticle formation and pigmentation in beetles. Curr Opin Insect Sci. 17, 1–9. doi: 10.1016/j.cois.2016.05.004
  25. Lei Y, Wang Y, Ahola V, Luo S, Xu C, Wang R (2016): RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China. Molecular Biology Reports. 43(12): 1423–1433. DOI: 10.1007/s11033-016-4076-x
  26. Connahs H, Rhen T, Simmons RB (2016): Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development. BMC Genomics. 17(1):270. doi: 10.1186/s12864-016-2586-5
  27. Dai F, Qiao L, Cao C, Liu X, Tong X, He S, Hu H, Zhang L, Wu S, Tan D, Xiang Z, Lu C (2015) Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori. Sci. Rep., 5, 10885.
  28. Chaturvedi R, Reddig K, Li H-S (2014): Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila. Proc Natl Acad Sci. 111:2812–2817
  29. Müller R, Jenny A, Stanley P (2013): The EGF Repeat-Specific O-GlcNAc-Transferase Eogt Interacts with Notch Signaling and Pyrimidine Metabolism Pathways in Drosophila. PLoS ONE 8(5): e62835
  30. Ziegler AB, Brüsselbach F, Hovemann BT (2013): Activity and coexpression of Drosophila black with ebony in fly optic lobes reveals putative cooperative tasks in vision that evade electroretinographic detection. J Comp Neurol. 521(6):1207-1224
  31. Aleksandrov ID, Namolovan LN, Aleksandrova MV (2012): Radiation biology of structurally different Drosophila genes. Report III. The black gene: general and molecular characteristics of its radiomutability. Radiats Biol Radioecol. 52(5):453-466
  32. Pulver SR, Berni J (2012): The fundamentals of flying: simple and inexpensive strategies for employing Drosophila genetics in neuroscience teaching laboratories. J Undergrad Neurosci Educ. 11(1):A139-148
  33. Ilg T, Berger M, Noack S, Rohwer A, Gaßel M (2012): Glutamate decarboxylase of the parasitic arthropods Ctenocephalides felis and Rhipicephalus microplus: gene identification, cloning, expression, assay development, identification of inhibitors by high throughput screening and comparison with the orthologs from Drosophila melanogaster and mouse. Insect Biochem Mol Biol. 43(2): 162-177
  34. Pulver SR, Berni J (2012): The Fundamentals of Flying: Simple and Inexpensive Strategies for Employing Drosophila Genetics in Neuroscience Teaching Laboratories. The Journal of Undergraduate Neuroscience Education (JUNE) 11(1):A139-A148
  35. Saenko SV, Jerónimo MA, Beldade P (2012): Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation. Heredity (Edinb). 108(6):594-601
  36. Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O’Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M (2012): Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science. 336(6083):925-931
  37. Borycz J, Borycz JA, Edwards TN, Boulianne GL, Meinertzhagen IA (2012): The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: ß-alanine recycles through the retina. J Exp Biol. 215(Pt 8):1399-1411
  38. Saenko SV, Jerónimo MA, Beldade P (2012): Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation. Heredity (Edinb). 2012 Jan 11. doi: 10.1038/hdy.2011.127. [Epub ahead of print]
  39. Rund SS, Hou TY, Ward SM, Collins FH, Duffield GE (2011): Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A. 108(32):E421-430
  40. Ziegler, AB; Hovemann, BT (2011): Aspartate decarboxylase Black as a part of visual signal transduction. J. Neurogen. 24: 51
  41. Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J (2010): An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep. 37(7):3199-3205
  42. Gallot A, Rispe C, Leterme N, Gauthier JP, Jaubert-Possamai S, Tagu D (2010): Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem Mol Biol. 40(3):235-240
  43. Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J (2009): An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep. [Epub ahead of print]
  44. Le Trionnaire G, Francis F, Jaubert-Possamai S, Bonhomme J, De Pauw E, Gauthier JP, Haubruge E, Legeai F, Prunier-Leterme N, Simon JC, Tanguy S, Tagu D (2009): Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. BMC Genomics 10:456
  45. Arakane Y, Lomakin J, Beeman RW, Muthukrishnan S, Gehrke SH, Kanost MR, Kramer KJ (2009): Molecular and Functional Analyses of Amino Acid Decarboxylases Involved in Cuticle Tanning in Tribolium castaneum. J Biol Chem. 284(24):16584-16594
  46. Davis MM, Primrose DA, Hodgetts RB (2008): A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response. Mol Cell Biol. 28(15):4883-4895.
  47. Stuart AE, Borycz J, Meinertzhagen IA (2007): The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol. 82(4):202-227

Brembs B.; Baxter D.A. and Byrne J.H. (2004): Extending In Vitro Conditioning in Aplysia to Analyze Operant and Classical Processes in the Same Preparation. Learn. Mem. 11: 412-420.
Citations:

  1. Bédécarrats A, Nargeot R. (2020): Gastropod Learning and Memory (Aplysia, Hermissenda, Lymnaea, and Others). Oxford Research Encyclopedia of Neuroscience. Oxford University Press. doi:10.1093/acrefore/9780190264086.013.186
  2. Miller MW. (2020): Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. The Biological Bulletin 239(3). doi:10.1086/711293
  3. Fox AE. (2018): The future is upon us. Behavior Analysis: Research and Practice 18:144-150. doi:10.1037/bar0000106
  4. Neveu C, Neveu CL. (2017): “MODIFICATION OF APLYSIA FEEDING NETWORK BY L-DOPA AND DOPAMINE-DEPENDENT LEARNING” The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 802. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/802
  5. Cropper EC, Jing J, Perkins MH, Weiss KR (2017): Use of the Aplysia feeding network to study repetition priming of an episodic behavior. J Neurophys. 118(3): 1861–1870. DOI: 10.1152/jn.00373.2017
  6. Simmers J, Sillar KT (2017): Plasticity and Learning in Motor Control Networks. Neurobiology of Motor Control (pp. 417–442). John Wiley & Sons, Inc. DOI: 10.1002/9781118873397.ch13
  7. Zilio D (2016): On the autonomy of psychology from neuroscience: A case study of Skinner’s radical behaviorism and behavior analysis. Rev Gen Psych. 20: 155–170
  8. Basil J, Crook R (2014): Evolution of behavioral and neural complexity: Learning and memory in chambered nautilus. In: Darmaillacq AS, Dickel L, Mather J (eds.): Cephalopod Cognition, pp. 31 – 56, Cambridge University Press.
  9. Bédécarrats A (2014): Étude cellulaire de la genèse et de l’apprentissage d’un comportement motivé chez l’aplysie, PhD dissertation, L´Université de Bordeaux
  10. Dasgupta S, Wörgötter F, Manoonpong P (2014): Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits, 8:126, DOI: 10.3389/fncir.2014.00126
  11. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  12. Mozzachiodi R, Baxter DA, Byrne JH (2013): Comparison of Operant and Classical Conditioning of Feeding Behavior in Aplysia. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p183-193
  13. Bédécarrats A, Cornet C, Simmers J, Nargeot R (2013): Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem. 20(6):318-327
  14. Guerra, LGGC, Silva, MTA (2010): Learning processes and the neural analysis of conditioning. Psych Neur. 3(2), doi: 10.3922/j.psns.2010.2.xxx
  15. Nargeot R, Simmers J (2010): Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci. 68(5): 803-816
  16. Katzoff A, Miller N, Susswein AJ (2009): Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia. Learn Mem. 17(1):839-851
  17. Grasso FW, Basil JA (2009): The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain Behav Evol. 74(3):231-245
  18. Tomsic D, de Astrada MB, Sztarker J, Maldonado H. (2009): Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem. 92(2):176-182
  19. Buganová M (2008): Hemoprotein nitric oxide synthase in Aplysia californica. PhD thesis, University of Karlova. https://dspace.cuni.cz/handle/20.500.11956/16511
  20. Jing J, Vilim FS, Cropper EC, Weiss KR (2008): Neural analog of arousal: persistent conditional activation of a feeding modulator by serotonergic initiators of locomotion. J Neurosci. 28(47):12349-12361.
  21. Nargeot R, Petrissans C, Simmers J. (2007): Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. J Neurosci. 27(30): 8059-8070
  22. Silva MTA, Goncalves FL, Garcia-Mijares M (2007): Neural events in the reinforcement contingency. Behav. Anal. 30(1): 17-30
  23. Krylov AK, Aleksandrov YI (2007): “Situatedness in an environment” as alternative to stimuli presentation: Model study. Psykhologicheskii Zhurnal 28(2): 106-113
  24. Wright JW, Olson ML, Harding JW (2006): The role of the brain angiotensin system in learning, memory and neural plasticity. In: Trends in Learning Research (ed.: Hogan SH). Nova Publishers, pp. 1-39
  25. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  26. Goel P, Gelperin A. (2006): A neuronal network for the logic of Limax learning. J Comput Neurosci. 21(3):259-270
  27. Katzoff A, Ben-Gedalya T, Hurwitz I, Miller N, Susswein YZ, Susswein AJ. (2006): Nitric oxide signals that aplysia have attempted to eat, a necessary component of memory formation after learning that food is inedible. J Neurophysiol. 96(3):1247-1257
  28. Diaz-Rios M, Miller MW (2006): Target-specific regulation of synaptic efficacy in the feeding central pattern generator of Aplysia: potential substrates for behavioral plasticity? Biol Bull. 210(3):215-29.
  29. Hawkins RD, Clark, GA, Kandel, ER (2006): Operant Conditioning of Gill Withdrawal in Aplysia. J. Neurosci. 26(9):2443-2448
  30. Agin V, Chichery R, Dickel L, Chichery MP. (2006): The “prawn-in-the-tube” procedure in the cuttlefish: habituation or passive avoidance learning? Learn Mem. 13(1):97-101
  31. Jezzini SH, Bodnarova M, Moroz LL. (2005): Two-color in situ hybridization in the CNS of Aplysia californica. J Neurosci Methods. 149(1): 15-25
  32. Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH (2005): Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: Blockade by a dopamine antagonist. Learn. Mem. 12: 216-220
  33. Zhurov Y, Proekt A, Weiss KR, Brezina V. (2005): Changes of internal state are expressed in coherent shifts of neuromuscular activity in Aplysia feeding behavior. J Neurosci. 25(5): 1268-1280.
  34. Giurfa M (2004): “This paper shows that it is possible to study the two major forms of associative…” Evaluation of: [Brembs B et al. Extending in vitro conditioning in Aplysia to analyze operant and classical processes in the same preparation. Learn Mem. 2004 Jul-Aug; 11(4):412-20; doi: 10.1101/lm.74404]. Faculty of 1000, 11 Nov 2004. F1000.com/1022188

Brembs, B (2003): Operant Conditioning in Invertebrates. Curr. Opin. Neurobiol. 13(6): 710-717.
Citations:

  1. Zher-Wen, Yu R. (2023): Unconscious integration: Current evidence for integrative processing under subliminal conditions.British Journal of Psychology (London, England: 1953), 114(2): 430–456. https://doi.org/10.1111/bjop.12631
  2. Dornisch S. (2022): The evolution of well-being: An anthropology-based, multidisciplinary review.Humans, 2(4): 161–176. https://doi.org/10.3390/humans2040011
  3. Sun J, Wang Y, Liu P, Wang Y. (2022): Memristor neural network circuit based on operant conditioning with immediacy and satiety.IEEE Transactions on Biomedical Circuits and Systems, PP. https://doi.org/10.1109/TBCAS.2022.3216112
  4. Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. (2022): High-throughput automated methods for classical and operant conditioning of Drosophila larvae.ELife, 11. https://doi.org/10.7554/eLife.70015
  5. Arêdes A, Rodríguez J, Bailez O, dos Santos Lima JC, Canela MC, Viana-Bailez AM. (2022): Aversive learning as a behavioural mechanism of plant selection in the leaf-cutting ant Atta sexdens (Hymenoptera: Formicidae). https://doi.org/10.25849/MYRMECOL.NEWS_032:065
  6. Dresp-Langley B. (2022): From biological synapses to “intelligent” robots. Electronics, 11(5):707. https://doi.org/10.3390/electronics11050707
  7. Goekoop R, de Kleijn R. (2021): How higher goals are constructed and collapse under stress: A hierarchical Bayesian control systems perspective. Neuroscience Biobehavioral Reviews 123:257-285. Elsevier BV. doi:10.1016/j.neubiorev.2020.12.021
  8. Skora LI, Yeomans MR, Crombag HS, Scott RB. (2021): Evidence that instrumental conditioning requires conscious awareness in humans. Cognition 208(104546). doi:10.1016/j.cognition.2020.104546
  9. Paoli M, Galizia GC. (2021): Olfactory coding in honeybees. Cell Tissue Res 383:35-58. doi:10.1007/s00441-020-03385-5
  10. Fodor I, Svigruha R, Kemenes G, Kemenes I, Pirger Z. (2021): The Great Pond Snail (Lymnaea stagnalis) as a Model of Aging and Age-Related Memory Impairment: An Overview. The Journals of Gerontology: Series A 76(6):975-982. doi:10.1093/gerona/glab014
  11. Okada S, Hirano N, Abe T, Nagayama T. (2021): Aversive operant conditioning alters the phototactic orientation of the marbled crayfish. Journal of Experimental Biology. doi:10.1242/jeb.242180
  12. Rivi V, Benatti C, Lukowiak K, Colliva C, Alboni S, Tascedda F, Blom JMC. (2021): What can we teach Lymnaea and what can Lymnaea teach us? Biol Rev 96(4):1590-1602. doi:10.1111/brv.12716
  13. Klein KT, Croteau-Chonka EC, Narayan L, Winding M, Masson J-B, Zlatic M. (2021): Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae. Cold Spring Harbor Laboratory. doi:10.1101/2021.06.14.448341
  14. Klein KT. (2020): High-Throughput Operant Conditioning in Drosophila Larvae. Apollo – University of Cambridge Repository. doi:10.17863/CAM.47681
  15. Sun R, Delly J, Sereno E, Wong S, Chen X, Wang Y, Huang Y, Greenspan RJ. (2020): Anti-instinctive Learning Behavior Revealed by Locomotion-Triggered Mild Heat Stress in Drosophila. Front. Behav. Neurosci. 14:41. doi:10.3389/fnbeh.2020.00041
  16. Cyr A, Morand-Ferron J, Thériault F. (2020): Dual exploration strategies using artificial spiking neural networks in a robotic learning task. Adaptive Behavior 29(6):567-578. SAGE Publications. doi:10.1177/1059712320924744
  17. Diquelou MC, Griffin AS (2020): Behavioral Responses of Invasive and Nuisance Vertebrates to Harvesting: A Mechanistic Framework. Front. Ecol. Evol. 8:177. doi:10.3389/fevo.2020.00177
  18. De AgròM. (2020): SPiDbox: A low-cost, design and validation of an open-source “Skinner-box” system for the study of jumping spiders. Journal of Neuroscience Methods 108925. doi:10.1016/j.jneumeth.2020.108925
  19. Diquelou MC, Griffin AS. (2019): It’s a trap! Invasive common mynas learn socially about control-related cues. Behavioral Ecology. doi:10.1093/beheco/arz079
  20. Wei T, Webb B. (2018): A model of operant learning based on chaotically varying synaptic strength. Neural Networkcognitios 108:114-127. doi:10.1016/j.neunet.2018.08.006
  21. Abramson CI, Wells H. (2018): An Inconvenient Truth: Some Neglected Issues in Invertebrate Learning. Perspect Behav Sci. doi:10.1007/s40614-018-00178-8
  22. Lepeltier T, Bonnardel Y, Sigler P (2018): La révolution antispéciste. Presses Universitaires de France. 978-2130799092
  23. Hinsch M, Komdeur J (2017): Punish the thief—coevolution of defense and cautiousness stabilizes ownership. Behavioral Ecology and Sociobiology. 71(7). DOI: 10.1007/s00265-017-2330-4
  24. Chouhan NS, Mohan K, Ghose A (2017): cAMP signaling mediates behavioral flexibility and consolidation of social status in Drosophila aggression. The Journal of Experimental Biology. 220(23):4502–4514. DOI: 10.1242/jeb.165811
  25. Gaburro J, Nahavandi S, Bhatti A (2017): Insects Neural Model: Potential Alternate to Mammals for Electrophysiological Studies. Series in BioEngineering (pp. 119–130). Springer Singapore. DOI: 10.1007/978-981-10-3957-7_6
  26. Simmers J & Sillar KT (2017): Plasticity and Learning in Motor Control Networks. Neurobiology of Motor Control (pp. 417–442). John Wiley & Sons, Inc. DOI: 10.1002/9781118873397.ch13
  27. Abramson CI, Dinges CW, Wells H (2016): Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response. PLOS ONE. 11(9): e0162347. DOI: 10.1371/journal.pone.0162347
  28. Cassel CS (2016): Bugs After the Bomb: Insect Representations in Postatomic American Fiction and Film. PhD thesis, University of Michigan. https://deepblue.lib.umich.edu/handle/2027.42/133284
  29. Feinberg TE, Mallatt JM (2016): The Ancient Origins of Consciousness: How the Brain Created Experience. The MIT Press. ISBN: 978-0262034333
  30. Bhimani R, Huber R (2015): Operant avoidance learning in crayfish, Orconectes rusticus: Computational ethology and the development of an automated learning paradigm. Learn Behav. 2015 Nov 5. [Epub ahead of print]
  31. Mirwan HB, Mason GJ, Kevan PG (2015): Complex operant learning by worker bumblebees (Bombus impatiens): detour behaviour and use of colours as discriminative stimuli. Insectes Sociaux, 62: 365–377, DOI: 10.1007/s00040-015-0414-6
  32. Hoedjes KM (2014): Natural variation in memory formation among Nasonia parasitic wasps: from genes to behaviour. PhD thesis, Wageningen University
  33. Soltoggio A (2014): Short-term plasticity as cause–effect hypothesis testing in distal reward learning. Biol Cybern. 109: 75–94, DOI: 10.1007/s00422-014-0628-0
  34. Hermann PM, Watson SN, Wildering WC (2014): Phospholipase A2 – nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet. 5:419 DOI: 10.3389/fgene.2014.00419
  35. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  36. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdiscip Rev Cogn Sci. 4(5): 561–582., DOI: 10.1002/wcs.1248
  37. Palminteri S, Pessiglione M (2013): Reinforcement learning and Tourette syndrome. Int Rev Neurobiol. 112:131-153
  38. Søvik E, Barron AB (2013): Invertebrate Models in Addiction Research. Brain Behav Evol. 82: 153–165
  39. DuRousseau, D. R. (2013): QEEG Biomarkers: Assessment and Selection of Special Operators, and Improving Individual Performance (pp. 562–571). Lecture Notes in Computer Science. Springer-Verlag. doi:10.1007/978-3-642-39454-6_60
  40. Lukowiak K, Dalesman S (2013): Operant Conditioning of Respiration in Lymnaea: The Environmental Context. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p265-279
  41. Mozzachiodi R, Baxter DA, Byrne JH (2013): Comparison of Operant and Classical Conditioning of Feeding Behavior in Aplysia. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p183-193
  42. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  43. Thran J (2013): Ein räumliches Orientierungsgedächtnis im Zentralkomplex von Drosophila melanogaster und die spezifische Rolle von ellipsoid-body-open. PhD thesis. University of Mainz. https://ubm.opus.hbz-nrw.de/volltexte/2013/3415/
  44. Kirkerud NH, Wehmann H-N, Galizia CG and Gustav D (2013): APIS—a novel approach for conditioning honey bees. Front. Behav. Neurosci. 7:29. doi: 10.3389/fnbeh.2013.00029
  45. Alberini CM, Bambah-Mukku D, Chen DY (2012): Memory Consolidation and Its Underlying Mechanisms. In: Memory Mechanisms in Health and Disease: Mechanistic Basis of Memory (ed.: Karl Peter Giese). World Scientific, ISBN 9814366692, 444 pages, pp. 147-171
  46. Milinkeviciute G, Gentile C, Neely GG (2012): Drosophila as a tool for studying the conserved genetics of pain. Clin Genet. 82(4):359-366
  47. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  48. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  49. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  50. Kapustjansky, A (2012): In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster. PhD Thesis, Julius-Maximilians Universität Würzburg
  51. Dalesman S, Lukowiak K (2012): How Stress Alters Memory in ‘Smart’ Snails. PLoS ONE 7(2): e32334
  52. Dalesman S, Braun MH, Lukowiak K. (2011): Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiol Learn Mem. 95(4):393-403
  53. Nargeot R, Simmers J (2010): Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci. 68(5): 803-816
  54. Tomina Y, Takahata M. (2010): A behavioral analysis of force-controlled operant tasks in American lobster. Physiol Behav. 2010 Apr 29. [Epub ahead of print]
  55. Sokolowski MBC, Disma G, Abramson CI (2010): A paradigm for operant conditioning in Blow Flies (Phormia terrae novae Robineau-Desvoidy, 1830). J exp. Anal. Behav. 93 (1): 81-89
  56. Dayan P, Huys QJ. (2009): Serotonin in Affective Control. Annu Rev Neurosci. 32: 95-126
  57. Khan AM, Spencer GE (2009): Novel neural correlates of operant conditioning in normal and differentially reared Lymnaea. J Exp Biol. 212(Pt 7):922-933
  58. Pitman JL, Dasgupta S, Krashes MJ, Leung B, Perrat PN, Waddell S. (2009): There are many ways to train a fly. Fly (Austin). 3(1): 3-9
  59. Vandersal ND (2008): Rapid spatial learning in a velvet ant (Dasymutilla coccineohirta). Anim Cogn. 11(3):563-567
  60. Lukowiak K, Martens K, Rosenegger D, Browning K, de Caigny P, Orr M (2008): The perception of stress alters adaptive behaviours in Lymnaea stagnalis. J Exp Biol. 211(Pt 11):1747-1756.
  61. VanderSal ND, Hebets EA. (2007): Cross-modal effects on learning: a seismic stimulus improves color discrimination learning in a jumping spider. J Exp Biol. 210(Pt 20):3689-3695.
  62. Henry F, Dauce E, Soula H (2007): Temporal pattern identification using spike-timing dependent plasticity. Neurocomp. 70(10-12): 2009-2016
  63. Kim YC, Lee HG, Han KA. (2007): Classical reward conditioning in Drosophila melanogaster. Genes Brain Behav. 6(2):201-207
  64. Daucé E, Henry F (2006): Hebbian learning in large recurrent neural networks. Paper presented at NeuroComp 2006, 202
  65. Dupuy F, Sandoz JC, Giurfa M, Josens R (2006): Individual olfactory learning in Camponotus ants. Anim. Behav. 72: 1081-1091
  66. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  67. Aragona BJ, Carelli RM. (2006): Dynamic neuroplasticity and the automation of motivated behavior. Learn Mem. 13(5):558-559
  68. Hawkins RD, Clark, GA, Kandel, ER (2006): Operant Conditioning of Gill Withdrawal in Aplysia. J. Neurosci. 26(9):2443-2448
  69. Barbas D, Zappulla JP, Angers S, Bouvier M, Mohamed HA, Byrne JH, Castellucci VF, Desgroseillers L. (2006): An aplysia dopamine-like receptor: molecular and functional characterization. J Neurochem. 96(2):414-427
  70. Burggren WW, Monticino MG. (2005): Assessing physiological complexity.J Exp Biol. 208(17): 3221-3232.
  71. Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH (2005): Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: Blockade by a dopamine antagonist. Learn. Mem. 12: 216-220
  72. Manev H, Dimitrijevic N. (2005): Fruit flies for anti-pain drug discovery. Life Sci. 76(21):2403-7.
  73. Dacher M (2005): Role des recepteurs nicotiniques dans differentes formes de memoire chez l’abeille Apis mellifera. Doctoral thesis, Université de Toulouse, Paul Sabatier, France
  74. Demirci S, Esel E (2004): The biological mechanisms of learning and memory, and their relationships with psychiatric disorders. Anatol. J. Psych. 5:239-248
  75. Lamme VAF (2004): Weg met de psychologie! Netherlands journal of psychology 59: 90–100

Brembs, B (2003): Operant Reward Learning in Aplysia. Curr. Dir. Psych. Sci. 12 (6): 218-221.
Citations:

  1. Swan J, Nivel E, Kant N, Hedges J, Atkinson T, Steunebrink B. (2022): Challenges for Reinforcement Learning. InThe Road to General Intelligence. Springer International Publishing.
  2. Raza MF, Wang T, Li Z, Nie H, Giurfa M, Husain A, Hlaváč P, Kodrik M, Ali MA, Rady A, Su S. (2022): Biogenic amines mediate learning success in appetitive odor conditioning in honeybees. Journal of King Saud University. Science, 34(4). https://doi.org/10.1016/j.jksus.2022.101928
  3. Costa RM, Baxter DA, Byrne JH. (2022): Neuronal population activity dynamics reveal a low-dimensional signature of operant learning in Aplysia. Communications Biology, 5(1):90. https://doi.org/10.1038/s42003-022-03044-1
  4. Jiang HM, Yang Z, Xue YY, Wang HY, et al. (2022): Identification of an allatostatin C signaling system in mollusc Aplysia. Scientific Reports, 12(1), 1213. https://doi.org/10.1038/s41598-022-05071-8
  5. Dresp-Langley B. (2022): From biological synapses to “intelligent” robots. Electronics, 11(5):707. https://doi.org/10.3390/electronics11050707
  6. Zhang G, Guo SQ, Yin SY, Yuan WD, Chen P, Kim JI, Wang HY, Zhou HB, Susswein AJ, Kaang BK, Jing J. (2022): Functional characterization of a neuropeptide receptor exogenously expressed in Aplysia neurons. In bioRxiv. https://doi.org/10.1101/2022.02.14.480444
  7. Klein KT. (2020): High-Throughput Operant Conditioning in Drosophila Larvae. Apollo – University of Cambridge Repository. doi:10.17863/CAM.47681
  8. Zwaka H, Bartels R, Lehfeldt S, Jusyte M, Hantke S, Menzel S, Gora J, Alberdi R, Menzel R. (2019): Learning and Its Neural Correlates in a Virtual Environment for Honeybees. Front Behav Neurosci. doi:10.3389/fnbeh.2018.00279
  9. Yang W, Meng Y, Li D, Wen Q. (2019): Visual Contrast Modulates Operant Learning Responses in Larval Zebrafish. Front Behav Neurosci. doi:10.3389/fnbeh.2019.00004 
  10. Farruggella J, Acebo J, Lloyd L, Wainwright ML, Mozzachiodi R. (2019): Role of nitric oxide in the induction of the behavioral and cellular changes produced by a common aversive stimulus in Aplysia. Behavioural Brain Research. doi:10.1016/j.bbr.2018.12.010
  11. Brown JW, Schaub BM, Klusas BL, Tran AX, Duman AJ, Haney SJ, Boris AC, Flanagan MP, Delgado N, Torres G, Rolón-Martínez S, Vaasjo LO, Miller MW, Gillette R. (2018): A role for dopamine in the peripheral sensory processing of a gastropod mollusc. J. Jing (Ed.), PLOS ONE, 13(12), p. e0208891. Public Library of Science (PLoS). doi:10.1371/journal.pone.0208891
  12. Prinz AA. (2018): Rhythmic Pattern Generation in Invertebrates. The Oxford Handbook of Invertebrate Neurobiology. doi:10.1093/oxfordhb/9780190456757.013.17
  13. Tan R. (2017): The Effect of Androstenone as a Mating Prime on Drinking and Approach Behavior. Dissertation, University of South Florida.
  14. Neveu C, Neveu CL. (2017):  “MODIFICATION OF APLYSIA FEEDING NETWORK BY L-DOPA AND DOPAMINE-DEPENDENT LEARNING” The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 802. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/802
  15. Sakurai A, Katz PS (2015): Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 201: 829–839, DOI: 10.1007/s00359-015-1007-6
  16. Shi Z, Lu C, Sun X, Wang Q, Chen S, Li Y, Qu L, Chen L, Bu L, Liao D, Liu X (2015): Tong Luo Jiu Nao ameliorates Aß1–40-induced cognitive impairment on adaptive behavior learning by modulating ERK/CaMKII/CREB signaling in the hippocampus. BMC Complement Altern Med. 15, DOI: 10.1186/s12906-015-0584-9
  17. Bédécarrats A (2014): Étude cellulaire de la genèse et de l’apprentissage d’un comportement motivé chez l’aplysie, PhD dissertation, L´Université de Bordeaux
  18. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  19. Le Pelley ME (2014): Primate polemic: Commentary on Smith, Couchman, and Beran (2014). J Comp Psych 128: 132–134, DOI:10.1037/a0034227
  20. Radecki G, Nargeot R, Jelescu IO, Le Bihan D, Ciobanu L (2014): Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica. Proc Natl Acad Sci U S A 111: 8667–8672, DOI: 10.1073/pnas.1403739111
  21. Sieling F, Bédécarrats A, Simmers J, Prinz AA, Nargeot R (2014): Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior. Curr Biol. 24(9):941-950
  22. Jain P, Bhalla US (2014): Transcription Control Pathways Decode Patterned Synaptic Inputs into Diverse mRNA Expression Profiles. PLoS ONE, 9:e95154. DOI: 10.1371/journal.pone.0095154
  23. Zilio D (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  24. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  25. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res 229: 91–105, DOI: 10.1016/j.bbr.2011.12.044
  26. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  27. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  28. Goldman MS, Darkes J, Reich RR, Brandon KO (2006): From DNA to conscious thought: The influence of anticipatory processes on human alcohol consumption. In: Munafò M, Albery IP (Eds) Cognition and addiction. (pp. 147-184). New York, NY, US: Oxford University Press. x, 307 pp.
  29. Reich RR, Noll JA, Goldman MS. (2005): Cue patterns and alcohol expectancies: how slight differences in stimuli can measurably change cognition. Exp Clin Psychopharmacol. 13(1): 65-71.

Brembs B.; Lorenzetti F.D.; Reyes F.D.; Baxter D.A. and Byrne J.H. (2002): Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms. Science 296: 1706-1709.
Citations:

  1. Bui M, Krishen A, Kemp E. (2023): It’s a force of habit: influences of emotional eating on indulgent tendencies.The Journal of Consumer Marketing. https://doi.org/10.1108/jcm-01-2022-5146
  2. Crossley M, Benjamin PR, Kemenes G, Staras K, Kemenes I. (2023): A circuit mechanism linking past and future learning through shifts in perception.Science Advances, 9(12), eadd3403. https://doi.org/10.1126/sciadv.add3403
  3. Ginsburg S, Jablonka E. (2021): Evolutionary transitions in learning and cognition. Phil Trans R Soc B. doi:10.1098/rstb.2019.0766
  4. Sakurako W. (2021): Interaction of multiple inputs in plasticity of the corticostriatal synapses. Doctoral dissertation, Okinawa Institute of Science and Technology Graduate University. doi:10.15102/1394.00001733
  5. Okada S, Hirano N, Abe T, Nagayama T. (2021): Aversive operant conditioning alters the phototactic orientation of the marbled crayfish. Journal of Experimental Biology. doi:10.1242/jeb.242180
  6. Lv J, Jiang N, Wang H, Huang H, Bao Y, Chen Y, Liu X. (2021): Simulated weightlessness induces cognitive changes in rats illustrated by performance in operant conditioning tasks. Life Sciences in Space Research 29:63-71. doi:10.1016/j.lssr.2021.03.004
  7. Yamagata N, Ezaki T, Takahashi T, Wu H, Tanimoto H. (2021): Presynaptic inhibition of dopamine neurons controls optimistic bias. eLife 10:e64907. doi:10.7554/elife.64907
  8. Klein KT, Croteau-Chonka EC, Narayan L, Winding M, Masson J-B, Zlatic M. (2021): Serotonergic Neurons Mediate Operant Conditioning in Drosophila Larvae. Cold Spring Harbor Laboratory. doi:10.1101/2021.06.14.448341
  9. Bédécarrats A, Puygrenier L, Castro O’Byrne J, Lade Q, Simmers J, Nargeot R. (2021): Organelle calcium-derived voltage oscillations in pacemaker neurons drive the motor program for food-seeking behavior in Aplysia. eLife. doi:10.7554/elife.68651
  10. Zhang H, Zeng H, Priimagi A, Ikkala O. (2020): Viewpoint: Pavlovian Materials – Functional Biomimetics Inspired by Classical Conditioning. Adv Mater 32(20). doi:10.1002/adma.201906619
  11. Bédécarrats A, Nargeot R. (2020): Gastropod Learning and Memory (Aplysia, Hermissenda, Lymnaea, and Others). Oxford Research Encyclopedia of Neuroscience. Oxford University Press. doi:10.1093/acrefore/9780190264086.013.186
  12. Costa RM, Baxter DA, Byrne JH. (2020): Computational model of the distributed representation of operant reward memory: combinatoric engagement of intrinsic and synaptic plasticity mechanisms.  Learn. Mem. 27:236-249. Cold Spring Harbor Laboratory. doi:10.1101/lm.051367.120
  13. Gill JP, Chiel HJ. (2020): Rapid Adaptation to Changing Mechanical Load by Ordered Recruitment of Identified Motor Neurons. eNeuro 7(3):ENEURO.0016-20.2020. doi:10.1523/ENEURO.0016-20.2020
  14. Luque D, Molinero S, Watson P, López FJ, Le Pelley ME. (2020): Measuring habit formation through goal-directed response switching. Journal of Experimental Psychology: General 149(8):1449-1459. doi:10.1037/xge0000722
  15. Popper V. (2020): From nature and nurture to behaviour: the role of brain-derived neurotrophic factor (BDNF) on learning-dependent neuroplasticity measured by MRI. Doktorarbeit, Medical University of Vienna.
  16. Rueckert D, Pico K, Kim D, Calero Sánchez X. (2020): Gamifying the foreign language classroom for brain-friendly learning. Foreign Language Annals 53(4):686-703. doi:10.1111/flan.12490
  17. Miller MW. (2020): Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. The Biological Bulletin 239(3). doi:10.1086/711293
  18. Gill JP. (2020): Neural correlates of adaptive responses to changing load in feeding Aplysia. Doctoral dissertation, Case Western Reserve University.
  19. McManus JM, Chiel HJ, Susswein AJ. (2019): Successful and unsuccessful attempts to swallow in a reduced Aplysia preparation regulate feeding responses and produce memory at different neural sites. Learn Mem. doi:10.1101/lm.048983.118
  20. Hawkins RD. (2019): The contributions and mechanisms of changes in excitability during simple forms of learning in Aplysia. Neurobiology of Learning and Memory. doi:10.1016/j.nlm.2019.107049
  21. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  22. Wee CL, Song EY, Johnson RE, Ailani D, Randlett O, Kim J-Y, Nikitchenko M, Bahl A, Yang C-T, Ahrens MB, Kawakami K, Engert F, Kunes S. (2019): A bidirectional network for appetite control in larval zebrafish. eLife. doi:10.7554/elife.43775
  23. Puygrenier L. (2019): Contribution d’une activité neuronale pacemaker dans l’expression et l’adaptation d’un comportement motivé chez l’aplysie. Doctoral dissertation, Bordeaux.
  24. Ginsburg S, Jablonka E. (2019): The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness. MIT Press, Cambridge, MA. ISBN:9780262039307
  25. Leod KAM, Seas A, Wainwright ML, Mozzachiodi R. (2018): Effects of internal and external factors on the budgeting between defensive and non-defensive responses in Aplysia. Behavioural Brain Research 349:177-185. doi:10.1016/j.bbr.2018.04.040
  26. Fox AE. (2018): The future is upon us. Behavior Analysis: Research and Practice 18:144-150. doi:10.1037/bar0000106
  27. Goldner A, Farruggella J, Wainwright ML, Mozzachiodi R. (2018): cGMP mediates short- and long-term modulation of excitability in a decision-making neuron in Aplysia. Neuroscience Letters 683:111-118. doi:10.1016/j.neulet.2018.06.046
  28. Casado-Aranda L-A, Martínez-Fiestas M, Sánchez-Fernández J. (2018): Neural effects of environmental advertising: An fMRI analysis of voice age and temporal framing. Journal of Environmental Management. doi:10.1016/j.jenvman.2017.10.006
  29. epeltier T, Bonnardel Y, Sigler P (2018): La révolution antispéciste. Presses Universitaires de France. 978-2130799092
  30. Casado-Aranda LA, Martínez-Fiestas M, Sánchez-Fernández J (2018): Neural effects of environmental advertising: An fMRI analysis of voice age and temporal framing. Journal of Environmental Management. 206:664–675. DOI: 10.1016/j.jenvman.2017.10.006
  31. Monteiro Ribeiro AR, Gonçalves CM. (2017): No Ritmo de um Silêncio: a Música como Produtora de Processos Psicológicos. Pensando Psicol 13:61-75. doi:10.16925/pe.v13i22.1989
  32. Simmers J & Sillar KT (2017): Plasticity and Learning in Motor Control Networks. Neurobiology of Motor Control (pp. 417–442). John Wiley & Sons, Inc. DOI: 10.1002/9781118873397.ch13
  33. Silva JE, Ferreira P, Coimbra JL, Menezes I (2017): Theater and Psychological Development: Assessing Socio-Cognitive Complexity in the Domain of Theater. Creativity Research Journal. 29(2):157–166. DOI: 10.1080/10400419.2017.1302778
  34. Mizunami M, Matsumoto Y (2017): Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets. Frontiers in Physiology. 8. DOI: 10.3389/fphys.2017.01027
  35. Xu P, Wang K, Lu C, Dong L, Chen Y, Wang Q, Shi Z et al. (2017): Effects of the chronic restraint stress induced depression on reward-related learning in rats. Behavioural Brain Research. 321:185–192. DOI: 10.1016/j.bbr.2016.12.045
  36. Lu C, Shi Z, Sun X, Pan R, Chen S, Li Y, Qu L et al. (2017): Kai Xin San aqueous extract improves Aβ 1-40 -induced cognitive deficits on adaptive behavior learning by enhancing memory-related molecules expression in the hippocampus. Journal of Ethnopharmacology. 201:73–81. DOI: 10.1016/j.jep.2016.10.002
  37. Hernandez JS, Wainwright ML, Mozzachiodi R (2017): Long-term sensitization training in Aplysia decreases the excitability of a decision-making neuron through a sodium-dependent mechanism. Learning & Memory. 24(6):257–261. DOI: 10.1101/lm.044883.116
  38. Holca-Lamarre R, Lücke J, Obermayer K (2017): Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations. Frontiers in Computational Neuroscience. 11. DOI: 10.3389/fncom.2017.00054
  39. Weisz HA, Wainwright ML, Mozzachiodi R (2017): A novel in vitro analog expressing learning-induced cellular correlates in distinct neural circuits. Learning & Memory. 24(8):331–340. DOI: 10.1101/lm.045229.117
  40. Cai Z, Neveu CL, Baxter DA, Byrne JH, Aazhang B (2017): Inferring neuronal network functional connectivity with directed information. Journal of Neurophysiology. 118(2):1055–1069. DOI: 10.1152/jn.00086.2017
  41. Butlin P (2017): Why Hunger is not a Desire. Review of Philosophy and Psychology. 8(3):617–635. DOI: 10.1007/s13164-017-0332-9
  42. Cyr A, Avarguès-Weber A, Thériault F (2017): Sameness/difference spiking neural circuit as a relational concept precursor model: A bio-inspired robotic implementation. Biologically Inspired Cognitive Architectures. 21:59–66. DOI: 10.1016/j.bica.2017.05.001
  43. Mather JA, Dickel L (2017): Cephalopod complex cognition. Current Opinion in Behavioral Sciences. 16:131–137. DOI: 10.1016/j.cobeha.2017.06.008
  44. Wong-Lin K, Wang DH, Moustafa AA, Cohen JY, Nakamura K (2017): Toward a multiscale modeling framework for understanding serotonergic function. Journal of Psychopharmacology. 31(9):1121–1136. DOI: 10.1177/026988111769961
  45. Nargeot R, Bédécarrats A (2017): Electrical Synapses and Learning–Induced Plasticity in Motor Rhythmogenesis. In: Jing J (Ed.): Network Functions and Plasticity (pp. 109–136). Elsevier. DOI: 10.1016/B978-0-12-803471-2.00006-0
  46. Byrne JH (Ed) (2017): Learning and Memory: A Comprehensive Reference. Elsevier. DOI: 10.1016/B978-0-12-805159-7.01001-9
  47. Siddique N, Dhakan P, Rano I, Merrick K (2017): A Review of the Relationship between Novelty, Intrinsic Motivation and Reinforcement Learning. Journal of Behavioral Robotics. 8(1). DOI: 10.1515/pjbr-2017-0004
  48. Benjamin PR, Kemenes G (2017): Behavioral and circuit analysis of learning and memory in mollusks. In: Byrne JH (Ed): Learning and Memory: A Comprehensive Reference (Second Edition, pp. 427–440). Oxford: Elsevier. ISBN: 9780128051597
  49. Ciobanu L (2017): Microscopic Magnetic Resonance Imaging: A Practical Perspective. CRC Press. ISBN: 9789814774420
  50. Huang J, Ruan X, Yu N, Fan Q, Li J, Cai J (2016): A Cognitive Model Based on Neuromodulated Plasticity. In: Computational Intelligence and Neuroscience, (2016):1–15. Hindawi Limited. DOI: 10.1155/2016/4296356
  51. de Araujo IE (2016): High fat takes the low road to the brain’s reinforcement system. Current Opinion in Behavioral Sciences. 9:158–162. DOI: 10.1016/j.cobeha.2016.04.013
  52. Awata H, Wakuda R, Ishimaru Y, Matsuoka Y, Terao K, Katata S, Matsumoto Y et al. (2016): Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies. Scientific Reports. 6(1). DOI: 10.1038/srep29696
  53. Bronfman ZZ, Ginsburg S, Jablonka E (2016): The Transition to Minimal Consciousness through the Evolution of Associative Learning. Frontiers in Psychology. 7. DOI: 10.3389/fpsyg.2016.01954
  54. Wolfe KD, Wainwright ML, Smee DL, Mozzachiodi R (2016): Eat or be eaten? Modifications of Aplysia californica feeding behaviour in response to natural aversive stimuli. Animal Behaviour. 120:123–133. DOI: 10.1016/j.anbehav.2016.07.030
  55. Kemenes I, Kemenes G (2016): PACAP and Learning in Invertebrates. In: Current Topics in Neurotoxicity (pp. 43–50). Springer International Publishing. DOI: 10.1007/978-3-319-35135-3_4
  56. Kool VK, Agrawal R (2016): Technology, Psychology, and Evolution. In: Psychology of Technology (pp. 43–83). Springer International Publishing. DOI: 10.1007/978-3-319-45333-0_2
  57. Wang J (2016): An Ecology of Literacy: A Context-based Inter-disciplinary Curriculum for Chinese as a Foreign Language. PhD thesis, The Ohio State University. https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:osu1461251633
  58. Feinberg TE, Mallatt JM (2016): The Ancient Origins of Consciousness: How the Brain Created Experience. The MIT Press. ISBN: 978-0262034333
  59. Awata H, Wakuda R, Ishimaru Y, Matsuoka Y, Terao K, Katata S, Matsumoto Y, Hamanaka Y, Noji S, Mito T, Mizunami M (2016): Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies. Sci Rep. 6:29696
  60. De Araujo IE (2016): High fat takes the low road to the brain’s reinforcement system. Curr Opin Behav Sci. 9, 158–162. doi: 10.1016/j.cobeha.2016.04.013
  61. Trout JD (2016): Wondrous Truths: The Improbable Triumph of Modern Science. Oxford University Press. 264p, ISBN: 9780199385072
  62. Lakin MR, Stefanovic D (2016): Supervised Learning in Adaptive DNA Strand Displacement Networks. ACS Synth Biol. 2016 May 11. [Epub ahead of print]
  63. Bartoszeck FK, Chang YC, Bartoszeck AB (2016): A Possible Role of Basic Neurophysiology in Explanation of Mind by Psychology. Revista Psicologia e Saúde 8(1): 44-51
  64. Silverman K, Jarvis BP, Jessel J, Lopez AA (2016): Incentives and motivation. Translational Issues in Psychological Science, 2: 97–100
  65. Yang CY, Yu K, Wang Y, Chen SA, Liu DD, Wang ZY, Su YN, Yang SZ, Chen TT, Livnat I, Vilim FS, Cropper EC, Weiss KR, Sweedler JV, Jing J (2016): Aplysia Locomotion: Network and Behavioral Actions of GdFFD, a D-Amino Acid-Containing Neuropeptide. PLOS ONE, 11, DOI: 10.1371/journal.pone.0147335
  66. Bhimani R, Huber R (2015): Operant avoidance learning in crayfish, Orconectes rusticus: Computational ethology and the development of an automated learning paradigm. Learning & Behavior. 44(3):239–249. DOI: 10.3758/s13420-015-0205-y
  67. Carballo F, Freidin E, Bentosela M (2015): Estudios Sobre Cooperación en Perros Domésticos: una Revisión Crítica. Revista Colombiana de Psicología. 24(1):145–163. DOI: 10.15446/rcp.v24n1.41221
  68. Kemenes G (2015): Dynamic Molecular Mechanisms of Memory Consolidation after Single-Trial Food-Reward Classical Conditioning in Lymnaea. In: Sakakibara M, Ito E (eds.) Memory Consolidation. pp. 127-141. Nova. ISBN: 978-1-63482-623-5
  69. Newquist G, Gardner RA (2015): Reconsidering Food Reward, Brain Stimulation, and Dopamine: Incentives Act Forward. Am J Psychol. 128(4):431-444
  70. Carballo F, Freidin E, Bentosela M. (2015): Estudios sobre cooperación en perros domésticos: una revisión crítica. Revista Colombiana de Psicología, 24(1): 145-163, doi: 10.15446/rcp.v24n1.41221
  71. Dickinson KJ, Wainwright ML, Mozzachiodi R (2015): Change in excitability of a putative decision-making neuron in Aplysia serves as a mechanism in the decision not to feed following food satiation. Behav Brain Res. 281:131-136. doi: 10.1016/j.bbr.2014.12.022
  72. Kirszenblat L, van Swinderen B (2015): The Yin and Yang of Sleep and Attention. Trends Neurosci. 38: 776–786, DOI: 10.1016/j.tins.2015.10.001
  73. Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M (2015): Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci. Rep. 5:15885 DOI: 10.1038/srep15885
  74. Dorenbosch MM (2015): The Idea of Will, J Cons Expl & Res. 6(7): 449-472
  75. Gillette R, Brown JW (2015): The Sea Slug, Pleurobranchaea californica?: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior . Integr Comp Biol. DOI: 10.1093/icb/icv081
  76. Hawkins RD, Byrne JH (2015): Associative Learning in Invertebrates. Cold Spring Harb Perspect Biol. 7: a021709, DOI: 10.1101/cshperspect.a021709
  77. Cyr A, Thériault F (2015): Action Selection and Operant Conditioning: A Neurorobotic Implementation. Journal of Robotics, 2015, 1–10, DOI: 10.1155/2015/643869
  78. Sakurai A, Katz PS (2015): Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 201: 829–839, DOI: 10.1007/s00359-015-1007-6
  79. Shi Z, Lu C, Sun X, Wang Q, Chen S, Li Y, Qu L, Chen L, Bu L, Liao D, Liu X (2015): Tong Luo Jiu Nao ameliorates Aß1–40-induced cognitive impairment on adaptive behavior learning by modulating ERK/CaMKII/CREB signaling in the hippocampus. BMC Complement Altern Med. 15, DOI: 10.1186/s12906-015-0584-9
  80. Aunger R, Curtis V (2015): Gaining Control – How human Behaviour evolved, Oxford University Press, ISBN: 978-0-19-968895-1
  81. Buchta WC, Riegel AC (2015): Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res. 1628: 88–103, DOI: 10.1016/j.brainres.2015.02.003
  82. Weiss SJ & Rosales-Ruiz J (2014): Operant/Classical Conditioning: Comparisons, Intersections and Interactions: The 2014 Winter Conference on Animal Learning and Behavior Focus and Research Seminar Sessions. International Journal of Comparative Psychology. 27(4). https://escholarship.org/uc/item/4c46c9gg
  83. Soltoggio A (2014): Short-term plasticity as cause–effect hypothesis testing in distal reward learning. Biol Cybern. 109: 75–94, DOI: 10.1007/s00422-014-0628-0
  84. Jun H (2014): Cognitive Learning and Memory Systems using Spiking Neural, PhD dissertation, National University of Singapore
  85. Lakin MR, Minnich A, Lane T, Stefanovic D (2014): Design of a biochemical circuit motif for learning linear functions. J R Soc Interface 11, DOI: 10.1098/rsif.2014.0902
  86. Cyr A, Boukadoum M, Thériault F (2014): Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot’s controller. Front Neurorobot. 8:21 DOI: 10.3389/fnbot.2014.00021
  87. Le Pelley ME (2014): Primate polemic: Commentary on Smith, Couchman, and Beran (2014). J Comp Psych 128: 132–134, DOI:10.1037/a0034227
  88. Dasgupta S, Wörgötter F, Manoonpong P (2014): Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits, 8:126, DOI: 10.3389/fncir.2014.00126
  89. Soltoggio,A., Lemme,A., Reinhart,F. and Steil,J.J. (2013) Rare Neural Correlations Implement Robotic Conditioning with Delayed Rewards and Disturbances. Front. Neurorobot., 7, DOI: 10.3389/fnbot.2013.00006
  90. Radecki G, Nargeot R, Jelescu IO, Le Bihan D, Ciobanu L (2014): Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica. Proc Natl Acad Sci U S A 111: 8667–8672, DOI: 10.1073/pnas.1403739111
  91. Sieling F, Bédécarrats A, Simmers J, Prinz AA, Nargeot R (2014): Differential roles of nonsynaptic and synaptic plasticity in operant reward learning-induced compulsive behavior. Curr Biol. 24(9):941-950
  92. Jain P, Bhalla US (2014): Transcription Control Pathways Decode Patterned Synaptic Inputs into Diverse mRNA Expression Profiles. PLoS ONE 9(5): e95154
  93. Kandel ER, Dudai Y, Mayford MR (2014): The molecular and systems biology of memory. Cell. 157(1):163-186
  94. Schacher S, Hu J-Y (2014): The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learn Mem 21:128–134
  95. Zilio, D. (2013): Behavioral unit of selection and the operant-respondent distinction: The role of neurophysiological events in controlling the verbal behavior of theorizing about behavior. Psychological Record, 63(4): 895-918
  96. Kemenes G (2013): Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p252-264
  97. Benjamin P (2013): A Systems Analysis of Neural Networks Underlying Gastropod Learning and Memory. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p163-172
  98. Mozzachiodi R, Baxter DA, Byrne JH (2013): Comparison of Operant and Classical Conditioning of Feeding Behavior in Aplysia. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p183-193
  99. Hastings M, Farah CA, Sossin WS (2013): Roles of Protein Kinase C and Protein Kinase M in Aplysia Learning. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p221-235
  100. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  101. Weatherill DB, Dunn TW, McCamphill PK, Sossin WS (2013): Exploring mechanisms of synaptic plasticity using exogenous expression of proteins at the sensory-to-motor neuron synapse of Aplysia. Neuromethods, 81: 61-91
  102. Shi Z, Chen L, Li S, Chen S, Sun X, Sun L, Li Y, Zeng J, He Y, Liu X (2013): Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology (Berl). 230:245–260
  103. Bédécarrats A, Cornet C, Simmers J, Nargeot R (2013): Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem. 20(6):318-327
  104. Schultz W (2013): Updating dopamine reward signals. Curr Opin Neurobiol. 23(2): 229–238. doi:pii: S0959-4388(12)00186-9. 10.1016/j.conb.2012.11.012.
  105. Shields-Johnson ME, Hernandez JS, Torno C, Adams KM, Wainwright ML, Mozzachiodi R (2012): Effects of aversive stimuli beyond defensive neural circuits: Reduced excitability in an identified neuron critical for feeding in Aplysia. Learn Mem. 20(1):1-5
  106. Shi Z, Chen S, Chen L, Sun X, Song G, Wang Q, Chang Q, Li H, Li Y, Qu L, Liu X (2012): Evaluation of reward-relevant learning and memory behavior with operant conditioning task in rats. Acta Laboratorium Animalis Scientia Sinica, 20 (4): 9-15
  107. Gantt EE, Melling BS, Reber JS (2012): Mechanisms or metaphors? The emptiness of evolutionary psychological explanations. Theory Psychology 22(6): 823-841
  108. Hirayama K, Catanho M, Brown JW, Gillette R (2012): A core circuit module for cost/benefit decision. Front Neurosci. 6:123
  109. Soltoggio A, Stanley KO (2012): From modulated Hebbian plasticity to simple behavior learning through noise and weight saturation. Neural Netw. 34:28-41
  110. Shi Z, Sun X, Liu X, Chen S, Chang Q, Chen L, Song G, Li H. (2012): Evaluation of an Aß(1-40)-induced cognitive deficit in rat using a reward-directed instrumental learning task. Behav Brain Res. 234(2):323-333
  111. Harris CA, Buckley CL, Nowotny T, Passaro PA, Seth AK, Kemenes G, O’Shea M (2012): Multi-neuronal refractory period adapts centrally generated behaviour to reward. PLoS One. 7(7):e42493
  112. Nargeot R, Simmers J (2012): Functional Organization and Adaptability of a Decision-Making Network in Aplysia. Front Neurosci. 6:113
  113. Susswein AJ, Chiel HJ. (2012): Nitric oxide as a regulator of behavior: New ideas from Aplysia feeding. Prog Neurobiol. 97(3):304-317
  114. Eschbach C (2012): Classical and operant learning in the larvae of Drosophila melanogaster. PhD thesis, University of Würzburg, https://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/7058
  115. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  116. Acheampong A, Kelly K, Shields-Johnson M, Hajovsky J, Wainwright M, Mozzachiodi R (2012): Rapid and persistent suppression of feeding behavior induced by sensitization training in Aplysia. Learn Mem. 19(4):159-163
  117. Cheu EY, Quek C, Ng SK (2012): ARPOP: An Appetitive Reward-Based Pseudo-Outer-Product Neural Fuzzy Inference System Inspired From the Operant Conditioning of Feeding Behavior in Aplysia. IEEE Transactions on Neural Networks and Learning Systems, 23(2): 317 – 329
  118. Kappeler PM (2012): Entwicklung und Kontrolle des Verhaltens. In: Verhaltensbiologie, Springer Lehrbuch, DOI: 10.1007/978-3-642-20653-5
  119. Ponulak F, Kasinski A (2011): Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol Exp (Wars). 71(4):409-433
  120. Lorenzetti FD, Baxter DA, Byrne JH (2011): Classical conditioning analog enhanced acetylcholine responses but reduced excitability of an identified neuron. J Neurosci. 31(41):14789-14793.
  121. Miller N, Saada R, Markovich S, Hurwitz I, Susswein AJ. (2011): L-arginine via nitric oxide is an inhibitory feedback modulator of Aplysia feeding. J Neurophysiol. 105(4):1642-1650
  122. Cheu EY, Quek C, Ng SK (2010): Time Series Forecasting With Appetitive Reward-based Pseudo-Outer-Product Fuzzy Neural Network. The 2010 International Joint Conference on Neural Networks (IJCNN), doi: 10.1109/IJCNN.2010.5596738
  123. Guerra, LGGC, Silva, MTA (2010): Learning processes and the neural analysis of conditioning. Psych Neur. 3(2), doi: 10.3922/j.psns.2010.2.xxx
  124. Barron AB, Søvik E, Cornish JL (2010): The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci. 4:163
  125. Nargeot R, Simmers J (2010): Neural mechanisms of operant conditioning and learning-induced behavioral plasticity in Aplysia. Cell Mol Life Sci. 68(5): 803-816
  126. Pirger Z, László Z, Kemenes I, Tóth G, Reglodi D, Kemenes G (2010): A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate. J Neurosci. 30(41):13766-13773
  127. Wu JS, Vilim FS, Hatcher NG, Due MR, Sweedler JV, Weiss KR, Jing J. (2010): A Composite Modulatory Feedforward Loop Contributes to the Establishment of a Network State. J Neurophysiol. 2010 Feb 24. [Epub ahead of print]
  128. Mozzachiodi R, Byrne JH (2010): More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory. Trends Neurosci. 33 (1): 17-26
  129. Katzoff A, Miller N, Susswein AJ (2009): Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia. Learn Mem. 17(1):839-851
  130. Casimir MJ (2009): On the Origin and Evolution of Affective Capacities in Lower Vertebrates. In: Böttger-Rössler B, Markowitsch HJ (eds.) Emotions as Bio-cultural Processes, p. 1-39. Springer, New York, DOI: 10.1007/978-0-387-09546-2_4
  131. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. (2009): Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415
  132. Kemenes G (2009): Learning and Memory: How Sea Slug Behaviors Become Compulsive. Curr Biol. 19(13):R515-R517
  133. Nargeot R, Le Bon-Jego M, Simmers J (2009): Cellular and network mechanisms of operant learning-induced compulsive behavior in Aplysia. Curr Biol. 19(12):975-984
  134. Dayan P, Huys QJ. (2009): Serotonin in Affective Control. Annu Rev Neurosci. 32: 95-126
  135. Martínez-Rubio C, Serrano GE, Miller MW (2009): Localization of biogenic amines in the foregut of Aplysia californica: catecholaminergic and serotonergic innervation. J Comp Neurol. 514(4):329-342
  136. Khan AM, Spencer GE (2009): Novel neural correlates of operant conditioning in normal and differentially reared Lymnaea. J Exp Biol. 212(Pt 7):922-933
  137. Kisch J, Haupt SS (2009): Side-specific operant conditioning of antennal movements in the honey bee. Behav Brain Res. 196(1):131-133
  138. Kappeler PM (2008): Verhaltensbiologie 2nd edition. Springer-Lehrbuch ISSN 0937-7433
  139. Soltoggio A (2008): Neuromodulation Increases Decision Speed in Dynamic Environments. In: Schlesinger, M., Berthouze, L., and Balkenius, C. (2008): Proceedings of the Eighth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Studies, 139.
  140. Lee YS, Bailey CH, Kandel ER, Kaang BK (2008): Transcriptional regulation of long-term memory in the marine snail Aplysia. Mol Brain. 1(1):3.
  141. Proekt A, Wong J, Zhurov Y, Kozlova N, Weiss KR, Brezina V. (2008): Predicting adaptive behavior in the environment from central nervous system dynamics. PLoS ONE. 3(11): e3678
  142. Mozzachiodi R, Lorenzetti FD, Baxter DA, Byrne JH. (2008): Changes in neuronal excitability serve as a mechanism of long-term memory for operant conditioning. Nat Neurosci. 11: 1146-1148
  143. Lorenzetti FD, Byrne JH (2008): Cellular mechnaisms of associative learning in Aplysia. In: Byrne, JH (ed.) Concise Learning and Memory: The Editor’s Selection. Academic Press, London San Diego
  144. Lorenzetti FD, Baxter DA, Byrne JH (2008): Molecular Mechanisms Underlying a Cellular Analog of Operant Reward Learning. Neuron 59: 815-828
  145. Soltoggio A, Bullinaria JA, Mattiussi C, Dürr P, Floreano D (2008): Evolutionary Advantages of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. Proc 11th Int. Conf. Art. Life (Alife XI), 2008. LIS-CONF-2008-012
  146. Levitan D, Lyons LC, Perelman A, Green CL, Motro B, Eskin A, Susswein AJ. (2008): Training with inedible food in Aplysia causes expression of C/EBP in the buccal but not cerebral ganglion. Learn Mem. 15(6):412-416.
  147. Benjamin PR, Kemenes G, Kemenes I. (2008): Non-synaptic neuronal mechanisms of learning and memory in gastropod molluscs. Front Biosci. 13: 4051-4057
  148. Barandiaran X, Moreno A (2008): On the nature of neural information: A critique of the received view 50 years later. Neurocomp. 71 (4-6): 681-692
  149. Hurwitz I, Ophir A, Korngreen A, Koester J, Susswein AJ. (2008): Currents contributing to decision making in neurons b31/b32 of Aplysia. J Neurophysiol. 99(2): 814-830
  150. Nikitin ES, Korshunova TA, Zakharov IS, Balaban PM. (2008): Olfactory experience modifies the effect of odour on feeding behaviour in a goal-related manner. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 194(1):19-26
  151. Barandiaran X, Moreno A (2008): Adaptivity: From Metabolism to Behavior. Adapt Behav. 16 (5): 325-344
  152. Glanzman DL (2007): Simple Minds: The Neurobiology of Invertebrate Learning and Memory. Chapter 14 in: North G (ed.) Invertebrate Neurobiology, p. 347-380. Cold Spring Harbor Press.
  153. Alcaro A, Huber R, Panksepp J. (2007): Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev. 56(2): 283-321.
  154. Philips GT, Tzvetkova EI, Carew TJ. (2007): Transient mitogen-activated protein kinase activation is confined to a narrow temporal window required for the induction of two-trial long-term memory in Aplysia. J Neurosci. 27(50):13701-13705.
  155. Martin GG, Oakes CT, Tousignant HR, Crabtree H, Yamakawa R (2007): Structure and function of haemocytes in two marine gastropods, Megathura crenulata and Aplysia californica. J. Mollusc. Stud. 73: 355-365
  156. Rumbaugh DM, King JE, Beran MJ, Washburn DA, Gould K (2007): A Salience Theory of Learning and Behavior: With Perspectives on Neurobiology and Cognition. Int. J. Primatol. 28(5): 973-996
  157. Nargeot R, Petrissans C, Simmers J. (2007): Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. J Neurosci. 27(30): 8059-8070
  158. Serrano GE, Martinez-Rubio C, Miller MW. (2007): Endogenous motor neuron properties contribute to a program-specific phase of activity in the multifunctional feeding central pattern generator of Aplysia. J Neurophysiol. 98(1):29-42
  159. Silva MTA, Goncalves FL, Garcia-Mijares M (2007): Neural events in the reinforcement contingency. Behav. Anal. 30(1): 17-30
  160. Daucé E (2007): Learning and control with large dynamic neural networks. Eur. Phys. J. Special Topics 142, 123–161
  161. Shaywitz SE, Shaywitz BA (2007): What neuroscience really tells us about reading instructions – A response to Judy Willis. Educational Leadership 64 (5): 74-76
  162. Willis J (2007): The gully in the “brain glitch” theory. Educational Leadership 64 (5): 68-73
  163. Cataldo E, Brunelli M, Av-Ron E, Cai Y, Baxter DA (2007): Geometry, activity-dependent mechanisms, membrane kinetics and channel density distribution interplay in single neuron plasticity: a computational study. In: Mondaini RP, Dilão R (eds.) Biomat 2007: International Symposium on Mathematical and Computational Biology. 154-178
  164. Kappeler PM (2006): Verhaltensbiologie, Springer-Lehrbuch, ISBN: 978-3-540-24056-3
  165. Rossini L, Rossini P (2006): Pharmacotherapeutic receptor specificities and selectivity classes, and plecebo effects: a perspective. Pharmacologyonline 2: 206-235
  166. Cataldo E, Byrne JH, Baxter DA (2006): Computational model of a central pattern generator. Computational Methods in Systems Biology, Proceedings Lecture Notes in Computer Science 4210: 242-256
  167. Baxter DA, Byrne JH (2006): Feeding behavior of Aplysia: A model system for comparing cellular mechanisms of classical and operant conditioning. Learn. Mem. 13: 669-680
  168. Giurfa, M (2006): Associative Learning: The Instructive Function of Biogenic Amines. Curr. Biol. 16(20): R892-R895
  169. Paolucci, M; Conte, R; Di Tosto, G (2006): A model of social organization and the evolution of food sharing in vampire bats. Adapt. Behav. 14 (3): 223-238
  170. Katzoff A, Ben-Gedalya T, Hurwitz I, Miller N, Susswein YZ, Susswein AJ. (2006): Nitric oxide signals that aplysia have attempted to eat, a necessary component of memory formation after learning that food is inedible. J Neurophysiol. 96(3):1247-1257
  171. Diaz-Rios M, Miller MW. (2006): Target-specific regulation of synaptic efficacy in the feeding central pattern generator of Aplysia: potential substrates for behavioral plasticity? Biol Bull. 210(3):215-29.
  172. Kemenes I, Straub VA, Nikitin ES, Staras K, O’shea M, Kemenes G, Benjamin PR. (2006): Role of delayed nonsynaptic neuronal plasticity in long-term associative memory. Curr Biol. 16(13):1269-1279
  173. Cheng J, Feenstra MG. (2006): Individual differences in dopamine efflux in nucleus accumbens shell and core during instrumental learning. Learn. Mem. 13(2):168-177
  174. Fioravante D, Smolen PD, Byrne JH. (2006): The 5-HT- and FMRFa-activated signaling pathways interact at the level of the Erk MAPK cascade: potential inhibitory constraints on memory formation. Neurosci Lett. 396(3):235-240
  175. Lowe MR, Spencer GE. (2006): Perturbation of the activity of a single identified neuron affects long-term memory formation in a molluscan semi-intact preparation. J Exp Biol. 209(Pt 4):711-721
  176. Shirinyan D, Teshiba T, Taylor K, O’neill P, Lee SC, Krasne FB. (2006): Rostral Ganglia are required for induction but not expression of crayfish escape reflex habituation: role of higher centers in reprogramming low-level circuits. J Neurophysiol. 95(4):2721-2724
  177. Hawkins RD, Clark, GA, Kandel, ER (2006): Operant Conditioning of Gill Withdrawal in Aplysia. J. Neurosci. 26(9):2443-2448
  178. Teague CL (2006): Perceptions of the Silent Majority: Projects as Assessments in a Brain Compatible Curriculum. ED thesis, University Of Cincinnati, USA
  179. Barbas D, Zappulla JP, Angers S, Bouvier M, Mohamed HA, Byrne JH, Castellucci VF, Desgroseillers L. (2006): An aplysia dopamine-like receptor: molecular and functional characterization. J Neurochem. 96(2):414-427
  180. Lorenzetti FD, Mozzachiodi R, Baxter DA, Byrne JH. (2006): Classical and operant conditioning differentially modify the intrinsic properties of an identified neuron. Nat Neurosci. 9(1):17-19.
  181. Silva MTA, Guerra LGGC (2005): Behavioral Models in Neuroscience: Braz J Behav Anal. 1(2): 167-185
  182. Douglas SJ, Dawson-Scully K, Sokolowski MB. (2005): The neurogenetics and evolution of food-related behaviour. Trends Neurosci. 28(12):644-652.
  183. Kristan WB Jr, Calabrese RL, Friesen WO. (2005): Neuronal control of leech behavior. Prog Neurobiol. 76(5): 279-327
  184. Kazdin AE (2005): Treatment for oppositional, aggressive and antisocial behavior n children and adolescents . Oxford University Press, UK
  185. Tobler PN, O’Doherty JP, Dolan RJ, Schultz W. (2005): Human neural learning depends on reward prediction errors in the blocking paradigm. J Neurophysiol. 95(1):301-310
  186. McComb C, Rosenegger D, Varshney N, Kwok HY, Lukowiak K. (2005): Operant conditioning of an in vitro CNS – pneumostome preparation of Lymnaea. Neurobiol Learn Mem. 84(1): 9-24.
  187. Reyes FD, Mozzachiodi R, Baxter DA, Byrne JH (2005): Reinforcement in an in vitro analog of appetitive classical conditioning of feeding behavior in Aplysia: Blockade by a dopamine antagonist. Learn. Mem. 12: 216-220
  188. Frick A, Johnston D (2005): Plasticity of dendritic excitability. J Neurobiol. 64 (1): 100-115
  189. Diaz-Rios M, Miller MW.(2005): Rapid dopaminergic signaling by interneurons that contain markers for catecholamines and GABA in the feeding circuitry of Aplysia. J Neurophysiol. 93(4):2142-2156.
  190. Smith WB, Starck SR, Roberts RW, Schuman EM, (2005): Dopaminergic Stimulation of Local Protein Synthesis Enhances Surface Expression of GluR1 and Synaptic Transmission in Hippocampal Neurons. Neuron. 45(5):765-79
  191. Reich RR, Noll JA, Goldman MS. (2005): Cue patterns and alcohol expectancies: how slight differences in stimuli can measurably change cognition. Exp Clin Psychopharmacol. 13(1): 65-71.
  192. Cooper SJ (2005): Donald O. Hebb’s synapse and learning rule: a history and commentary. Neurosci Biobehav Rev. 28(8): 851-874.
  193. Dacher M (2005): Role des recepteurs nicotiniques dans differentes formes de memoire chez l’abeille Apis mellifera. Doctoral thesis, Université de Toulouse, Paul Sabatier, France
  194. Haupt, SH (2005): Das gustatorische System und antennales Lernen der Honigbiene (Apis mellifera L.). Doktoral thesis, TU Berlin, Germany.
  195. Shtonda BB (2004): Electrophysiological and behavioral mechanisms od Caenorhabditis elegans feeding. PhD dissertation, The University of Texas Southwestern Medical Center at Dallas.
  196. Schroeder T (2004): Three faces of desire. Oxford University Press, 213pp
  197. Friedel RO (2004): Dopamine dysfunction in borderline personality disorder: a hypothesis. Neuropsychopharm. 29(6): 1029-39.
  198. Grünewald B (2004): ionic bases of olfactory memory. Membrane currents and modulations of neurons within the honeybee olfactory pathway. Habilitation thesis, Freie Universität Berlin, Germany
  199. Kelley, AE (2004): Memory and addiction: Shared neural circuitry and molecular mechanisms. NEURON 44 (1): 161-179
  200. Zull JE (2004): The art of changing the brain. EDUCATIONAL LEADERSHIP 62 (1): 68-72
  201. Panksepp JB, Huber R (2004): Ethological analyses of crayfish behavior: a new invertebrate system for measuring the rewarding properties of psychostimulants. BEHAV. BRAIN RES. 153 (1): 171-180
  202. Leonard JL, Edstrom JP (2004):Parallel processing in an identified neural circuit: the Aplysia californica gill-withdrawal response model system. BIOL REV 79 (1): 1-59
  203. Cropper EC, Evans CG, Hurwitz I, Jing J, Proekt A, Romero A, Rosen SC (2004): Feeding neural networks in the mollusc Aplysia. NEUROSIGNALS 13 (1-2): 70-86
  204. Lorenzetti FD, Byrne JH (2004): Classical Conditioning and Operant Conditioning. In: Byrne JH (ed.) Learning and Memory, Macmillan Psychology Reference Series, Macmillan, New York
  205. Scholz RW, Binder CR (2003): The Paradigm of Human-Environment Systems (Working Paper, 37). Zürich: ETH Zürich, Umweltnatur- und Umweltsozialwissenschaften.
  206. Wickens JR, Reynolds JNJ, Hyland BI (2003): Neural mechanisms of reward-related motor learning. CURR OPIN NEUROBIOL 13 (6): 685-690
  207. Roberts AC, Glanzman DL (2003): Learning in Aplysia: looking at synaptic plasticity from both sides. TRENDS NEUROSCI 26 (12): 662-670
  208. Daoudal G, Debanne D (2003): Long-term plasticity of intrinsic excitability: Learning rules and mechanisms. LEARN MEM 10 (6): 456-465
  209. Mozzachiodi R, Lechner HA, Baxter DA, Byrne, JH (2003): In vitro analog of classical conditioning of feeding behavior in Aplysia. LEARN MEM 10 (6): 478-494
  210. Barbas D, DesGroseillers L, Castellucci VF, Carew TJ, Marinesco S (2003): Multiple serotonergic mechanisms contributing to sensitization in Aplysia: Evidence of diverse serotonin receptor subtypes. LEARN MEM 10 (5): 373-386
  211. Dembrow NC, Jing J, Proekt A, Romero A, Vilim FS, Cropper EC, Weiss KR (2003): A newly identified buccal interneuron initiates and modulates feeding motor programs in Aplysia. J NEUROPHYSIOL 90 (4): 2190-2204
  212. Johnson LR, Byrne JH (2003): Essential medical physiology. Academic Press, 1008pp
  213. Shaik S (2003): Chemistry – A central pillar of human culture. ANGEW CHEM INT EDIT 42 (28): 3208-3215
  214. Nargeot R (2003): Voltage-dependent switching of sensorimotor integration by a lobster central pattern generator. J NEUROSCI 23 (12): 4803-4808
  215. Jones NG, Kemenes I, Kemenes G, et al. (2003): A persistent cellular change in a single modulatory neuron contributes to associative long-term memory. CURR BIOL 13 (12): 1064-1069 JUN 17 2003
  216. Shaik S (2003): Die Chemie – eine zentrale Säule der menschlichen Kultur. Angew. Chem. 115, 3326–3333
  217. Schultz W (2002): “The authors tested the reinforcing effects of dopamine in an in vitro cellular model of…” Evaluation of: [Brembs B et al. Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science. 2002 May 31; 296(5573):1706-9; doi: 10.1126/science.1069434]. Faculty of 1000, 11 Jul 2002. F1000.com/1007610
  218. Menzel R (2002): “This paper analyses for the first time operant reward learning in the mollusc Aplysia at…” Evaluation of: [Brembs B et al. Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science. 2002 May 31; 296(5573):1706-9; doi: 10.1126/science.1069434]. Faculty of 1000, 11 Sep 2002. F1000.com/1007610
  219. Katzoff A, Ben-Gedalya T, and Susswein AJ 2002: Nitric Oxide is necessary for multiple memory processes after learning that a food is inedible in Aplysia. J NEUROSCI 22(21): 9581-9594
  220. Schultz W 2002: Getting formal with dopamine and reward. NEURON 36: 241-263
  221. Carew TJ 2002: Neurobiology – Understanding the consequences. NATURE 417: 803-806
  222. Rankin CH 2002: Neuroscience: A bite to remember. SCIENCE 296 (5573): 1624-1625

Baier A.; Wittek B. and Brembs B. (2002): Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205 (9): 1233–1240.
Citations:

  1. Wang R, Ma B, Shi K, Wu F, Zhou C. (2023): Effects of lithium on aggression in Drosophila.Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 48(5): 754–763. https://doi.org/10.1038/s41386-022-01475-2
  2. Park A. (2023): Neurobiology of alcohol-induced aggression. InHandbook of Anger, Aggression, and Violence. Springer International Publishing.
  3. Rosikon KD, Bone MC, Lawal HO. (2023): Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans.Frontiers in Physiology, 14, 970405. https://doi.org/10.3389/fphys.2023.970405
  4. Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, et al. (2022): Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neuroscience and Biobehavioral Reviews, 135(104559), 104559. https://doi.org/10.1016/j.neubiorev.2022.104559
  5. Han GY, Zeng Y, Zhu DH. (2022): Effect of a nitric oxide synthase inhibitor on fighting behavior of male crickets Velarifictorus aspersus (Orthoptera: Gryllidae) under different resource conditions. Journal of Entomological Science, 57(2):288–296. https://doi.org/10.18474/jes21-59
  6. Carvajal-Oliveros A, Campusano JM. (2021): Studying the Contribution of Serotonin to Neurodevelopmental Disorders. Can This Fly? Front. Behav. Neurosci. 14:601449. doi:10.3389/fnbeh.2020.601449
  7. Monyak RE, Golbari NM, Chan Y-B, Pranevicius A, Tang G, Fernández MP, Kravitz EA. (2021): Masculinized Drosophila females adapt their fighting strategies to their opponent. Journal of Experimental Biology 224(6):jeb238006. doi:10.1242/jeb.238006
  8. Sasaki K, Okada Y, Shimoji H, Aonuma H, Miura T, Tsuji K. (2021): Social Evolution With Decoupling of Multiple Roles of Biogenic Amines Into Different Phenotypes in Hymenoptera. Front Ecol Evol 9. doi:10.3389/fevo.2021.659160
  9. Takemori T. (2021): Exploring the Genetic Underpinnings of Aggression in Drosophila melanogaster. Journal of undergraduate neuroscience education: JUNE: a publication of FUN, Faculty for Undergraduate Neuroscience 19(2):R31-R34.
  10. Sherer LM, Catudio Garrett E, Morgan HR, Brewer ED, Sirrs LA, Shearin HK, Williams JL, McCabe BD, Stowers RS, Certel SJ. (2020): Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons. G. Hasan (Ed.), PLOS Genetics 16(2):e1008609. Public Library of Science (PLoS). doi:10.1371/journal.pgen.1008609
  11. Belenioti M, Chaniotakis N. (2020): Aggressive Behaviour of Drosophila suzukii in Relation to Environmental and Social Factors. Sci Rep 10:7898. doi:10.1038/s41598-020-64941-1
  12. Agrawal P, Kao D, Chung P, Looger LL. (2020): The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. Journal of Experimental Biology. The Company of Biologists. doi:10.1242/jeb.207407
  13. Bilz F, Gilles M-M, Schatton A, Pflüger H-J, Schubert M. (2020): Intensity coded octopaminergic modulation of aversive crawling behavior in Drosophila melanogaster larvae. Cold Spring Harbor Laboratory. doi:10.1101/2020.09.04.281022
  14. Simard CJ, Touaibia M, Allain EP, Hebert-Chatelain E, Pichaud N. (2020): Role of the Mitochondrial Pyruvate Carrier in the Occurrence of Metabolic Inflexibility in Drosophila melanogaster Exposed to Dietary Sucrose. Metabolites 10:411. doi:10.3390/metabo10100411
  15. Gopee T. (2020): Neuromodulation of aggression behavior by Neuropeptide-F in Drosophila melanogaster. http://hdl.handle.net/20.500.12648/1501
  16. Simon JC, Heberlein U. (2020): Social hierarchy is established and maintained with distinct acts of aggression in male Drosophila. Journal of Experimental Biology. doi:10.1242/jeb.232439
  17. Smith AR, Simons M, Bazarko V, Harach J, Seid MA. (2019): Queen – worker aggression in the facultatively eusocial bee Megalopta genalis. Insect Soc. doi:10.1007/s00040-019-00712-0
  18. Palavicino-Maggio CB, Chan Y-B, McKellar C, Kravitz EA. (2019): A small number of cholinergic neurons mediate hyperaggression in female Drosophila. Proc Natl Acad Sci USA. doi:10.1073/pnas.1907042116
  19. Sahu S, Dhar G, Mishra M. (2019): Methods to Detect the Complex Behaviours in Drosophila. Springer Protocols Handbooks. doi:10.1007/978-1-4939-9756-5_19
  20. Hong K-B, Park Y, Suh HJ. (2018): Two combined amino acids promote sleep activity in caffeine-induced sleepless model systems. Nutr Res Pract 12:208. doi:10.4162/nrp.2018.12.3.208
  21. Kang W-N, Zeng Y, Zhu D-H. (2018): Effects of physical and social experiences and octopamine receptor agonist on fighting behavior of male crickets Velarifictorus aspersus (Orthoptera: Gryllidae). Journal of Asia-Pacific Entomology 21:445-450. doi:10.1016/j.aspen.2018.02.008
  22. Kononenko NL, Hartfil S, Willer J, Ferch J, Wolfenberg H, Pflüger H. (2018): A population of descending tyraminergic/octopaminergic projection neurons of the insect deutocerebrum. J Comp Neurol. doi:10.1002/cne.24583
  23. Kang WN, Zeng Y, Zhu DH (2018): Effects of physical and social experiences and octopamine receptor agonist on fighting behavior of male crickets Velarifictorus aspersus (Orthoptera: Gryllidaeik). Journal of Asia-Pacific Entomology. 21(2): 445–450. DOI: 10.1016/j.aspen.2018.02.008
  24. Golden CJ, Zachar R, Lowry B, Tran V (2017): Role of Neurobiological Factors. Handbook of Behavioral Criminology (pp. 25–42). Springer International Publishing. DOI: 10.1007/978-3-319-61625-4_3
  25. Davis SM, Thomas AL, Liu L, Campbell IM, Dierick HA (2017): Isolation of Aggressive Behavior Mutants in Drosophila Using a Screen for Wing Damage. Genetics. 208(1): 273–282. DOI: 10.1534/genetics.117.300292
  26. Himoji H, Aonuma H, Miura T, Tsuji K, Sasaki K, Okada Y (2017): Queen contact and among-worker interactions dually suppress worker brain dopamine as a potential regulator of reproduction in an ant. Behavioral Ecology and Sociobiology. 71(2). DOI: 10.1007/s00265-016-2263-3
  27. Watanabe K, Chiu H, Pfeiffer BD, Wong AM, Hoopfer ED, Rubin GM, Anderson DJ (2017): A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila. Neuron. 95(5):1112–1128.DOI: 10.1016/j.neuron.2017.08.017
  28. Bosco JM, Riechert SE, O’Meara BC (2017): The ontogeny of personality traits in the desert funnel-web spider, Agelenopsis lisa (Araneae: Agelenidae). Ethology. 123(9):648–658. DOI: 10.1111/eth.12639
  29. Pons M, Soulard C, Soustelle L, Parmentier ML, Grau Y, Layalle S (2017): A New Behavioral Test and Associated Genetic Tools Highlight the Function of Ventral Abdominal Muscles in Adult Drosophila. Front Cell Neurosci. 11. DOI: 10.3389/fncel.2017.00371
  30. Chapman T, Wolfner MF (2017): Reproductive behaviour: Make love, then war. Nat Ecol Evol. 1(6):174. DOI: 10.1038/s41559-017-0174
  31. Stevenson PA, Rillich J (2017): Neuromodulators and the Control of Aggression in Crickets. The Cricket as a Model Organism (pp. 169–195). Springer Japan. DOI: 10.1007/978-4-431-56478-2_12
  32. Nouvian MVM (2017): Neural and molecular mechanisms underlying the olfactory modulation of aggression in honeybees. PhD thesis, University of Queensland. DOI: 10.14264/uql.2017.464
  33. Asahina K (2017): Neuromodulation and Strategic Action Choice in Drosophila Aggression. Ann Rev Neurosci. 40(1): 51–75. DOI: 10.1146/annurev-neuro-072116-031240
  34. Anderson DJ (2016): Circuit modules linking internal states and social behaviour in flies and mice. Nature Reviews Neuroscience. 17(11):692–704. DOI: 10.1038/nrn.2016.125
  35. Kim YK (2016): A Drosophila Model for Aggression. In: Animal Models of Behavior Genetics (pp. 35–61). Springer New York. DOI: 10.1007/978-1-4939-3777-6_2
  36. chneider J, Atallah J, Levine JD (2016): Social structure and indirect genetic effects: genetics of social behaviour. Biological Reviews. 92(2): 1027–1038. DOI: 10.1111/brv.12267
  37. Trannoy S, Kravitz EA (2016): Strategy changes in subsequent fights as consequences of winning and losing in fruit fly fights. Fly. 11(2): 129–138. DOI: 10.1080/19336934.2016.1259041
  38. uhl J, Rogers S (2016): Mechanisms underpinning aggregation and collective movement by insect groups. Curr Opin Insect Sci. 15, 125–130. doi: 10.1016/j.cois.2016.04.011
  39. Hoopfer ED (2016): Neural control of aggression in Drosophila. Curr Opin Neurobiol. 38:109-118. doi: 10.1016/j.conb.2016.04.007
  40. Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ (2016): P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. Elife. 4. pii: e11346. doi: 10.7554/eLife.11346
  41. Hong KB, Park Y, Suh HJ (2016): Sleep-promoting effects of a GABA/5-HTP mixture: Behavioral changes and neuromodulation in an invertebrate model. Life Sci. 150: 42-49. doi: 10.1016/j.lfs.2016.02.086
  42. Schneider J, Atallah J, Levine JD (2016): Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev Camb Philos Soc. doi: 10.1111/brv.12267
  43. Kravitz EA, Fernandez Mde L (2015): Aggression in Drosophila. Behav Neurosci. 129(5):549-63. doi: 10.1037/bne0000089
  44. Peterson EK, Carrico P (2015): Laboratory exercise in behavioral genetics using team-based learning strategies, Bioscene 41(2): 32-39.
  45. Zwarts L, Vanden Broeck L, Cappuyns E, Ayroles JF, Magwire MM, Vulsteke V, Clements J, Mackay TF, Callaerts P (2015): The genetic basis of natural variation in mushroom body size in Drosophila melanogaster. Nat Commun. 6:10115, DOI: 10.1038/ncomms10115
  46. Maximino C, Silva RX, da Silva Sde N, Rodrigues Ldo S, Barbosa H, de Carvalho TS, Leão LK, Lima MG, Oliveira KR, Herculano AM (2015): Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci. 9: DOI: 10.3389/fnbeh.2015.00233
  47. Schneider J (2015): Group Dynamics in Drosophila melanogaster, PhD dissertation, University of Toronto
  48. Newland PL, Al Ghamdi MS, Sharkh S, Aonuma H, Jackson CW (2015): Exposure to static electric fields leads to changes in biogenic amine levels in the brains of Drosophila. Proc Biol Sci. 282: 20151198, DOI: 10.1098/rspb.2015.1198
  49. Bubak AN, Rieger NS, Watt MJ, Renner KJ, Swallow JG (2015): David vs. Goliath: Serotonin modulates opponent perception between smaller and larger rivals. Behav Brain Res 292: 521–527, DOI: 10.1016/j.bbr.2015.07.028
  50. Shorter J, Couch C, Huang W, Carbone MA, Peiffer J, Anholt RR, Mackay TF (2015): Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior . Proc Natl Acad Sci U S A. 112: E3555–E3563, DOI: 10.1073/pnas.1510104112
  51. Rohrscheib CE, Bondy E, Josh P, Riegler M, Eyles D, van Swinderen B, Weible MW 2nd, Brownlie JC (2015): Wolbachia Influences the Production of Octopamine and Affects Drosophila Male Aggression. Appl Environ Microbiol. 81(14): 4573–4580, DOI: 10.1128/AEM.00573-15
  52. Haynes PR, Christmann BL, Griffith LC (2015): A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 4, DOI: 10.7554/eLife.03868
  53. Benelli G (2015): Should I fight or should I flight? How studying insect aggression can help integrated pest management. Pest Manag Sci 71: 885–892, DOI: 10.1002/ps.3974
  54. Rillich J, Stevenson PA (2015): Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Front. Behav. Neurosci., 9, DOI: 10.3389/fnbeh.2015.00095
  55. Ostrowski D, Kahsai L, Kramer EF, Knutson P, Zars T (2015) Place memory retention in Drosophila. Neurobiol Learn Mem 123: 217–224. DOI: 10.1016/j.nlm.2015.06.015
  56. Ostrowski D, Zars T (2014): Place memory, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 125-134. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511920585.007
  57. Ruiz-Rubio M, Calahorro F, Gámez-del-Estal MM (2014): Invertebrate Models of Synaptic Transmission in Autism Spectrum Disorders. Organism Models of Autism Spectrum Disorders IN: Neuromethods 100: pp 157-182 DOI: 10.1007/978-1-4939-2250-5_6
  58. Bubak AN, Grace JL, Watt MJ, Renner KJ, Swallow JG (2014): Neurochemistry as a bridge between morphology and behavior: Perspectives on aggression in insects, Curr Zool 60(6): 778–790
  59. Jezzini SH, Reyes-Colón D, Sosa MA (2014): Characterization of a Prawn OA/TA Receptor in Xenopus Oocytes Suggests Functional Selectivity between Octopamine and Tyramine. PLoS ONE, 9 DOI: 10.1371/journal.pone.0111314
  60. Yapici N, Zimmer M, Domingos AI (2014): Cellular and molecular basis of decision-making. EMBO Rep 15: 1023–1035. DOI: 10.15252/embr.201438993
  61. Goergen P (2014): The Molecular Mechanism of Aggression and Feeding Behaviour in Drsophila melanogaster. PhD dissertation, Uppsala Universitet, ISBN: 978-91-554-8985-4
  62. Luo J, Lushchak OV, Goergen P, Williams MJ, Nässel DR (2014): Drosophila Insulin-Producing Cells Are Differentially Modulated by Serotonin and Octopamine Receptors and Affect Social Behavior. PLoS ONE 9, e99732. DOI: 10.1371/journal.pone.0099732
  63. Penick CA, Brent CS, Dolezal K, Liebig J (2014): Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant Harpegnathos saltator. J Exp Biol 217: 1496–1503. DOI: 10.1242/jeb.098301
  64. Selcho M, Pauls D, Huser A, Stocker RF, Thum AS (2014): Characterization of the octopaminergic and tyraminergic neurons in the central brain of Drosophila larvae . J Comp Neurol 522: 3485–3500. DOI:10.1002/cne.23616
  65. Moore D, Paquette C, Shropshire JD, Seier E, Joplin KH (2014): Extensive reorganization of behavior accompanies ontogeny of aggression in male flesh flies. PLoS One. 9(4):e93196
  66. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, González CR, Eyjólfsdóttir EA, Perona P, Anderson DJ (2014) Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila. Cell 156:221–235
  67. Strauss R (2014): Neurobiological Models of the Central Complex and the Mushroom Bodies. In: Arena P, Patane L (Eds.): Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II. Springer-Verlag, ISBN 978-3-319-02362-5
  68. Briffa M, Hardy ICW, Mowles SL (2013): Prospects for animal contests. In: Ian C. W. Hardy and Mark Briffa (eds.) Animal Contests. pp. 335-341. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9781139051248.018
  69. Williams MJ, Goergen P, Rajendran J, Klockars A, Kasagiannis A, Fredriksson R, Schiöth HB (2013): Regulation of Aggression by Obesity-Linked Genes TfAP-2 and Twz Through Octopamine Signaling in Drosophila. Genetics 196: 349–362. DOI: 10.1534/genetics.113.158402
  70. Blenau W, Thamm M, Baumann A (2013): Serotonin in insects: Distribution, biosynthesis, uptake, inactivation, receptors, functions, and implications for human health. In: F.S. Hall (ed.). Serotonin: Biosynthesis, Regulation and Health Implications, NOVA Science Publishers, 1-26. ISBN: 9781624176364
  71. Herberholz J (2013): Serotonergic modulation of aggression. In: F.S. Hall (ed.). Serotonin: Biosynthesis, Regulation and Health Implications, NOVA Science Publishers, 27-51. ISBN: 9781624176364
  72. Szczuka A, Korczynska J, Wnuk A, Symonowicz B, Szwacka AG, Mazurkiewicz P, Kostowski W, Godzinska EJ (2013): The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol Exp (Wars). 73(4):495-520
  73. Klowden MJ (2013): Behavioral Systems. In: Physiological Systems in Insects, 696p, Elsevier, ISBN-13: 978-0124158191
  74. Kamhi JF, Traniello JFA (2013): Biogenic Amines and Collective Organization in a Superorganism: Neuromodulation of Social Behavior in Ants. Brain Behav Evol 82:220–236
  75. Williams MJ, Goergen P, Rajendran J, Klockars A, Kasagiannis A, Fredriksson R, Schiöth HB (2014): Regulation of Aggression by Obesity-Linked Genes TfAP-2 and Twz Through Octopamine Signaling in Drosophila. Genetics 196: 349–362 DOI: 10.1534/genetics.113.158402
  76. Bubak AN, Swallow JG, Renner KJ (2013): Whole Brain Monoamine Detection and Manipulation in a Stalk-eyed Fly. J Neurosci Methods. 219(1):124-130
  77. Donnelly JL, Clark CM, Leifer AM, Pirri JK, Haburcak M, et al. (2013): Monoaminergic Orchestration of Motor Programs in a Complex C. elegans Behavior. PLoS Biol 11(4): e1001529. doi:10.1371/journal.pbio.1001529
  78. van Alphen B, van Swinderen B (2013): Drosophila strategies to study psychiatric disorders. Brain Res Bull. 92:1-11
  79. Stevenson PA, Schildberger K (2013): Mechanisms of experience dependent control of aggression in crickets. Curr Opin Neurobiol. 23(3): 318-323
  80. Huang Q, Sun P, Zhou X, Lei C (2012): Characterization of Head Transcriptome and Analysis of Gene Expression Involved in Caste Differentiation and Aggression in Odontotermes formosanus (Shiraki). PLoS One. 7(11):e50383
  81. Neckameyer WS, Argue KJ (2012): Comparative Approaches to the Study of Physiology: Drosophila as a Physiologic Tool. Am J Physiol Regul Integr Comp Physiol. 304(3):R177-188
  82. Zwarts L, Clements J, Callaerts P (2012): Deciphering the Adult Brain: From Neuroanatomy to Behavior. In: Hassan BA (ed.):The Making and Un-Making of Neuronal Circuits in Drosophila. Neuromethods 69, pp 3-48 ISBN 978-1-61779-829-0
  83. Stevenson PA, Rillich J (2012): The decision to fight or flee – insights into underlying mechanism in crickets. Front Neurosci. 6:118
  84. Zwarts L, Clements J, Callaerts P (2012): Deciphering the Adult Brain: From Neuroanatomy to Behavior. Neuromethods, 69(1): 3-48, DOI: 10.1007/978-1-61779-830-6_1
  85. Selcho M, Pauls D, Jundi BE, Stocker RF, Thum AS (2012): The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol. 2012 May 24. doi: 10.1002/cne.23152
  86. Zwarts L, Versteven M, Callaerts P (2012): Genetics and neurobiology of aggression in Drosophila. Fly (Austin). 6(1):35-48
  87. Cossío-Bayúgar R, Miranda-Miranda E, Narváez Padilla V, Olvera-Valencia F, Reynaud E (2012): Perturbation of tyraminergic/octopaminergic function inhibits oviposition in the cattle tick Rhipicephalus (Boophilus) microplus. J Insect Physiol. 58(5):628-633
  88. Zwarts L, Magwire MM, Carbone MA, Versteven M, Herteleer L, Anholt RR, Callaerts P, Mackay TF (2011): Complex genetic architecture of Drosophila aggressive behavior. Proc Natl Acad Sci U S A. 108(41):17070-17075
  89. Brooks ES, Greer CL, Romero-Calderón R, Serway CN, Grygoruk A, Haimovitz JM, Nguyen BT, Najibi R, Tabone CJ, Steven de Belle J, Krantz DE (2011): A Putative Vesicular Transporter Expressed in Drosophila Mushroom Bodies that Mediates Sexual Behavior May Define a Neurotransmitter System. Neuron. 72(2):316-329.
  90. Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E. (2011): Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes. 2(3):190-192
  91. Pflüger HJ, Duch C (2011): Dynamic Neural Control of Insect Muscle Metabolism Related to Motor Behavior. Physiology 26:293-303
  92. Jonsson T, Kravitz EA, Heinrich R (2011): Sound production during agonistic behavior of male Drosophila melanogaster. Fly (Austin) 5(1):29-38
  93. Strauss R, Berg C (2010): The Central Control of Oriented Locomotion in Insects – Towards a Neurobiological Model. The 2010 International Joint Conference on Neural Networks (IJCNN), doi: 10.1109/IJCNN.2010.5596461
  94. Bolduc FV, Valente D, Nguyen AT, Mitra PP, Tully T (2010): An assay for social interaction in Drosophila fragile X mutants. Fly (Austin) 4(3).
  95. Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger HJ, Blenau W, Broeck JV (2010): The role of octopamine in locusts and other arthropods. J Insect Physiol. 56(8):854-867
  96. Börner J, Duch C (2010): An average shape standard atlas for the adult Drosophila ventral nerve cord. J comp. Neurol. 518(13): 2437-2455
  97. Wang L, Anderson DJ (2010): Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463(7278):227-231
  98. Ueda A, Wu CF (2009): Effects of social isolation on neuromuscular excitability and aggressive behaviors in Drosophila: altered responses by Hk and gsts1, two mutations implicated in redox regulation. J. Neurogenet. 23(4):378-294
  99. Edwards AC, Ayroles JF, Stone EA, Carbone MA, Lyman RF, Mackay TF (2009): A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biol. 10(7): R76
  100. Avanesian A, Semnani S, Jafari M (2009): Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions? Drug Discovery Today 14(15-16): 761-766
  101. Cholewa J, Pflüger HJ (2009): Descending unpaired median neurons with bilaterally symmetrical axons in the suboesophageal ganglion of Manduca sexta larvae. Zoology 112(4): 251-262
  102. Pain SP (2009): Signs of anger: Representation of agonistic behaviour in invertebrate cognition. Biosemiotics 2(2): 181-191
  103. Edwards A, Mackay TF (2009): Quantitative Trait Loci for Aggressive Behavior in Drosophila melanogaster. Genetics. 182(3): 889-897
  104. Edwards AC, Zwarts L, Yamamoto A, Callaerts P, Mackay TF (2009): Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol. 7(1):29
  105. Kim YK (2009): Sexual Selection and Aggressive Behavior in Drosophila. In: Kim YK (ed.) Handbook of Behavior Genetics. Springer ISBN 978-0-387-76726-0 (Print) 978-0-387-76727-7 (Online), 317-330
  106. Börner J (2009): Standardized Drosophila ventral nerve cord morphology: Atlas generation and atlas applications. PhD thesis, Freie Universität Berlin, Germany
  107. Kotsyuba, EP (2009): Effect of temperature stress on activities of nitric oxide synthase and tyrosine hydroxylase in the central nervous system of bivalve molluscs. Zh Evol Biokhim Fiziol. 45(1):122-129
  108. Serway CN, Kaufman RR, Strauss R, de Belle JS (2009): Mushroom bodies enhance initial motor activity in Drosophila. J Neurogenet. 23(1):173-184
  109. Iliadi KG (2009): The genetic basis of emotional behavior: has the time come for a Drosophila model? J Neurogenet. 23(1):136-146
  110. Vierk R, Pflueger HJ, Duch C (2009): Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 195(3): 265-277
  111. Johnson O, Becnel J, Nichols CD (2009): Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience 158(4): 1292-1300
  112. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Taniguchi T, Agata K. (2008): Characterization of tyramine beta-hydroxylase in planarian Dugesia japonica: Cloning and expression. Neurochem Int. 53(6-8):184-192
  113. Paquette C, Joplin KH, Seier E, Peyton JT, Moore D (2008): Sex-specific differences in spatial behaviour in the flesh fly Sarcophaga crassipalpis. Physiol. Entomol. 33 (4): 382-388
  114. Potter CJ, Luo L (2008): Octopamine fuels fighting flies. Nat Neurosci. 11: 989-990
  115. Zhou C, Rao Y, Rao Y. (2008): A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci. 11: 1059-1067
  116. Paquette C (2008): Gender-Specific Differences in Spatial Behavior of the Flesh Fly, Sarcophaga crassipalpis. Master’s thesis, East Tennessee State University. USA
  117. Cabral LG, Foley BR, Nuzhdin SV (2008): Does Sex Trade with Violence among Genotypes in Drosophila melanogaster? PLoS ONE 3(4): e1986
  118. Wang L, Dankert H, Perona P, Anderson DJ (2008): A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci USA. 105(15): 5657-5663
  119. Dierick HA. (2008): Fly fighting: octopamine modulates aggression. Curr Biol. 18(4):R161-163
  120. Hoyer SC, Eckart A, Herrel A, Zars T, Fischer SA, Hardie SL, Heisenberg M. (2008): Octopamine in male aggression of Drosophila. Curr Biol. 18(3):159-167.
  121. Dierick HA. (2007): A method for quantifying aggression in male Drosophila melanogaster. Nat Protoc. 2(11):2712-2718.
  122. Chan YB, Kravitz EA (2007): Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster. Proc Natl Acad Sci USA. 104(49): 19577-19582
  123. Simon AF, Krantz DE. (2007): Road rage and fruit flies. Nat Genet. 39(5): 581-582
  124. Kaun KR, Hendel T, Gerber B, Sokolowski MB. (2007): Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem. 14(5): 342-349
  125. Dierick HA, Greenspan RJ. (2007): Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet. 39(5):678-682.
  126. Certel SJ, Savella MG, Schlegel DC, Kravitz EA. (2007): Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci USA. 104(11): 4706-4711.
  127. Robin C, Daborn PJ, Hoffmann AA. (2006): Fighting fly genes. Trends Genet. 23(2):51-54
  128. Scott MP. (2006): The role of juvenile hormone in competition and cooperation by burying beetles. J Insect Physiol. 52(10):1005-1011
  129. Edwards AC, Rollmann SM, Morgan TJ, Mackay TFC (2006): Quantitative Genomics of Aggressive Behavior in Drosophila melanogaster. PLoS Genet 2(9): e154
  130. Beaver KM (2006): The Intersection of Genes, the Environment, and Crime and Delinquency: A Longitudinal Study of Offending. Doctoral thesis, University of Cincinnati, Ohio, USA.
  131. Dierick HA, Greenspan RJ. (2006): Molecular analysis of flies selected for aggressive behavior. Nat Genet. 38(9):1023-1031
  132. Yuan Q, Joiner WJ, Sehgal A. (2006): A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol. 16(11):1051-1062
  133. Gonzales E, Hamrick JL, Smouse PE, Dyer RJ. (2006): Pollen-mediated gene dispersal within continuous and fragmented populations of a forest understorey species, Trillium cuneatum. Mol Ecol. 15(8):2047-2058.
  134. Fox LE, Soll DR, Wu CF. (2006): Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine Beta hydroxlyase mutation. J Neurosci. 26(5):1486-1498.
  135. Sinakevitch I, Strausfeld NJ. (2006): Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol. 494(3):460-475
  136. Hoyer SC, Liebig J, Rossler W (2005): Biogenic amines in the ponerine ant Harpegnathos saltator: serotonin and dopamine immunoreactivity in the brain. Arth. Struct. Dev. 34(4): 429-440
  137. Carbone MA, Llopart A, Deangelis M, Coyne JA, Mackay TF. (2005): Quantitative Trait Loci Affecting the Difference in Pigmentation Between Drosophila yakuba and D. santomea.Genetics. 171(1): 211-325.
  138. Blenau W, Baumann A. (2005): Molecular characterization of the ebony gene from the American cockroach, Periplaneta americana. Arch Insect Biochem Physiol. 59(3):184-95.
  139. Svetec N, Ferveur JF. (2005): Social experience and pheromonal perception can change male-male interactions in Drosophila melanogaster. J Exp Biol. 208(Pt 5):891-8.
  140. Stevenson PA, Dyakonova V, Rillich J, Schildberger K. (2005): Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci. 25(6):1431-1441.
  141. Pagé MP, Cooper RL (2004): Novelty stress and reproductive state alters responsiveness to sensory stimuli and 5-HT neuromodulation in crayfish. Comp Biochem Physiol A Mol Integr Physiol. 139(2):149-158
  142. Fox LE, Ueda A, Berke B, Peng IF, Wu CF (2004): Movement disorders in Drosophila mutants of potassium channels and biogenic amine pathways . In: Animal models of movement disorders (LeDoux MS, ed.) , pp. 487–504. San Diego: Academic/Elsevier.
  143. Zhang B, Lu H, Xi W, Zhou X, Xu S, Zhang K, Jiang J, Li Y, Guo A. (2004): Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci Lett. 371(2-3):190-195.
  144. Banerjee S, Lee J, Venkatesh K, Wu CF, Hasan G (2004): Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila. J. NEUROSCI. 24 (36): 7869-7878
  145. Ye Y, Xi W, Peng Y, Wang Y, Guo A. (2004): Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm. Eur J Neurosci. 20 (4):1001-1007.
  146. Knaden M, Wehner R (2004): Path integration in desert ants controls aggressiveness. SCIENCE 305 (5680): 60-60
  147. Park DK, Han M, Kim YC, Han KA, Taghert PH (2004): Ap-let neurons – a peptidergic circuit potentially controlling ecdysial behavior in Drosophila. DEV BIOL 269 (1): 95-108
  148. Saraswati S, Fox LE, Soll DR, Wu CF (2004): Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J NEUROBIOL 58 (4): 425-441
  149. Dasari S, Cooper RL (2004): Modulation of sensory-CNS-motor circuits by serotonin, octopamine, and dopamine in semi-intact Drosophila larva. NEUROSCI RES 48 (2): 221-227
  150. Libersat F, Pflueger HJ (2004): Monoamines and the orchestration of behavior. BIOSCIENCE 54 (1): 17-25
  151. Kravitz EA, Huber R (2003): Aggression in invertebrates. CURR OPIN NEUROBIOL 13 (6): 736-743
  152. Monastirioti M (2003): Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. DEV BIOL 264 (1): 38-49
  153. Manev H, Dimitrijevic N, Dzitoyeva S (2003): Techniques: Fruit flies as models for neuropharmacological research. TRENDS PHARMACOLSCI 24 (1): 41-43
  154. Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA (2002): Fighting fruit flies: A model system for the study of aggression. PROC NATL ACAD SCI USA 99 (8): 5664-5668

Brembs B.; Wilkinson E.; Reyes F.; Baxter D.A. and Byrne J.H. (2001): Operant conditioning of feeding behavior in Aplysia using self-stimulation. Soc. Neurosci. Abstr. 644.19.
Citations:

  1. Susswein AJ, Hurwitz I, Thorne R, Byrne JH, Baxter DA (2002): Mechanisms underlying fictive feeding in Aplysia: Coupling between a large neuron with plateau potentials activity and a spiking neuron. J. Neurophys. 87 (5): 2307-2323.

Brembs B. (2001): Hamilton’s Theory. In: Brenner, S. and Miller, J. (eds) Encyclopedia of Genetics, Academic Press, London, New York; pp. 906-910.
Citations:

  1. Barr A, Dekker M, Fafchamps M (2015): The Formation of Community-Based Organizations: An Analysis of a Quasi-Experiment in Zimbabwe. World Development, 66: 131–153, DOI: 10.1016/j.worlddev.2014.08.003
  2. Tokumitsu M, Ishida Y (2012): A systemic payoff in a self-repairing network. Artif Life Robotics 16:563–566
  3. Tokumitsu M, Ishida Y (2011): An Adaptive Control Technique for a Connection Weight of Agents in a Self-repairing Network. Self-Organizing Systems. In: Lecture Notes in Computer Science 6557, 44-55
  4. Bar A, Dekker M, Fafchamps M (2010): The formation of community based organizations in sub-Saharan Africa: An analysis of a quasi-experiment. The Centre for the Study of African Economies Working Paper Series: WPS/2010/21
  5. Fafchamps M (2009): Household Separation and Child Well-Being. The Centre for the Study of African Economies Working Paper Series: WPS/2009-12. The Berkeley Electronic Press (bepress).
  6. Bar A, Dekker M, Fafchamps M (2008): Risk Sharing Relations and Enforcement Mechanisms. The Centre for the Study of African Economies Working Paper Series: Paper 294. The Berkeley Electronic Press (bepress).
  7. Fokker J, de Ridder H, Westendorp P, Pouwelse J (2007): Psychological Backgrounds for Inducing Cooperation in Peer-to-Peer Television. Lect. Notes Comp. Sci. 4471, 136-145
  8. Fafchamps M, Wahba J (2006): Child labor, urban proximity, and household composition. J. dev. Econ. 79(2): 374-397.

Heisenberg M.; Wolf R. and Brembs B. (2001): Flexibility in a single behavioral variable of Drosophila. Learn. Mem. 8:1-10.
Citations:

  1. Cai J, Yan F, Shi Y, Zhang M, Guo L. (2023): Autonomous robot navigation based on a hierarchical cognitive model.Robotica, 41(2): 690–712. https://doi.org/10.1017/s0263574722001539
  2. Kobayashi N, Hasegawa Y, Okada R, Sakura M. (2023): Visual learning in tethered bees modifies flight orientation and is impaired by epinastine.Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. https://doi.org/10.1007/s00359-023-01623-z
  3. Gibbons M, Crump A, Barrett M, Sarlak S, Birch J, Chittka L. (2022): Can insects feel pain? A review of the neural and behavioural evidence. In: Advances in Insect Physiology (pp. 155–229). Elsevier. https://doi.org/10.1016/bs.aiip.2022.10.001
  4. Triggle CR, MacDonald R, Triggle DJ, Grierson D. (2022): Requiem for impact factors and high publication charges. Accountability in Research 29(3):133-164. doi:10.1080/08989621.2021.1909481
  5. Phan A, Martinez-Cervantes J, Cervantes-Sandoval I. (2021): Olfactory sensory preconditioning in Drosophila: role of memory forgetting in gating S1/S2 associations. In bioRxiv. https://doi.org/10.1101/2021.11.29.470429
  6. Gordon J, Masek P. (2021): Excessive energy expenditure due to acute physical restraint disrupts Drosophila motivational feeding response. Scientific Reports, 11(1), 24208. https://doi.org/10.1038/s41598-021-03575-3
  7. Rusch C, Alonso San Alberto D, Riffell JA. (2021): Visuo-Motor Feedback Modulates Neural Activities in the Medulla of the Honeybee, Apis mellifera. J Neurosci 41(14):3192-3203. doi:10.1523/jneurosci.1824-20.2021
  8. Walters ET. (2018): Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 9. doi:10.3389/fphys.2018.01049
  9. Grabowska MJ, Steeves J, Alpay J, van de Poll M, Ertekin D, van Swinderen B. (2018): Innate visual preferences and behavioral flexibility in Drosophila. Journal of Experimental Biology. doi:10.1242/jeb.185918
  10. Le Neindre P, Bernard E, Boissy A, Boivin X, Calandreau L, Delon N, Deputte B, et. al. (2017): Animal Consciousness. EFSA Supporting Publications. 14(4): 1196E
  11. Waller BN (2017): The Injustice of Punishment. Routledge Research in Applied Ethics. 8. ISBN: 978-113850639
  12. Dylla KV, Raiser G, Galizia CG, Szyszka P (2017): Trace Conditioning in Drosophila Induces Associative Plasticity in Mushroom Body Kenyon Cells and Dopaminergic Neurons. Front Neural Circ. 11. DOI: 10.3389/fncir.2017.00042
  13. Guo A, Gong Z, Li H, Li Y, Liu L, Liu Q, Lu H, Pan Y, Ren Q,Wu Z, Thang K, Yan Z (2017): Vision, Memory, and Cognition in Drosophila. In: Byrne JH (Eds): Learning and Memory: A Comprehensive Reference. 483–503. Elsevier. DOI: 10.1016/B978-0-12-809324-5.21029-8
  14. Bronfman ZZ, Ginsburg S, Jablonka E (2016): The Transition to Minimal Consciousness through the Evolution of Associative Learning. Front Psychol. 7. DOI: 10.3389/fpsyg.2016.01954
  15. Taylor G (2015): Unravelling the sensory control of behaviour in honeybees using virtual reality paradigms. PhD thesis, University of Queensland. DOI: 14264/uql.2015.332
  16. Leung JC, Taylor-Kamall RW, Hilliker AJ, Rezai P (2015): Agar-polydimethylsiloxane devices for quantitative investigation of oviposition behaviour of adult Drosophila melanogaster. Biomicrofluidics, 9(3):034112, DOI: 10.1063/1.4922737
  17. Giurfa M (2015): Learning and cognition in insects. Wiley Interdisciplinary Reviews: Cognitive Science, 6(4): 383–395, DOI: 10.1002/wcs.1348
  18. Ghimire S, Kim MS (2015): Defensive Behavior against Noxious Heat Stimuli Is Declined with Aging Due to Decreased Pain-Associated Gene Expression in Drosophila. Biomol Ther (Seoul) 23: 290–295, DOI: 10.4062/biomolther.2014.147
  19. Avargués-Weber A, Lihoreau M, Isabel G, Giurfa M (2015): Information transfer beyond the waggle dance: observational learning in bees and flies. Front Ecol Evol, 3, DOI: 10.3389/fevo.2015.00024
  20. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511920585.007.
  21. Anholt RRH, Mackay TFC, Stone EA (2014): Systems Genetics of Behavior in Drosophila, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 217-230. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511920585.007.
  22. Guo C, Du Y, Yuan D, Li M, Gong H, Gong Z, Liu L (2014) A conditioned visual orientation requires the ellipsoid body in Drosophila. Learn Mem 22: 56–63, DOI: 10.1101/lm.036863.114
  23. Ros T, J Baars B, Lanius RA, Vuilleumier P (2014): Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci 8,1008. DOI: 10.3389/fnhum.2014.01008
  24. Moritz JM (2014): Animal suffering, evolution, and the origins of evil: toward a “free creatures” defense. Zygon 49: 348–380. DOI: 10.1111/zygo.12085
  25. Paparo GD, Dunjko V, Makmal A, Martin-Delgado MA, Briegel HJ (2014): Quantum speed-up for active learning agents. arXiv:1401.4997v1
  26. Dickinson MH (2014): Death Valley, Drosophila, and the Devonian Toolkit. Annu Rev Entomol. 59: 51–72
  27. Giurfa M, Menzel R (2013): Cognitive components of insect behavior. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p14-25
  28. Tse PU (2013): The Neural Basis of free will: criterial causation. MIT Press, 472p, 978-0-262-01910-1
  29. Giurfa M (2013): Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5):285-294
  30. Zhang X, Ren Q, Guo A (2013): Parallel pathways for cross-modal memory retrieval in Drosophila. J Neurosci. 33(20):8784-8793
  31. Heisenberg, M. (2013): The Origin of Freedom in Animal Behaviour. 95–103 In: Suarez, Antoine; Adams, Peter (Eds.) Is Science Compatible with Free Will? Is Science Compatible with Free Will? Exploring Free Will and Consciousness in the Light of Quantum Physics and Neuroscience. Springer 312p ISBN 978-1-4614-5212-6
  32. Bekinschtein TA, Peeters M, Shalom D, Sigman M (2012): Sea slugs, subliminal pictures, and vegetative state patients: boundaries of consciousness in classical conditioning. Front Psychol. 2:337
  33. Giurfa M (2012): Social learning in insects: a higher-order capacity? Front Behav Neurosci. 6:57
  34. Iliadi KG, Knight D, Boulianne GL (2012): Healthy aging – insights from Drosophila. Front Physiol. 3:106
  35. Tomina Y, Takahata M (2012): Discrimination learning with light stimuli in restrained American lobster. Behav Brain Res. 229(1):91-105
  36. Valente A, Huang KH, Portugues R, Engert F (2012): Ontogeny of classical and operant learning behaviors in zebrafish. Learn Mem. 19(4):170-177
  37. Giurfa M, Sandoz JC (2012): Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem. 19(2):54-66
  38. Bekinschtein TA, Peeters M, Shalom D, Sigman M (2011): Sea slugs, subliminal pictures, and vegetative state patients: boundaries of consciousness in classical conditioning. Front Psychol. 2:337
  39. Kahsai L, Zars T (2011): Learning and memory in Drosophila: behavior, genetics, and neural systems. Int Rev Neurobiol. 99:139-167
  40. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  41. Young JM, Wessnitzer J, Armstrong JD, Webb B (2011): Elemental and non-elemental olfactory learning in Drosophila, Neurobiol Learn Mem. doi: 10.1016/j.nlm.2011.06.009
  42. Sorribes A, Armendariz BG, Lopez-Pigozzi D, Murga C, de Polavieja GG (2011): The Origin of Behavioral Bursts in Decision-Making Circuitry. PLoS Comput Biol 7(6): e1002075
  43. Wu Z, Guo A (2011): A model study on the circuit mechanism underlying decision-making in Drosophila. Neural Netw. 24(4):333-344
  44. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  45. Schnaitmann C, Vogt K, Triphan T and Tanimoto H (2010): Appetitive and aversive visual learning in freely moving Drosophila. Front. Behav. Neurosci. 4:10. doi:10.3389/fnbeh.2010.00010
  46. Dunlap-Lehtilä AS (2009): Change and Reliability in the Evolution of Learning and Memory. PhD dissertation, University of Minnesota
  47. Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L. (2009): Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem. 16(5): 289-295
  48. Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang S (2009): Number-based visual generalisation in the honeybee. PLoS ONE. 4(1):e4263
  49. Iliadi KG (2009): The genetic basis of emotional behavior: has the time come for a Drosophila model? J Neurogenet. 23(1):136-146
  50. Menzel R (2009): Working memory in bees: also in flies? J Neurogenet. 23(1):92-99
  51. Pitman JL, Dasgupta S, Krashes MJ, Leung B, Perrat PN, Waddell S. (2009): There are many ways to train a fly. Fly (Austin). 3(1): 3-9
  52. Mustard JA, Edgar EA, Mazade RE, Wu C, Lillvis JL, Wright GA (2008): Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol Learn Mem. 90(4):633-643
  53. Xi W, Peng Y, Guo J, Ye Y, Zhang K, Yu F, Gu A (2008): Mushroom bodies modulate salience-based selective fixation behavior in Drosophila. Eur. J. Neurosci 27(6): 1441-1451
  54. Maimon G, Straw AD, Dickinson MH (2008): A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila. Curr. Biol. 18 (6): 464-470
  55. Isabel G, Comas D, Preat T (2007): From Molecule to Memory System: Genetic Analyses in Drosophila. In: Bontempi B, Silva AJ, Christen Y (eds.): Research and Perspectives in Neurosciences: Memories: Molecules and Circuits, 41-57. Springer Berlin Heidelberg
  56. Riemensperger T (2006): Analysis of predictive features in the dopaminergic System of Drosophila melanogaster using genetically encoded Calcium Sensors. PhD Thesis, University of Würzburg https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2006/docId/1637
  57. Yurkovic A, Wang O, Basu AC, Kravitz EA. (2006): Learning and memory associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci U S A. 103(46):17519-17524
  58. Dupuy F, Sandoz JC, Giurfa M, Josens R (2006): Individual olfactory learning in Camponotus ants. Anim. Behav. 72: 1081-1091
  59. Zars M, Zars T. (2006): High and low temperatures have unequal reinforcing properties in Drosophila spatial learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 192(7):727-735.
  60. Katsov A, Clandinin TR. (2006): Insect vision: remembering the shape of things. Curr Biol. 16(10):R369-371.
  61. Guo J, Guo A. (2005): Crossmodal interactions between olfactory and visual learning in Drosophila. Science. 309(5732):307-310.
  62. Polavieja, GG (2005): Inteligencia en cerebros de un milímetro cúbico. Apuntes de Ciencia y Tecnología, N°16, septiembre de 2005, 28-36
  63. Manev H, Dimitrijevic N. (2005): Fruit flies for anti-pain drug discovery. Life Sci. 76(21):2403-2407.
  64. Zhang B, Lu H, Xi W, Zhou X, Xu S, Zhang K, Jiang J, Li Y, Guo A. (2004): Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci Lett. 371(2-3):190-195.
  65. Ye Y, Xi W, Peng Y, Wang Y, Guo A. (2004): Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm. Eur J Neurosci. 20(4):1001-1007.
  66. Tang SM, Wolf R, Xu SP, Heisenberg M (2004): Visual pattern recognition in Drosophila is invariant for retinal position. SCIENCE 305 (5686): 1020-1022
  67. Fentrop N (2003): Auswirkiungen eines defizits des neuronalen Zelladhäsionsmoleküls (NCAM) im Telencephalon auf Lernen, Ged?chtnis und Individualit?t bei einer gentechnisch veränderten Labormaus. PhD thesis, Universität Hamburg, Germany
  68. Schwärzel M (2003): Localizing engrams of olfactory memories in Drosophila. Subcellular organization of appetitive, aversive and extinguished memories? Dissertation, Julius-Maximilians-Universität Würzburg
  69. Siwicki KK, Ladewski L (2003): Associative learning and memory in Drosophila: beyond olfactory conditioning. BEHAV PROCESS 64 (2): 225-238
  70. Wang SP, Li Y, Feng CH, Guo AK (2003): Dissociation of visual associative and motor learning in Drosophila at the flight simulator. BEHAV PROCESS 64 (1): 57-70
  71. Wang SP, Li Y, Feng CH, Guo AK (2003): Behavioral modification in choice process of Drosophila. SCI CHINA SER C 46 (4):399-413
  72. Scherer S, Stocker RF, Gerber B (2003): Olfactory learning in individually assayed Drosophila larvae. Learn. Mem. 10(3): 217-225 MAY-JUN 2003
  73. Heisenberg M (2003) Mushroom Body Memoir: From maps to models. Nat Rev Neurosci 4: 266-275
  74. Schubert M, Lachnit H, Francucci S, Giurfa M (2002): Nonelementalvisual learning in honeybees. ANIM BEHAV 64: 175-184
  75. Wen A, Liu L (2002): Molecular mechanism of learning and memory in Drosophila. PROG BIOCHEM BIOPHYS 29 (5):670-673
  76. Tang SM, Guo A (2001): Choice behavior of Drosophila facing contradictory visual cues. Science 294 (5546):1543-1547

Brembs B. and Heisenberg M. (2001): Conditioning with compound stimuli in Drosophila at the flight simulator. J. Exp. Biol. 204 (16): 2849-2859.
Citations:

  1. Kobayashi N, Hasegawa Y, Okada R, Sakura M. (2023): Visual learning in tethered bees modifies flight orientation and is impaired by epinastine.Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. https://doi.org/10.1007/s00359-023-01623-z
  2. Martinez-Cervantes J, Shah P, Phan A, Cervantes-Sandoval I. (2022): Higher-order unimodal olfactory sensory preconditioning in Drosophila. eLife, 11. https://doi.org/10.7554/eLife.79107
  3. Yamada D, Bushey D, Li F, Hibbard KL, Sammons M, Funke J, Litwin-Kumar A, Hige T, Aso Y. (2023): Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila. ELife, 12. https://doi.org/10.7554/eLife.79042
  4. Gostolupce D, Lay BPP, Maes EJP, Iordanova MD. (2022): Understanding associative learning through higher-order conditioning. Frontiers in Behavioral Neuroscience, 16, 845616. https://doi.org/10.3389/fnbeh.2022.845616
  5. Matsumoto Y. (2022): Learning and memory in the cricket Gryllus bimaculatus. Physiological Entomology, 47(3):147–161. https://doi.org/10.1111/phen.12387
  6. Gkanias E, McCurdy LY, Nitabach MN, Webb B. (2022): An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster. eLife 11:e75611. doi:10.7554/eLife.75611
  7. MaBouDi H, Barron AB, Li S, Honkanen M, Loukola OJ, Peng F, Li W, Marshall JAR, Cope A, Vasilaki E, Solvi C. (2021): Non-numerical strategies used by bees to solve numerical cognition tasks. Proc R Soc B 288(1945). doi:10.1098/rspb.2020.2711
  8. Bennett JEM, Philippides A, Nowotny T. (2021): Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat Commun 12:2569. doi:10.1038/s41467-021-22592-4
  9. Wendt S. (2020): Economic decision making in ants – A comparative approach to investigating individual decision making in ants. Doktorarbeit, Universität Regensburg. doi:10.5283/EPUB.41438
  10. Liu J. (2020): Investigating positive-valance operant learning in Drosophila melanogaster with a novel apparatus. Doctoral dissertation, Brandeis University.
  11. Bouchekioua Y, Blaisdell AP, Kosaki Y, Tsutsui-Kimura I, Craddock P, Mimura M, Watanabe S. (2020): Spatial inference without a cognitive map: the role of higher-order path integration. Biological Reviews 96(1):52-65. doi:10.1111/brv.12645
  12. Merritt DM, Melkis JG, Kwok B, Tran C, van der Kooy D. (2019): Analysis of Mutants Suggests Kamin Blocking in C. elegans is Due to Interference with Memory Recall Rather than Storage. Sci Rep. doi:10.1038/s41598-019-38939-3
  13. König C, Khalili A, Niewalda T, Gao S, Gerber B. (2019): An optogenetic analogue of second-order reinforcement in Drosophila. Biol Lett. doi:10.1098/rsbl.2019.0084
  14. Ginsburg S, Jablonka E. (2019): The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness. MIT Press, Cambridge, MA. ISBN:9780262039307
  15. Bostock E (2015): Megaselia scalaris (Diptera: Phoridae), a fly of forensic interest: advances in chronobiology and biology. PhD dissertation , University of Huddersfield.
  16. Avargués-Weber A, Lihoreau M, Isabel G, Giurfa M (2015): Information transfer beyond the waggle dance: observational learning in bees and flies. Front Ecol Evol, 3, DOI: 10.3389/fevo.2015.00024
  17. Terao K, Matsumoto Y, Mizunami M (2015): Critical evidence for the prediction error theory in associative learning. Sci. Rep., 5, 8929, DOI: 10.1038/srep08929
  18. Schubert M, Sandoz JC, Galizia G, Giurfa M (2015): Odourant dominance in olfactory mixture processing: what makes a strong odourant? Proc Biol Sci 282(1802). pii: 20142562, DOI: 10.1098/rspb.2014.2562
  19. Sanderson CE, Cook P, Hill PSM, Orozco BS, Abramson CI, Wells H (2013): Nectar quality perception by honey bees (Apis mellifera ligustica). J Comp Psychol. 127:341–351
  20. Heisenberg M (2013): Action Selection: The Brain as a Behavioral Organizer. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p9-13
  21. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  22. Matsumoto Y, Hirashima D, Mizunami M (2013): Analysis and modeling of neural processes underlying sensory preconditioning. Neurobiol Learn Mem. 101C:103-113
  23. Paulk A, Millard SS, van Swinderen B (2012): Vision in Drosophila: Seeing the World Through a Model’s Eyes. Annu Rev Entomol. 58:313–332
  24. Milinkeviciute G, Gentile C, Neely GG (2012): Drosophila as a tool for studying the conserved genetics of pain. Clin Genet. 82(4):359-366
  25. van Swinderen B (2011): Attention in Drosophila. Int Rev Neurobiol. 99:51-85
  26. Young JM, Wessnitzer J, Armstrong JD, Webb B (2011): Elemental and non-elemental olfactory learning in Drosophila. Neurobiol Learn Mem. 96(2):339-352
  27. Cammaerts M-C, Rachidi Z, Beke S, Essaadi Y (2011): Use of olfactory and visual cues for orientation by the ant Myrmica ruginodis (Hymenoptera: Formicidae). Myrmecol. News 16: 45-55
  28. Tabone CJ, de Belle JS (2011): Second-order conditioning in Drosophila. Learn Mem.18(4): 250-253
  29. LaBrecque A (2010): Compound Conditioning in Honeybees: No Evidence for Overshadowing in Honeybee Classical Conditioning. Thesis, New College of Florida
  30. Abramson CI, Nolf SL, Mixson TA, Well H (2010): Can Honey Bees Learn the Removal of a Stimulus as a Conditioning Cue? Ethology 116(9): 843–854
  31. Guo AK, Zhang K, Peng YQ, Xi W (2010): Research progress on Drosophila visual cognition in China. SCIENCE CHINA-Life Sciences 53 (3): 374-384
  32. Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009): Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol. 7:46
  33. Dunlap-Lehtilä AS (2009): Change and Reliability in the Evolution of Learning and Memory. PhD dissertation, University of Minnesota
  34. Bolduc FV, Tully T. (2009): Fruit Flies and Intellectual Disability. Fly (Austin). 3(1): 91-104
  35. Smith D, Wessnitzer J, Webb B. (2008): A model of associative learning in the mushroom body. Biol Cybern. 99(2): 89-103
  36. Schubert M (2007): A Comprehensive Study of Olfactory Coding in the Insect Brain, Doctoral thesis, FU Berlin, Germany
  37. Hussaini SA, Komischke B, Menzel R, and Lachnit H (2007): Forward and backward second-order Pavlovian conditioning in honeybees. Learn. Mem. 14:678-683
  38. Hazlett BA (2007): Conditioned reinforcement in the crayfish Orconectes rusticus. Behaviour 144: 847-859
  39. van Swinderen B, Flores KA. (2007): Attention-like processes underlying optomotor performance in a Drosophila choice maze. Dev Neurobiol. 67(2):129-145.
  40. Goel P, Gelperin A. (2006): A neuronal network for the logic of Limax learning. J Comput Neurosci. 21(3):259-270
  41. Yarali A, Hendel T, Gerber B. (2006): Olfactory learning and behaviour are ‘insulated’ against visual processing in larval Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 192(10):1133-1145.
  42. Guo J, Guo A. (2005): Crossmodal interactions between olfactory and visual learning in Drosophila. Science. 309(5732):307-310.
  43. Guerrieri F, Lachnit H, Gerber B, Giurfa M. (2005): Olfactory blocking and odorant similarity in the honeybee. Learn Mem. 12(2): 86-95.
  44. van Swinderen B (2005): The remote roots of consciousness in fruit-fly selective attention? Bioessays, 27 (3): 321-330
  45. Greenspan RJ, van Swinderen B (2004): Cognitive consonance: complex brain functions in the fruit fly and its relatives. Trends Neurosci. 27(12): 707-711.
  46. Siwicki KK, Ladewski L (2003): Associative learning and memory in Drosophila: beyond olfactory conditioning. BEHAV PROCESS 64 (2): 225-238

Baxter D.A.; Cai Y.; Brembs B. and Byrne J.H. (2000): Simulating physiological and morphological properties of neurons with SNNAP (Simulator for Neural Networks and Action Potentials). Soc. Neurosci. Abstr. 26:21.64.
Citations:

  1. Cai, Y; Baxter, DA; Crow, T (2003): Computational Study of Enhanced Excitability in Hermissenda: Membrane Conductances Modulated by 5-HT J Comp Neurosci. 15: 105-121
  2. M Flynn, Y Cai, DA Baxter, T Crow (2003): A Computational Study of the Role of Spike Broadening in Synaptic Facilitation of Hermissenda. J Comp Neurosci. 15, 29-41.

Brembs B. (2000): An Analysis of Associative Learning in Drosophila at the Flight Simulator. Dissertation, Julius Maximilians Universität Würzburg.
Citations:

  1. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  2. Kotchoubey B. (2018): Human Consciousness: Where Is It From and What Is It for. Front Psychol 9. doi:10.3389/fpsyg.2018.00567
  3. Mitra T, Menon ST, Sinah S. (2018): Non-associative learning in intra-cellular signaling networks. doi:10.48550/ARXIV.1807.01243
  4. Raja S (2013): The neuronal basis of spontaneous flight behavior in Drosophila. PhD dissertation, FU Berlin
  5. Ginsburg S, Jablonka E (2007): The Transition to Experiencing: II. The Evolution of Associative Learning Based on Feelings. Biol Theor, 2(3): 231-243
  6. Diegelmann S, Zars M, Zars T. (2006): Genetic dissociation of acquisition and memory strength in the heat-box spatial learning paradigm in Drosophila. Learn Mem. 13(1):72-83.

Brembs B. and Heisenberg M. (2000): The Operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learn. Mem. 7:104–115.
Citations:

  1. Flores-Valle A, Seelig JD. (2022): A place learning assay for tethered walking Drosophila.Journal of Neuroscience Methods, 378(109657). https://doi.org/10.1016/j.jneumeth.2022.109657
  2. Gibbons M, Crump A, Barrett M, Sarlak S, Birch J, Chittka L. (2022): Can insects feel pain? A review of the neural and behavioural evidence. InAdvances in Insect Physiology.
  3. Ehweiner A. (2022): The neuronal basis of operant self-learning in Drosophila melanogaster, Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Universität Regensburg
  4. Giurfa M, Macri C. (2022): Neuroscience: Mechanisms for bridging stimuli in Pavlovian trace conditioning in flies. Current Biology: CB, 32(11):532–535. https://doi.org/10.1016/j.cub.2022.04.059
  5. Lafon G, Howard SR, Paffhausen BH, Avarguès-Weber A, Giurfa M. (2021): Motion cues from the background influence associative color learning of honey bees in a virtual-reality scenario. Scientific Reports, 11(1), 21127. https://doi.org/10.1038/s41598-021-00630-x
  6. Skora LI, Yeomans MR, Crombag HS, Scott RB. (2021): Evidence that instrumental conditioning requires conscious awareness in humans. Cognition 208(104546). doi:10.1016/j.cognition.2020.104546
  7. Walter T, Couzin ID. (2021): TRex, a fast multi-animal tracking system with markerless identification, and 2D estimation of posture and visual fields. eLife 10:e64000. doi:10.7554/elife.64000
  8. Moreyra S, Lozada M. (2021): Spatial memory in Vespula germanica wasps: A pilot study using a Y-maze assay. Behavioural Processes 189:104439. doi:10.1016/j.beproc.2021.104439
  9. Sodhi PS. (2021): Emergence of perceptual states in mosquitoes using virtually perceived spatial cognitive abilities: Solution for Complex Problems. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) 288-293. doi:10.1109/ICIEM51511.2021.9445314
  10. Meda N, Frighetto G, Megighian A, Zordan MA. (2020): Searching for relief: Drosophila melanogaster navigation in a virtual bitter maze. Behavioural Brain Research 389:112616. Elsevier BV. doi:10.1016/j.bbr.2020.112616
  11. Dirksen N, Langbein J, Matthews L, Puppe B, Elliffe D, Schrader L. (2020): Conditionability of ‘voluntary’ and ‘reflexive-like’ behaviors, with special reference to elimination behavior in cattle. Neuroscience & Biobehavioral Reviews 115:5-12. Elsevier BV. doi:10.1016/j.neubiorev.2020.05.006
  12. Avraham G, Taylor JA, Breska A, Ivry RB, McDougle SD. (2020): Contextual effects in sensorimotor adaptation adhere to associative learning rules. Cold Spring Harbor Laboratory. doi:10.1101/2020.09.14.297143
  13. Seidenbecher SE, Sanders JI, von Philipsborn AC, Kvitsiani D. (2020): Reward foraging task and model-based analysis reveal how fruit flies learn value of available options. PLoS ONE. doi:10.1371/journal.pone.0239616
  14. Assael-Monier M. (2020): Mate copying chez la drosophile: importance Évolutive et bases mécanistiques. Doctoral dissertation, Université Paul Sabatier-Toulouse III.
  15. Birch J, Ginsburg S, Jablonka E. (2020): Unlimited Associative Learning and the origins of consciousness: a primer and some predictions. Biol Philos 35:56. doi:10.1007/s10539-020-09772-0
  16. Shah MJ, Commons ML. (2019): A developmental and evolutionary theory of punishment. Ethics, Medicine and Public Health. doi:10.1016/j.jemep.2019.03.001
  17. Rohrsen C. (2019): The neuronal substrates of reinforcement and punishment in Drosophila melanogaster. Universität Regensburg. doi:10.5283/EPUB.40740
  18. Sitaraman D, LaFerriere H. (2019): Finding a place and leaving a mark in memory formation. Journal of Neurogenetics. doi:10.1080/01677063.2019.1706094 
  19. Ginsburg S, Jablonka E. (2019): The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness. MIT Press, Cambridge, MA. ISBN:9780262039307
  20. Buatois A, Flumian C, Schultheiss P, Avarguès -Weber A, Giurfa M. (2018): Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision. Front Behav Neurosci 12. doi:10.3389/fnbeh.2018.00139
  21. Patanè L, Strauss R, Arena P (2018): Controlling and Learning Motor Functions. In: SpringerBriefs in Applied Sciences and Technology. Nonlinear Circuits and Systems for Neuro-inspired Robot Control (pp 45-65). Springer, Cham. DOI: 1007/978-3-319-73347-0_4
  22. rena E, Arena P, Strauss R, Patané L (2017): Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System. Frontiers in Neurorobotics. 11. DOI: 10.3389/fnbot.2017.00012
  23. Geissmann Q, Garcia-Rodriguez L, Beckwith EJ, French AS, Jamasb AR, Gilestro GF (2017): Ethoscopes: An open platform for high-throughput ethomics. PLOS Biology. 15(10): e2003026. DOI: 10.1371/journal.pbio.2003026
  24. Schultheiss P, Buatois A, Avarguès-Weber A, Giurfa M (2017): Using virtual reality to study visual performances of honeybees. Current Opinion in Insect Science. 24:43–50. DOI: 10.1016/j.cois.2017.08.003
  25. Avarguès-Weber A, Mota T (2016): Advances and limitations of visual conditioning protocols in harnessed bees. Journal of Physiology-Paris. 110(3):107–118. DOI: 10.1016/j.jphysparis.2016.12.006
  26. Bronfman ZZ, Ginsburg S, Jablonka E (2016): The Transition to Minimal Consciousness through the Evolution of Associative Learning. Frontiers in Psychology. 7. DOI: 10.3389/fpsyg.2016.01954
  27. Lucon-Xiccato T, Dadda M, Gatto E, Bisazza A (2016): Development and testing of a rapid method for measuring shoal size discrimination. Animal Cognition. 20(2):149–157. DOI: 10.1007/s10071-016-1050-x
  28. Ljubicic I, Hyland Bruno J, Tchernichovski O (2016): Social influences on song learning. Curr Op Behav Sci, 7: 101–107, DOI: 10.1016/j.cobeha.2015.12.006
  29. Taylor GJ, Paulk AC, Pearson TW, Moore RJ, Stacey JA, Ball D, van Swinderen B, Srinivasan MV (2015): Insects modify their behaviour depending on the feedback sensor used when walking on a trackball in virtual reality. J Exp Biol, 218, 3118–3127, DOI: 10.1242/jeb.125617
  30. Paulk AC, Kirszenblat L, Zhou Y, van Swinderen B (2015): Closed-Loop Behavioral Control Increases Coherence in the Fly Brain. J Neurosci 35: 10304–10315, DOI: 10.1523/JNEUROSCI.0691-15.2015
  31. Peckmezian T, Taylor PW (2015) A virtual reality paradigm for the study of visually mediated behaviour and cognition in spiders. Anim Behav, 107: 87–95, DOI: 10.1016/j.anbehav.2015.06.018
  32. Roth G (2014): The Long Evolution of Brains and Minds, Springer, ISBN 978-94-007-6259-6, pp. 1-320.
  33. Mirwan HB, Mason GJ, Kevan PG (2015): Complex operant learning by worker bumblebees (Bombus impatiens): detour behaviour and use of colours as discriminative stimuli. Insectes Sociaux, 62: 365–377, DOI: 10.1007/s00040-015-0414-6
  34. Schleyer M, Reid SF, Pamir E, Saumweber T, Paisios E, Davies A, Gerber B, Louis M (2015): The impact of odor–reward memory on chemotaxis in larval Drosophila . Learn Mem 22: 267–277,DOI: 10.1101/lm.037978.114
  35. Giurfa M (2015): Learning and cognition in insects. Wiley Interdisciplinary Reviews: 6, 383–395, DOI: 10.1002/wcs.1348
  36. Tabone CJ, De Belle JS (2014): Olfactory learning and memory assays, In: Josh Dubnau (ed.) Behavioral Genetics of the Fly (Drosophila melanogaster). pp. 231-249. Cambridge Handbooks in Behavioral Genetics. Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511920585.007.
  37. Dasgupta S, Wörgötter F, Manoonpong P (2014): Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits, 8:126, DOI: 10.3389/fncir.2014.00126
  38. Klowden MJ (2013): Behavioral Systems. In: Physiological Systems in Insects, 696p, Elsevier, ISBN-13: 978-0124158191
  39. Guo A, Lu H, Zhang K, Ren Q, Wong YNC (2013): Visual learning and decision making in Drosophila melanogaster. In: Menzel R, Benjamin P (eds.) Invertebrate Learning and Memory. Elsevier Science. ISBN-10: 012398260X ISBN-13: 9780123982605, p378-394
  40. Perry CJ, Barron AB, Cheng K (2013): Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdisciplinary Reviews: Cognitive Science 4: 561–582
  41. Panoonpong P, Kolodziejski C, Wörgötter F (2013): Combining correlation-based and reward-based learning in neural control for policy improvement. Advs. Complex Syst. 16: 1350015
  42. Giurfa M (2013): Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5):285-294
  43. Zwarts L, Clements J, Callaerts P (2012): Deciphering the Adult Brain: From Neuroanatomy to Behavior. In: Hassan BA (ed.):The Making and Un-Making of Neuronal Circuits in Drosophila. Neuromethods 69, pp 3-48 ISBN 978-1-61779-829-0
  44. Mery F (2012): Natural variation in learning and memory. Curr Opin Neurobiol. 23(1):52-56
  45. Nuwal N, Stock P, Hiemeyer J, Schmid B, Fiala A, Buchner E (2012): Avoidance of Heat and Attraction to Optogenetically Induced Sugar Sensation as Operant Behavior in Adult Drosophila. J Neurogenet. 26 (3-4):298-305
  46. Miller SM, Ngo TT and van Swinderen B (2012): Attentional switching in humans and flies: rivalry in large and miniature brains. Front. Hum. Neurosci. 5:188. doi: 10.3389/fnhum.2011.00188
  47. Guo AK, Zhang K, Peng YQ, Xi W (2010): Research progress on Drosophila visual cognition in China. SCIENCE CHINA-Life Sciences 53 (3): 374-384
  48. Zars T (2010): Short-term memories in Drosophila are governed by general and specific genetic systems. Learn. Mem. 17: 246-251
  49. Sokolowski MBC, Disma G, Abramson CI (2010): A paradigm for operant conditioning in Blow Flies (Phormia terrae novae Robineau-Desvoidy, 1830). J exp. Anal. Behav. 93 (1): 81-89
  50. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. (2009): Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415
  51. Bolduc FV, Tully T (2009): Fruit flies and intellectual disability. Fly (Austin). 3(1):91-104
  52. Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009): Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol. 7:46
  53. Dayan P, Huys QJ. (2009): Serotonin in Affective Control. Annu Rev Neurosci. 32: 95-126
  54. Wurbel, H (2009): Ethology applied to animal ethics. Appl Anim Behav Sci. 118 (3-4): 118-127
  55. Seugnet L, Suzuki Y, Stidd R, Shaw PJ. (2009): Aversive Phototaxic Suppression: evaluation of a short-term memory assay in Drosophila melanogaster. Genes Brain Behav. 8(4): 377-389
  56. Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L. (2009): Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem. 16(5): 289-295
  57. Menzel R (2009): Working memory in bees: also in flies? J Neurogenet. 23(1):92-99
  58. Pitman JL, Dasgupta S, Krashes MJ, Leung B, Perrat PN, Waddell S. (2009): There are many ways to train a fly. Fly (Austin). 3(1): 3-9
  59. Krylov AK, Aleksandrov YI (2007): “Situatedness in an environment” as alternative to stimuli presentation: Model study. Psykhologicheskii Zhurnal 28(2): 106-113
  60. Dupuy F, Sandoz JC, Giurfa M, Josens R (2006): Individual olfactory learning in Camponotus ants. Anim. Behav. 72: 1081-1091
  61. Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L. (2006): Distinct memory traces for two visual features in the Drosophila brain. Nature. 439(7076): 551-556
  62. Hayden A (2005): The Role of Learning in the Feeding Behavior of Antlions. PhD thesis, Mount Holyoke College, USA https://hdl.handle.net/10090/4017
  63. Giurfa M, Malun D (2004): Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learn. Mem. 11 (3): 294-302
  64. Siwicki KK, Ladewski L (2003): Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav. Process. 64 (2): 225-238
  65. Wang SP, Li Y, Feng CH, Guo AK (2003): Dissociation of visual associative and motor learning in Drosophila at the flight simulator. Behav. Process. 64 (1): 57-70
  66. Wang SP, Tang S, Li Y, Guo AK (2003): Behavioral modification in choice process of Drosophila. SCI CHINA SER C 46 (4): 399-413
  67. Tracey WD, Wilson RI, Laurent G, Benzer S (2003): painless, a Drosophila gene essential for nociception . Cell 113(2): 261-273
  68. Le Bourg E, Buecher C (2002): Learned suppression of photopositive tendencies in Drosophila melanogaster. Anim. Learn. Behav. 30(4): 330-341
  69. Wen A, Liu L (2002): Molecular mechanism of learning and memory in Drosophila. PROG BIOCHEM BIOPHYS 29 (5):670-673
  70. Kisch J (2001): Verhaltens- und elektrophysiologische Untersuchungen zur operanten Konditionierung von Antennenbewegungen der Honigbiene. Doctoral thesis, FU Berlin, Germany.

Cutts C.J.; Brembs B.; Metcalfe N.B. and Taylor A.C. (1999): Prior residence, territory quality and life-history strategies in juvenile Atlantic salmon (Salmo salar L.). J. Fish. Biol. 55: 784-794.
Citations:

  1. Lovén Wallerius M, Moran V, Závorka L, Höjesjö J. (2022): Asymmetric competition over space use and territory between native brown trout (Salmo trutta) and invasive brook trout (Salvelinus fontinalis). Journal of Fish Biology, 100(4):1033–1043. https://doi.org/10.1111/jfb.15010
  2. Hawke T, Bino G, Kingsford RT, et al. (2021): Long-term movements and activity patterns of platypus on regulated rivers. Sci Rep 11:3590. doi:10.1038/s41598-021-81142-6
  3. Ames EM, Gade MR, Nieman CL, Wright JR, Tonra CM, Marroquin CM, Tutterow AM, Gray SM. (2020): Striving for population-level conservation: integrating physiology across the biological hierarchy. S. Cooke (Ed.), Conservation Physiology 8(1). Oxford University Press (OUP). doi:10.1093/conphys/coaa019
  4. Monk CT, Chéret B, Czapla P, Hühn D, Klefoth T, Eschbach E, Hagemann R, Arlinghaus R. (2020): Behavioural and fitness effects of translocation to a novel environment: Whole-lake experiments in two aquatic top predators. L. Börger (Ed.), Journal of Animal Ecology 89(10):2325-2344. Wiley. doi:10.1111/1365-2656.13298
  5. Xu X, Zhang Z, Guo H, Qin J, Zhang X. (2020): Changes in Aggressive Behavior, Cortisol and Brain Monoamines during the Formation of Social Hierarchy in Black Rockfish (Sebastes schlegelii). Animals 10:2357. doi:10.3390/ani10122357
  6. Colella DJ, Paijmans KC, Wong MYL. (2019): Size, sex and social experience: Experimental tests of multiple factors mediating contest behaviour in a rockpool fish. Ethology. doi:10.1111/eth.12861
  7. Berg OK, Fleming IA. (2017): Energetic trade-offs faced by brown trout during ontogeny and reproduction. Brown Trout: Life History, Ecology and Management, pp. 179-199.
  8. Bolliet V, Bardonnet A. (2017): Impact of embeddedness on salmo trutta at different periods of their early ontogenesis. Brown Trout: Life History, Ecology and Management, pp. 201-225.
  9. Thorn MW, Morbey YE (2017): Egg size and the adaptive capacity of early life history traits in Chinook salmon (Oncorhynchus tshawytscha). Evolutionary Applications. 11(2):205–219. DOI: 10.1111/eva.12531
  10. Bolliet V, Bardonnet A (2017): Impact of Embeddedness on Salmo trutta at Different Periods of their Early Ontogenesis. In: Lobon-Cervia J, Sanz N (Eds.): Brown Trout (pp. 201–225). John Wiley & Sons. DOI: 10.1002/9781119268352.ch9
  11. Berg OK, Fleming IA (2017): Energetic Trade-Offs Faced by Brown Trout During Ontogeny and Reproduction. In: Lobon-Cervia J, Sanz N (Eds.): Brown Trout (pp. 179–199). John Wiley & Sons. DOI: 10.1002/9781119268352.ch8
  12. Chifamba PC, Mauru T (2016): Comparative aggression and dominance of Oreochromis niloticus (Linnaeus, 1758) and Oreochromis mortimeri (Trewavas, 1966) from paired contest in aquaria. Hydrobiologia. 788(1): 193–203. DOI: 10.1007/s10750-016-2997-y
  13. Näslund J, Sandquist L, Johnsson JI (2016): Is behaviour in a novel environment associated with bodily state in brown trout Salmo trutta fry? Ecology of Freshwater Fish. 26(3):462–474. DOI: 10.1111/eff.12291
  14. Winberg S, Höglund E, Øverli Ø (2016): Variation in the Neuroendocrine Stress Response. In: Schreck CB, Tort L, Farrell AP, Brauner CJ (Eds.): Fish Physiology (pp. 35–74). Elsevier. DOI: 10.1016/B978-0-12-802728-8.00002-3
  15. Näslund J, Sandquist L, Johnsson JI (2016): Is behaviour in a novel environment associated with bodily state in brown trout Salmo trutta fry? Ecology of Freshwater Fish. DOI: 10.1111/eff.12291
  16. Tiira K, Primmer CR (2015): Genetic diversity and fitness-related traits in endangered salmonids. In: Population Genetics for Animal Conservation. pp. 241-268. Conservation Biology. (No. 17). Cambridge: Cambridge University Press. Available from: Cambridge Books Online https://dx.doi.org/10.1017/CBO9780511626920.012
  17. Régnier T, Labonne J, Chat J, Yano A, Guiguen Y, Bolliet V (2015): No early gender effects on energetic status and life history in a salmonid. R. Soc. open sci., 2, DOI: 10.1098/rsos.150441
  18. Solberg MF, Fjelldal PG, Nilsen F, Glover KA (2014): Hatching Time and Alevin Growth Prior to the Onset of Exogenous Feeding in Farmed, Wild and Hybrid Norwegian Atlantic Salmon. PLoS ONE, 9, DOI: 10.1371/journal.pone.0113697
  19. Moreau DTR, Gamperl AK, Fletcher GL, Fleming IA (2014): Delayed Phenotypic Expression of Growth Hormone Transgenesis during Early Ontogeny in Atlantic Salmon (Salmo salar)? PLoS ONE, 9, e95853.
  20. Warnock WG, Rasmussen JB (2014): Comparing competitive ability and associated metabolic traits between a resident and migratory population of bull trout against a non-native species. Environ Biol Fish 97:415–423
  21. Sørensen C, Johansen IB, Øverli Ø (2013): Physiology of Social Stress in Fishes, p289-325 In: Evans DH, Claiborne JB, Currie S (Eds.): The Physiology of Fishes, CRC Press, 491p, ISBN 9781439880302
  22. Sigourney, D. B., Letcher, B. H., Obedzinski, M. and Cunjak, R. A. (2013): Interactive effects of life history and season on size-dependent growth in juvenile Atlantic salmon. Ecology of Freshwater Fish. 22: 495–507
  23. Simmons RK, Quinn TP, Seeb LW, Schindler DE, Hilborn R (2013): Summer emigration and resource acquisition within a shared nursery lake by sockeye salmon (Oncorhynchus nerka) from historically discrete rearing environments. Can J Fish Aquat Sci. 70(1): 57-63
  24. Mogensen S, Hutchings JA (2012): Maternal fitness consequences of interactions among agents of mortality in early life of salmonids. Can J Fish Aquat Sci. 69(9): 1539-1555, doi: 10.1139/f2012-071
  25. Jönsson B, Jönsson N (2011): Population Enhancement and Population Restoration. In: Ecology of Atlantic Salmon and Brown Trout (pp. 567–632). Springer Netherlands. DOI: 10.1007/978-94-007-1189-1_11
  26. van Leeuwen TE, Rosenfeld JS, Richards JG (2011): Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch). J Anim Ecol. 81(2): 395-402
  27. van Leeuwen TE, Rosenfeld JS, Richards JG (2011): Failure of physiological metrics to predict dominance in juvenile pacific salmon (Oncorhynchus spp.): Habitat effects on the allometry of growth in dominance hierarchies. Can. J. Fish. Aquat. Sci. 68(10): 1811-1818
  28. Reid D, Armstrong JD, Metcalfe NB (2011): Estimated standard metabolic rate interacts with territory quality and density to determine the growth rates of juvenile Atlantic salmon. Functional Ecology. 25(6): 1360-1367
  29. Kim JW, Grant JWA, Brown GE (2011): Do juvenile Atlantic salmon (Salmo salar) use chemosensory cues to detect and avoid risky habitats in the wild? Can. J. Fish. Aquat. Sci. 68:655-662, 10.1139/f2011-011
  30. Moreau DTR, Fleming IA, Fletcher GL, Brown JA (2011): Growth hormone transgenesis does not influence territorial dominance or growth and survival of first-feeding Atlantic salmon Salmo salar in food-limited stream microcosms. J Fish Biol. DOI: 10.1111/j.1095-8649.2010.02888.x
  31. Kvingedal E, Einum S (2011): Prior residency advantage for Atlantic salmon in the wild: effects of habitat quality. Behav Ecol Sociobiol 65(6): 1295-1303
  32. Jonsson B, Jonsson N (2009): Restoration and Enhancement of Salmonid Populations and Habitats with Special Reference to Atlantic Salmon. International Symposium on Challenges for Diadromous Fishes in a Dynamic Global Environment, JUN 18-21, 2007 Halifax, CANADA: Challenges for diadromius fishes in a dynamic global environment. 69: 497-535
  33. Seiler SM, Keeley ER (2009): Competition between native and introduced salmonid fishes: cutthroat trout have lower growth rate in the presence of cutthroat-rainbow trout hybrids. Can J Fish Aqu Sci. 66 (1): 133-141
  34. Montero D, Lalumera G, Izquierdo MS, Caballero MJ, Saroglia M, Tort L (2009): Establishment of dominance relationships in gilthead sea bream Sparus aurata juveniles during feeding: effects on feeding behaviour, feed utilization and fish health. J Fish Biol. 74 (4): 790-805
  35. Neregård L, Sundt-Hansen L, Björnsson BT, Johnsson JI (2008): Growth hormone affects behaviour of wild brown trout Salmo trutta in territorial owner-intruder conflicts. J Fish Biol. 73 (10): 2341-2351
  36. Jönsson M, Skov C, Kod A, Ander Nilsson P (2008): Temporal clumping of prey and coexistence of unequal interferers: experiments on social forager groups of brown trout feeding on invertebrate drift. Oikos 117(12): 1782-1787
  37. Lelong A, Bolliet V, Bancel D, Gaudin P (2008): Detection of elemental composition and caloric value variability at individual level in newly emerged brown trout Salmo trutta L. J Fish Biol.72 (10): 2695-2699
  38. Seppänen E, Kuukka H, Huuskonen H, Piironen J (2008): Relationship between standard metabolic rate and parasite-induced cataract of juveniles in three Atlantic salmon stocks. J Fish Biol. 72 (7): 1659-1674
  39. Martin AL, Moore PA (2008): The influence of dominance on shelter preference and eviction rates in the crayfish, Orconectes rusticus. Ethology 114 (4): 351-360.
  40. Martin AL (2007): Underlying mechanisms that affect crayfish agonistic interactions and resource acquisition. Doctoral thesis, Bowling Green State University, USA
  41. Schjolden J, Winberg S. (2007): Genetically determined variation in stress responsiveness in rainbow trout: behavior and neurobiology. Brain Behav Evol. 70(4):227-238.
  42. Beckman, BR; Gadberry, B; Parkins, P; Cooper, KA; Arkush, KD (2007): State-dependent life history plasticity in Sacramento River winter-run chinook salmon (Oncorhynchus tshawytscha): interactions among photoperiod and growth modulate smolting and early male maturation. Can. J. Fish. Aquat. Sci. 64 (2): 256-271
  43. Jönsson M (2006): Fluctuating prey availability and coexistence of unequal interferers: experiments on drifting invertebrates and social foraging groups of brown trout (Salmo trutta L.), Master thesis, Lund University, Sweden
  44. Hoffman JI, Trathan PN, Amos W. (2006): Genetic tagging reveals extreme site fidelity in territorial male Antarctic fur seals Arctocephalus gazella. Mol Ecol. 15(12):3841-3847
  45. Jonsson, B; Jonsson, N (2006): Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES J. Mar. Sci. 63 (7): 1162-1181
  46. Johnsson JI, Winberg S, Sloman KA (2005): Social Interactions. In: Schreck CB, Tort L, Farrell AP, Brauner CJ (Eds.): Fish Physiology (pp. 151–196). Elsevier. DOI: 10.1016/S1546-5098(05)24005-0
  47. Hedger, RD; Dodson, JJ; Bergeron, NE; Caron, F (2005): Habitat selection by juvenile Atlantic salmon: the interaction between physical habitat and abundance. J. Fish Biol. 67 (4): 1054-1071
  48. DiBattista JD, Anisman H, Whitehead M, Gilmour KM. (2005): The effects of cortisol administration on social status and brain monoaminergic activity in rainbow trout Oncorhynchus mykiss. J Exp Biol. 208 (14): 2707-2718
  49. Gilmour, KM; DiBattista, JD; Thomas, JB (2005): Physiological Causes and Consequences of Social Status in Salmonid Fish. Int. Comp. Biol. 45 (2) 263273.
  50. Letcher, BH; Dubreuil, T; O’Donnell, MJ; Obedzinski, M; Griswold, K; Nislow, KH (2004): Long-term consequences of variation in timing and manner of fry introduction on juvenile Atlantic salmon (Salmo salar) growth, survival, and life-history expression. Can. J. Fish. Aquat. Sci. 61 (12): 2288-2301
  51. Hoffman, JI; Boyd, IL; Amos, W (2004): Exploring the relationship between parental relatedness and male reproductive success in the antarctic fur seal Arctocephalus
    gazella.EVOLUTION
    , 58 (9): 2087-2099
  52. Weber ED, Fausch KD (2003): Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. CAN J FISH AQUAT SCI 60 (8): 1018-1036
  53. Vollestad LA, Quinn TP (2003): Trade-off between growth rate and aggression in juvenile coho salmon, Oncorhynchus kisutch. ANIM BEHAV 66: 561-568
  54. Harwood AJ, Griffiths SW, Metcalfe NB, et al. (2003): The relative influence of prior residency and dominance on the early feeding behaviour of juvenile Atlantic salmon. ANIM BEHAV 65: 1141-1149
  55. Lewis C, Olive PJW, Bentley MG (2003): Pre-emptive competition as a selective pressure for early reproduction in the polychaete Nereis virens. MARECOL-PROG SER 254: 199-211
  56. Jones M, Laurila A, Peuhkuri N, et al. (2003): Timing an ontogenetic niche shift: responses of emerging salmon alevins to chemical cues from predators and competitors. OIKOS 102 (1): 155-163
  57. Cutts CJ, Metcalfe NB, Taylor AC (2002): Fish may fight rather than feed in a novel environment: metabolic rate and feeding motivation in juvenile Atlantic salmon. J FISH BIOL 61 (6): 1540-1548
  58. Sloman KA, Armstrong JD (2002): Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? J FISH BIOL 61: 1-23
  59. Cutts CJ, Metcalfe NB, Taylor AC (2002): Juvenile Atlantic Salmon (Salmo salar) with relatively high standard metabolicrates have small metabolic scopes. FUNCT ECOL 16 (1): 73-78.
  60. Johnsson JI, Forser A (2002): Residence duration influences the outcome of territorial conflicts in brown trout (Salmo trutta). BEHAV ECOL SOCIOBIOL 51 (3): 282-286.
  61. Railsback SF, Harvey, BC (2001): Individual-Based Model Formulation for Cutthroat Trout, Little Jones Creek, California, General Tech. Report PSW-GTR-182, U.S. Forest Service, Pacific Southwest Research Station, Albany, California.
  62. Brown C (2001): Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim. Cogn. 4(2): 109 – 113
  63. McCarthy ID (2001): Competitive ability is related to metabolic asymmetry in juvenile rainbow trout. J FISH BIOL 59: 1002-1014
  64. Griffiths SW, Armstrong JD (2001): The benefits of genetic diversity outweigh those of kin association in a territorial animal. P ROY SOC LOND B BIO 268 (1473): 1293-1296
  65. Sloman KA, Taylor AC, Metcalfe NB, Gilmour KM (2001): Effects of an environmental perturbation on the social behaviour and physiological function of brown trout. ANIM BEHAV 61: 325-333
  66. Berg OK, Hendry AP, Svendsen B, Bech C, Arnekleiv JV, Lohrmann A (2001): Maternal provisioning of offspring and the use of those resources during ontogeny: variation within and between Atlantic Salmon families. FUNCT ECOL 15 (1): 13-23
  67. Volpe JP, Anholt BR, Glickman BW (2001): Competition among juvenile Atlantic salmon (Salmo salar) and steelhead (Oncorhynchusmykiss): relevance to invasion potential in British Columbia. Can. J. Fish. Aquat. Sci. 58 (1): 197-207

Brembs B. (1996): Chaos, cheating and cooperation: potential solutions to the Prisoner’s Dilemma. OIKOS 76: 14-24.
Citations:

  1. Liu Y-P, Wang L, Zhang F, Wang R-W. (2020): Diffusion sustains cooperation via forming diverse spatial patterns in prisoner’s dilemma game. Applied Mathematics and Computation 375:125077. doi:10.1016/j.amc.2020.125077
  2. Bhaumik A, Roy SK, Weber GW. (2019): Hesitant interval-valued intuitionistic fuzzy-linguistic term set approach in Prisoners’ dilemma game theory using TOPSIS: a case study on Human-trafficking. Cent Eur J Oper Res. doi:10.1007/s10100-019-00638-9
  3. Muegge, S. M. (2017): A game theory perspective on product development project charters: the project manager – project sponsor relationship as an iterated Prisoner’s Dilemma. International Journal of Project Organisation and Management, 9(1), 57. https://doi.org/10.1504/ijpom.2017.083115
  4. Noh MY, Koo B, Kramer KJ, Muthukrishnan S & Arakane Y (2016): Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum. Ins Biochem and Mol Biol. 79:119–129. DOI: 1016/j.ibmb.2016.10.013
  5. Grinsted L & Field J (2017): Biological markets in cooperative breeders: quantifying outside options. Proc Roy Soc B: Biol Sci. 284(1856), 20170904. DOI: 10.1098/rspb.2017.0904
  6. Kurokawa S (2016): Evolutionary stagnation of reciprocators. Anim Behav. 122: 217–225. DOI: 10.1016/j.anbehav.2016.09.014
  7. Sparks A, Burleigh T, Barclay P (2015): We can see inside: Accurate prediction of Prisoner’s Dilemma decisions in announced games following a face-to-face interaction. Evol Hum Behav, DOI: 10.1016/j.evolhumbehav.2015.11.003.
  8. Mendoza RL (2015): A Game-Theoretic Model of Marketing Skin Whiteners. Health Marketing Quarterly, 32: 367–381, DOI: 10.1080/07359683.2015.1093884
  9. Mariano P, Correia L (2015): The Give and Take Game: Analysis of a Resource Sharing Game. Int J Appl Math Comp Sci, 25, DOI: 10.1515/amcs-2015-0054
  10. Schroeder D A, Graziano WG, Barclay P, Van Vugt M (2015): The Evolutionary Psychology of Human Prosociality. The Oxford Handbook of Prosocial Behavior, DOI: 10.1093/oxfordhb/9780195399813.013.029
  11. Van den Berg P, Weissing FJ (2015): The importance of mechanisms for the evolution of cooperation. Proc Roy Soc B, 282, DOI: 10.1098/rspb.2015.1382
  12. Hartmann JA, Stetson S, Gaffney AM (2015): From turtles to tweets: a successful doctoral cohort reports on the development of within-group altruism. InSight: Rivier Academic Journal 11(1), p1
  13. Sparks A. (2015): Reputation Mechanisms and the Long-Term Consequences of Cooperative Behavior, PhD dissertation, The University of Guelph
  14. Enesco C. S. (2014): Tit-for-tat: La emergencia de la reciprocidad en niños y su relación
    con las conductas prosociales desde una perspectiva comparada, PhD dissertation, Universidad Complutense de Madrid
  15. Van Lange P, Balliet DP, Parks CD, van Vugt M (2014): Social Dilemmas: Understanding Human Cooperation. Oxford University Press, 208p, ISBN: 9780199897612
  16. Kemper KR (2013): Tribal Sovereignty Means Competition, Broadband Access, and Economic Development for Indian Country: A Law and Economics Analysis of the Efficiency of the efficiency of the FCC’s Standing Rock Sioux case. Journal of Information Policy 3: 442-463
  17. Franco JCA & de las Heras Camino D (2012): Cooperación en los dilemas sociales / Cooperation in Social Dilemmas. Revista Internacional de Ciencias Sociales. 1(2). https://journals.epistemopolis.org/index.php/csociales/article/view/1220
  18. Franco JCA (2011): La conservación de los recursos naturales renovables. Una aproximación desde el estudio de los dilemas sociales. PhD thesis, Universidad Rey Juan Carlos, Departamento de Fundamentos del Análisis Económico
  19. Pomianek C, Palmer CT, Wadley RL, Coe K (2011): Cultural Traditions and the Treatment of Freeriders. J Int Global Stud. 3(1): 1-20
  20. Li J, Hingston P, Kendall G (2011): Engineering Design of Strategies for Winning Iterated Prisoner’s Dilemma Competitions. IEEE Transactions on Computational Intelligence and AI in Games 3(4): 348-360, Article number 6004823
  21. Wang RW, Sun BF, Zheng Q, Shi L, Zhu L (2011): Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism. J R Soc Interface. 8(63):1487-1496
  22. Stafford R Davies MS, Williams GA (2011): Cheats in a cooperative behaviour? Behavioural differences and breakdown of cooperative behaviour in aggregating, intertidal littorinids (Mollusca). Marine Ecology. 33(1): 66–74. doi: 10.1111/j.1439-0485.2011.00474.x
  23. Barclay P (2011): Competitive helping increases with the size of biological markets and invades defection. J Theor Biol. 281(1):47-55
  24. Wang RW, Sun BF, Zheng Q, Shi L, Zhu L (2011): Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism. J R Soc Interface. 7, 1487–1496
  25. Dyer M, Mohanaraj V (2011): The Iterated Prisoner’s Dilemma on a Cycle. arXiv:1102.3822v1 [cs.GT]
  26. Riedel-Kruse IH, Chung AM, Dura B, Hamilton AL, Lee BC (2011): Design, engineering and utility of biotic games. Lab Chip. 11(1):14-22
  27. Bentley PJ (2009): The game of funding: modelling peer review for research grants. Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, Montreal, Québec, Canada WORKSHOP SESSION: Evolutionary computation and multi-agent systems and simulation (ECoMASS) Pages 2597-2602
  28. Power C (2009): A Spatial Agent-Based Model of N-Person Prisoner’s Dilemma Cooperation in a Socio-Geographic Community. J Art Soc Soc Sim. 12(1)8
  29. Gardener T; Moffat J (2008): Changing behaviours in defence acquisition: a game theory approach. J. Op. Res. Soc. 59(2): 225-230
  30. Phillips T (2007): The evolution of human altruism towards non-kin through sexual selection. PhD thesis, University of Nottingham, UK
  31. Paolucci M, Conte R (2007): Roost Size for Multilevel Selection of Altruism Among Vampire Bats. In: Multi-Agent-Based Simulation VII, Springer Berlin / Heidelberg
  32. Thibert-Plante X, Charbonneau P. (2007): Crossover and Evolutionary Stability in the Prisoner’s Dilemma. Evol Comput. 15(3):321-344
  33. Thibert-Plante X, Parrott L (2007): Prisoner’s dilemma and clusters on small-world networks. Complexity 12 (6): 22-36
  34. Seip KL, Wenstøp F (2006): A primer on environmental decision-making. Springer, ISBN 1402040733, 9781402040733
  35. Galaz V (2006): Power in the Commons. The Politics of Water Management Institutions in Sweden and Chile. PhD thesis, Göterborgs Universitet, Sweden.
  36. Garcia J, Hernandez G, Galeano JC (2006): Cooperation, Solution Concepts and Long-term Dynamics in the Iterated Prisoner’s Dilemma. IEEE Congress on Evolutionary Computation CEC 2006: 1618 – 1623
  37. Conte R, Paolucci M, Di Tosto G (2006): Vampire Bats & The Micro-Macro Link. In: Billari FC, Fent T, Prskawetz A, Scheffran J (eds.) Agent-Based Computational Modelling – Applications in Demography, Social, Economic and Environmental Sciences. Physica-Verlag HD, Springer.
  38. Fishman MA. (2006): Involuntary defection and the evolutionary origins of empathy. J Theor Biol. 242(4):873-879
  39. Petersen CW (2006): Sexual selection and reproductive success in hermaphroditic seabasses. Int. Comp. Biol. 46 (4): 439-448
  40. Anthes N, Putz A, Michiels NK (2006): Sex role preferences, gender conflict and sperm trading in simultaneous hermaphrodites: a new framework. Anim. Behav. 72: 1-12
  41. Kun A, Boza G, Scheuring I (2006): Asynchronous snowdrift game with synergistic effect as a model of cooperation. Behav. Ecol. 17 (4): 633-641
  42. Corning PA (2005): Holistic Darwinism: Synergy, Cybernetics, and the Bioeconomics of Evolution. University of Chicago Press, 546pp.
  43. Waisel DB (2005): Developing Social Capital in the Operating Room: The Use of Population-based Techniques. Anesthesiology. 103(6):1305-1310
  44. Doebeli M, Hauert C (2005): Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. ECOLOGY LETTERS 8 (7): 748-766
  45. Kreft JU (2005): Conflicts of interest in biofilms. Biofilms 1: 265-276
  46. Green SP (2004): Cheating. Law Philosoph. 23(2): 137-185
  47. Daniels H (2004): Facultative butterfly-ant interactions – the role of variation in composition of nectar secretions. PhD thesis, University of Bayreuth, Germany
  48. Jang D. Whigham DA, Grant D (2004): On evolving fixed pattern strategies for Iterated Prisoner’s Dilemma. Proc. 27th Australasian conf. Comp. sci. – Vol 26. 241 – 247
  49. Gillinson S (2004): Why Cooperate? A Multi-Disciplinary Study of Collective Action. Working paper 234, Overseas Development Institute, London, UK
  50. Allen D, Griffiths L, Lyne P (2004): Understanding complex trajectories in health and social care provision. SOCIOLOGY OF HEALTH & ILLNESS 26 (7): 1008-1030
  51. Jang D, Wigham PA, Dick G (2004): On evolving fixed pattern strategies for Iterated Prisoner’s Dilemma. Proceedings of the 27th conference on Australasian computer science 26: 241-247
  52. Gutnisky DA, Zanutto BS (2004): Cooperation in the iterated prisoner’s dilemma is learned by operant conditioning mechanisms. ARTIFICIAL LIFE 10 (4): 433-461
  53. Foster KR. (2004): Diminishing returns in social evolution: the not-so-tragic commons. J Evol Biol. 17(5):1058-1072.
  54. McNamara JM, Barta Z, Houston AI (2004): Variation in behaviour promotes cooperation in the Prisoner’s Dilemma game. NATURE 428 (6984): 745-748
  55. Greig D, Travisano M (2004): The Prisoner’s Dilemma and polymorphism in yeast SUC genes. P ROY SOC LOND B BIO 271: S25-S26 Suppl. 3
  56. Wobser G (2003): Produktentwicklung in Kooperation mit Anwendern. In: Enke M (ed) Interaktivs Marketing – Wissenstransfer zwischen Theorie und Praxis. DUV Gabler Edition Wissenschaft.
  57. Mariano P, Correia L (2003): A resource sharing model to study social behaviours. LECT NOTES ARTIF INT 2902: 84-88
  58. Dubois F, Giraldeau LA (2003): The forager’s dilemma: Food sharing and food defense as risk-sensitive foraging options. AM NAT 162 (6): 768-779
  59. Gallanger, S, Park, S.H. (2003): Branching out. Potentials, IEEE 22(2): 20-21
  60. Lotem A, Fishman MA, Stone L (2003): From reciprocity to unconditional altruism through signalling benefits. P ROY SOC LOND B BIO 270(1511): 199-205
  61. Conte R, Paolucci M (2002): Reputation in Artificial Societies – Social Beliefs for Social Order ISBN: 978-1-4613-5421-5 (Print) 978-1-4615-1159-5 (Online)
  62. Simms EL, Taylor DL (2002): Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. INTEGR COMP BIOL 42:369-380
  63. Mariano P, Correia L (2002): The Effect of Agreements in a Game with Multiple Strategies for Cooperation. In: Artificial Life VIII, Standish, Abbass, Bedau (eds)(MIT Press) 2002. pp 375-378
  64. Bird RB, Bird DW, Smith EA, Kushnick GC (2002): Risk and reciprocity in Meriam food sharing. EVOLUTION AND HUMAN BEHAVIOR 23:297-321
  65. Hare JF, Atkins BA (2001): The squirrel that cried wolf: reliability detection by juvenile Richardson’s ground squirrels (Spermophilusrichardsonii). BEHAV ECOL SOCIOBIOL 51: 108-112
  66. Wakano JY, Yamamura N (2001): A simple learning strategy that realizes robust cooperation better than Pavlov in Iterated Prisoners’ Dilemma. J ETHOL 19: 1-8
  67. Flache, A, Torenvlied R (2001): Persistent instability in polarized opinion formation and collective decision-making. Paper presented at the fourth Summer School on Polarization and Conflict, July 23–27, San Sebastián, Spain.
  68. Bronstein JL (2001): The exploitation of mutualisms. ECOLLETT 4: 277-287
  69. Wilkinson DM, Sherratt TN. (2001): Horizontally acquired mutualisms, an unsolved problem in ecology? OIKOS 92:377-384
  70. Fishman MA, Lotem A, Stone L (2001): Heterogeneity stabilizes reciprocal altruism interactions J THEOR BIOL 209: 87-95
  71. Sigmund K, Nowak, MA (2000): A Tale of Two Selves. Science 290(5493): 949-950
  72. Sigmund K, Nowak, MA (2000): Shrewd Investments. Science 288(5467): 819-820
  73. Agrawal AA, Fordyce JA (2000): Induced indirect defence in a lycaenid-ant association: the regulation of a resourcein a mutualism. Proc. R. Soc. Lond. Ser. B-Biol. Sci., 267,1857-1861
  74. Bordini RH (1999): Contributions to an anthropological approach to the cultural adaptation of migrant agents. PhD thesis, University College London.
  75. Bazzan ALC, Bordini RH, Campbell JA (1999): Moral sentiments in multi-agent systems. Lect. Note. Artif. Intell.,1555, 113-131.
  76. Sherratt TN, Roberts G (1999): The evolution of quantitatively responsive cooperative trade. J. Theor. Biol., 200, 419-426.
  77. Wilkinson DM (1999): Bacterial ecology, antibiotics and selection for virulence. Ecol. Lett., 2, 207-209.
  78. Bazzan ALC, Bordini RH, Campbell JA (1998): Moral Sentiments in Multi-agent Systems. Paper presented at “Intelligent Agents V. Agent Theories, Architectures, and Languages”: 5th International Workshop, ATAL’98, Paris, France
  79. Doebeli M, Knowlton N (1998): The evolution of interspecific mutualisms. Proc. Natl. Acad. Sci. U. S. A., 95, 8676-8680.
  80. Sherratt, TN (1998): The evolution of generosity and choosiness in cooperative exchanges. J. Theor. Biol., 193, 167-177.
  81. Day T, Taylor PD (1998): The evolution of temporal patterns of selfishness, altruism, and group cohesion. Am. Nat.,152, 102-113.
  82. Borges RM (1998): Leviathan, natural selection, and ethics. Curr. Sci., 74, 750-758.
  83. Roberts G (1998): Competitive altruism: from reciprocity to the handicap principle. Proc. R. Soc. Lond. Ser. B-Biol. Sci.,265, 427-431
  84. Wedekind C (1998): Give and Ye Shall Be Recognized. Science 280(5372): 2070-2071